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Yuh-Jia Lee (Department of AM NUK Kaohsiung, TAIWAN)Itô formula for generalized white noise functionals, revisited
10th Workshop on Markov Processes and Related Topics Xidian and BNU, 14 -18 Aug., 2014 1

/ 67



Outline

1 Introduction

2 Genaeralized white noise functionals

3 The Topological Equivalence of (S) and A∞
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Motivation

What are the relations of the following integral?

Itô’s question: ∫ 1

0
B(1) dB(t) =?

Hitsuda-Skorokhod integral:∫ 1

0
∂∗B(1) dt

Wick Itô integral: ∫ 1

0
B(1) � dB(t)
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Abstract

Without the definition of Itô integral, we are able to derive ”Itô’s
formula”, in the proof we show that the Hitsuda-Skorokhod integral arises
naturally. In this talk we shall show that the Hitsuda-Skorokhod integral
may be defined for any Gaussian and Non-Gaussian Lévy functionals.
The main idea was initiated from the following papers:

L. : Generalized Functions on Infinite Dimensional Spaces and its
Application to White Noise Calculus, J. Funct. Anal. 82 (1989)
429-464.

L. : Analytic Version of Test Functionals, Fourier Transform and a
Characterization of Measures in White Noise Calculus, J. Funct.
Anal. 100 (1991) 359-380.
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Basic Notations

S : the Schwartz space

S ′: the space of tempered distribution

(·, ·) : the S ′-S pairing

S0 = L2(R)

A : Au = −u′′ + 1 + u2, A is densely defined in S0

{ej : j = 0, 1, 2. . . . } : CONS of S0, consisting of eigenfunctions of A
with corresponding eigenvalues {2j + 2 : j = 0, 1, 2, . . . }
Sp = {f ∈ S ′ : ‖f ‖p <∞} where

‖f ‖2
p =

∞∑
j=0

(2j + 2)p(f , ej)
2.
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Basic Notations, cont.

S = ∩p≥0Sp; S ′ = ∪p≥0S−p
S ⊂ H ⊂ S ′ forms a Gel’fand triple.

µ: a standard Gaussian measure defined on (S ′,B(S ′)) with the
characteristic functional C on S given by

C(η) =

∫
S′

e(x ,η)µ(dx) = e−
1
2
‖η‖2

0

where ‖η‖0 =
{∫ +∞
−∞ η(t)2 dt

}1/2
(η ∈ S).

(L2) := L2(S ′, µ)
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Wiener-Itô decomposition theorem

For f ∈ (L2), f enjoys the following orthogonal decomposition

f (x) =
∞∑
n=0

⊕
{

1

n!

∫
S′

Dnµf (0)(x + iy)nµ(dy)

}
where µf = µ ∗ f and we have

‖f ‖2
L2(S,µ) =

∞∑
N=0

1

n!
‖Dnµf (0)‖2

HSn(S0).

where ‖T‖HSn(V ) denotes the Hilbert-Schmidt norm of the n-linear
operator T on the Hilbert space V .
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Wiener-Itô decomposition theorem, cont.

Let fn denote the kernel of Dnµf (0)/n! and B(t) denote the Brownian
motion, then

In(fn) :=

∫
. . .

∫
Rn

fn(t1, . . . , tn)dB(t1, x) . . . dB(tn, x)

=
1

n!

∫
S′

Dnµf (0)(x + iy)nµ(dy) a.e.(µ)

In notation, we write f ∼ (fn).
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The Segal-Bargmann transform of Gaussian WNF

For ξ ∈ S and for f ∈ (L2) = L2(S ′, µ) with f ∼ (fn), define the transform
S on (L2) by

S(f )(ξ) =
∞∑
n=0

∫
. . .

∫
Rn

fn(t1, . . . , tn)ξ(t1) . . . ξ(tn)dt1 . . . dtn

or,

S(f )(ξ) =
∞∑
n=0

1

n!
Dnµf (0)ξn.

Clearly,

S(f )(ξ) = µ ∗ f (ξ) =

∫
S′

f (x + ξ)µ(dx) = e−
1
2
‖ξ‖2

0

∫
S′

f (x)e(x ,ξ)µ(dx).
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The test functionals

Let (S)p denote the collection of functions f such that

‖f ‖2,p =

{ ∞∑
n=0

1

n!
‖Dnµf (0)‖2

HSn(S−p)

}1/2

<∞.

(S)−p is identified as the dual of (S)p. For p > q

(S)p ⊂ (S)q ⊂ (L2) ⊂ (S)−q ⊂ (S)p.

Set (S) = ∩p≥0(S)p (with projective limit topology). The we have

(S) ⊂ (L2) ⊂ (S)∗

forms a Gel’fand triple. Members of (S) are called test (Gaussian) white
noise functionals and members of its dual space (S)∗ are called generalized
white noise functionals.
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Analyticity of test functionals

Theorem

[L, 1991] For any f ∈ (S), there exist an analytic function f̃ defined on the
complexification CS ′ such that f = f̃ a.e. (µ). Moreover, for each p ≥ 0,
there exist a constant Cf , depending only on f , such that

|f̃ (z)| ≤ Cf e
1
2
‖z‖2
−p .

In what follow we identify ϕ with ϕ̃ for any ϕ ∈ (S).
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Ananlytic version of (S)

For p ∈ R1, denote by Ap the class of entire functions f defined on S−p
which has an entire extension f̃ to CS−p such that

‖f ‖Ap := sup
z∈CS−p

{
|f̃ (z)|e−

1
2
‖z‖2
−p
}
<∞.

In the sequel we shall identify f with f̃ for f ∈ Ap.
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The space A∞

Let A∞ = ∩p>0Ap. Endow A∞ with the projective topology. Then A∞
becomes a topological space.
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Basic properties of the test functionals

If f ∈ A∞, then, for h1, . . . , hn ∈ S and for p ∈ N,

|Dnf (z)h1 · · · hn| ≤ ‖f ‖Ap exp
[
‖z‖2
−p
( ∞∑
j=1

‖hj‖−p
)2]

.

∞∑
n=0

1
n! Dnf (0)zn converges to f in A∞ for any f ∈ A∞.

A∞ is an algebra.

The Wiener–Ito decomposition of f ∈ A∞ converges to f in A∞.

For f ∈ A∞, define Fα,βf (y) =
∫
S∗ f (αx + βy)µ(dx) for α, β ∈ C.

Then Fα,β(A∞) ⊂ A∞ and Fα,β is continuous on A∞.
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Topological Equivalence of (S) and A∞[12]

Let f ∈ (S) and f̃ be its analytic version of f . Let p > 1
2 and r > 1

2 .
There exist some constants αp and βp such that

αp‖ϕ̃‖Ap−1 ≤ ‖ϕ‖2,p ≤ βp‖ϕ̃‖Ap+r . (3.1)
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S-transform for GWF

Given F ∈ (S)∗, recall that the S–transform of F is defined as follows:

SF (ξ) =

{
µ ∗ F (ξ), if F ∈ L2[S ′, µ];

e−
1
2
|ξ|2〈〈F , e(·,ξ)〉〉, if F ∈ (S)∗,

where ξ ∈ S.

SF is also denoted by UF , UF is called the U–functional F .
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Locality

In [12], it has been shown that, for any real number p,

‖F‖2
2,p =

∞∑
n=0

1

n!
‖DnUF (0)‖2

HSn[S−p ]

= lim
n→∞

∫
S′

∣∣ ∫
S′

UF (ApPnx + iApPny)µ(dy)
∣∣2µ(dx),

where Pn’s are orthogonal projections of H which tend to the identity IH .

Proposition

Let p ∈ R1 and r > 1
2 . Then we have

‖F‖2,p ≤ Cr‖UF‖Ap+r .
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Browanian motion as a functional in L2(S ′)
Let (H,B) be an abstract Wiener space with abstract Wiener measure
µ = p1. Let B∗ be the dual space which is regarded as the subspace of H.

Let ξ ∈ B∗. Define
ξ̃(x) = (x , ξ).

Then ξ̃ ∈ A∞ and ξ̃ is normal distributed with mean zero and
variance ‖ξ‖2

H .

For any h ∈ H, there exists a sequence (ξn) ⊂ B∗ such that
|ξn − h|H → 0. It follows that

∫
B |ξ̃n − ξ̃m|

2µ(dx) = ‖ξn − ξm‖2
H → 0

as n,m→∞. Thus {ξ̃n} forms a Cauchy sequence in L2(B) so that
the L2(B)-limit of {ξ̃n} exists. Define

h̃ = L2(B)− lim
n→∞

ξ̃.

Then h̃ ∼ N(0, ‖h‖2
H). In notation, we also write

h̃(x) = 〈x , h〉.
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The Brownian motion as a functional in S ′, cont.
When H = L2(R), we consider (L2(R),S ′) as the union of the abstract
Wiener spaces (L2(R),Sp). Then h̃ is well-defined as a normal distributed
random variable with mean 0 and variance |h|20.

The Brownian motion on the probability space (S ′,B(S), µ) may be
represented by B(t) defined by

B(t, x) =

{
〈x , 1(0,t]〉, t ≥ 0
−〈x , 1(t,0]〉, t < 0,

for almost all x ∈ S ′.

Let

ht =

{
1(0,t], t ≥ 0
−1(t,0], t < 0,

then
B(t, x) = 〈x , ht〉.
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White noise as a GWF

For any test functional ϕ, we have

〈〈Ḃ(t), ϕ〉〉 =
d

dt
〈〈B(t), ϕ〉〉

= lim
ε→0

∫
S′

1

ε
〈x , ht+ε − ht〉ϕ(x)µ(dx)

= lim
ε→0

Dµϕ(0)

{
1

ε
(ht+ε − ht)

}
= Dµϕ(0)δt .

It is easy to see that the mapping ϕ→ Dµϕ(0)δt is continuous on A∞.
This leads to the definition of white nose given as follows

〈〈Ḃ(t), ϕ〉〉 = Dµϕ(0)δt .
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Composition of generalized function with random vectors

For any f ∈ S ′(Rn), and hi ∈ L2, i = 1, 2, 3 . . . , , we may define
f (h̃1, h̃2, . . . , h̃n) formally by

f (h̃1, h̃2, . . . , h̃n) =
1

2πn

∫
Rn

f̂ (u1, . . . , un)e i
∑n

j=1 ui h̃i du1 . . . dun.

Then for ϕ ∈ A∞, we have

〈〈f (h̃1, h̃2, . . . , h̃n), ϕ〉〉 = (f , Ĝh,ϕ),

Gh,ϕ(u) = (1/
√

2π)nF1,iϕ([u,h]) exp(−1

2
‖[u,h]‖2

0),

where u = (u1, u2, . . . , un), h = (h1, h2, . . . , hn) and [u,h] =
∑n

j=1 uihi .
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Donsker delta function for Brownian motion

The Donsker delta function δx(B(t))(t > 0) may be defined by

〈〈δx(h̃t), ϕ〉〉 :=
1

2π

∫ ∞
−∞

e−ias−
1
2
s2tF1,iϕ(sht)ds

:=
1

2π

∫ ∞
−∞

e−ias−
1
2
s2t

{∫
S′
ϕ(y + i sht)µ(dy)

}
ds.
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Itô’s formula

For f ∈ S ′, define f (B(t)) = f (h̃t) for t > 0 by

〈〈f (B(t)), ϕ〉〉 := (f , Ĝt,ϕ)

where Ĝt,ϕ(u) = (1/
√

2π)F1,iϕ(u1(0,t]) exp(−1
2 u2t).

If we differentiate f (B(t)) with respect to t we immediately obtain:

d

dt
〈〈f (B(t)), ϕ〉〉

= (f[u], iu
{

1/
√

2πF1,i∂tϕ(u1(0,t])e−
1
2
u2t
}

+ (f[u],−
1

2
u2
{

(1/
√

2π)F1,i∂tϕ(u1(0,t])e−
1
2
u2t)
}

= 〈〈f (B(t)), ∂tϕ〉〉+ 〈〈1
2

f ′′(B(t)), ϕ〉〉.
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The generalized Itô’s formula follows:

d

dt
f (B(t)) = ∂∗t f ′(B(t)) +

1

2
f ′′(B(t)).

It can be shown that∫ b

a
∂∗t f ′(B(t))dt =

∫ b

a
f ′(B(t))dB(t).

If one replace the Brownian motion by any other normal processes

Xt(x) = 〈x , βt〉,

one may derive a new Itô formula by differentiating f (Xt) with respect to
t.
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Hitsuda Formula (cf. Kuo [10])

Define
〈〈f (B(t),B(1), ϕ〉〉) = (f , Ĥt,ϕ), with

Ĥt,ϕ =
1
√

2π
2
F1,iϕ(u ht + v h1)e−

1
2
u2‖u ht+v h1‖2

0 .

Differentiating with respect to t and then integrating from a > 0 to
b > a(1 > b) we obtain

f (B(b),B(1))− f (B(a),B(1)) =

∫ b

a
∂∗t fx(B(t),B(1)) dt

+

∫ b

a
fxy (B(t),B(1))dt +

1

2

∫ b

a
fxx(B(t),B(1)) dt.

Yuh-Jia Lee (Department of AM NUK Kaohsiung, TAIWAN)Itô formula for generalized white noise functionals, revisited
10th Workshop on Markov Processes and Related Topics Xidian and BNU, 14 -18 Aug., 2014 25

/ 67



An application of Hitsuda formula

Apply Hitsuda formula with f (xy) = xy , we immediately have

B(b)B(1)− B(a)B(1) =

∫ b

a
∂∗t B(1) dt + (b − a),

or, ∫ b

a
∂∗t B(1) dt = (B(b)− B(a))B(1)− (b − a).
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Itô formula for non-adapted Processes

For the more general case f (Xt) with Xt(x) = 〈x , ht〉 with {Xt} being a
normal processes (which is non-adapted generally), one may also apply the
same argument above to derive the following “Itô” formula:

f (X (b)) = f (X (a)) +

∫ b

a
D∗
ḣt

f ′(B(t)) dt +

∫ b

a
{ d

dt
‖ht‖0}f ′′(X (t)) dt,

where ḣt = d
dt ht .

Again a new integral such as
∫ b
a D∗

ḣt
f (t) dt arises.
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Itô formula for Brownian Bridge

The Brownian Bridge X (t) may represented by

X (t) = B(t)− tB(1) = β̃t = h̃t − th̃1, (βt = ht − th1).

Clearly ‖βt‖2
0 = t − t2. Let kt = d

dtβt . Then, for f ∈ S ′, we have

f (X (b))− f (X (a)) =

∫ b

a
D∗kt f

′(X (t)) dt +

∫ b

a

1

2
(1− 2t)f ′′(X (t)) dt

which exist in the generalized sense, where 0 < a < b < 1.
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Let {Yt : a ≤ t ≤ b}, 0 < a < b < 1 be a continuous (S)∗-valued process,
we define ∫ b

a
Yt dX (t+) := lim

|Γ|→0

n∑
j=1

(β̃tj − β̃tj−1)Ytj−1

provided that the limit exist in (S)∗, where
Γ = {a = t0 < t1 < · · · < tn = b} Then one can show that∫ b

a
D∗kt f

′(X (t)) dt =

∫ b

a
f ′(X (t))dX (t+) +

∫ b

a
t f ′′(X (t)) dt.

The above identity also give the probabilistic meaning of the stochastic
integral ∫ b

a
D∗kt f

′(X (t)) dt
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Kuo’s stochastic integral

In [W. Ayed and H.H. Kuo: An extension of the Itô formula, v.2,
COSA(2008),323-333], the authors define the following stochastic integral:
Let f (t), a ≤ t ≤ b, be adapted and ϕ(t), a ≤ t ≤ b be instantly
independent (i.e. ϕ(t) is independent of σ{B(s), s ≤ t}). Define the
stochastic integral of f (t)ϕ(t) by

I (f ϕ) =

∫ b

a
f (t)ϕ(t) dB(t) = lim

‖∆‖→0

n∑
i=1

f (ti−1)ϕ(ti )(B(ti )− B(ti−1))

provided the limit exist in probability.
The main results showed that∫ b

a
f (t)ϕ(t) dB(t) =

∫ b

a
∂∗[f (t)ϕ(t)] dB(t).
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Composition of tempered distribution with Lévy process

Assumption: σ2 = β(0)− β(0−) > 0.
Let Λ be the Lévy probability measure. Applying the inversion formula of
Fourier transform, we have for f ∈ S,

f (X (t)) =
1√
2π

∫ +∞

−∞
(F f )(r) e irX (t) dr ,

where F f is the Fourier transform of f . Then, for any test functionals ϕ,
we have

〈〈 f (X (t)), ϕ 〉〉 =
1√
2π

∫ +∞

−∞
(F f )(r)

{∫
S′
ϕ(x) e irX (t; x) Λ(dx)

}
dr .

(5.1)
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Let Gt,ϕ be the map from R to C defined by

Gt,ϕ(r) =
1√
2π

∫
S′
ϕ(x) e i rX (t ; x) Λ(dx).

Recall the relation between T -transform and S-transform

T ϕ(η) = E[e i〈·, η〉] Sϕ(φiη). (5.2)

for η ∈ L1 ∩ L2(R, dt), where φξ(t, u) = (eξ
∗(t,u) − 1)/u if u 6= 0;

otherwise, φξ(t, u) = ξ(t, u).
It follows from the identity (5.2) that we obtain

Gt,ϕ(r) =
E[e irX (t)]√

2π
× Sϕ(φ(t, r)),

where φ : (0,+∞)× R→ L2
c(R2, λ) is given by

φ(t, r)(s, u) = (e iru1[0,t](s) − 1)/u, if u 6= 0; otherwise,
φ(t, r)(s, u) = i r 1[0,t](s).
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Lemma[16]

For a fixed ϕ ∈ L, Gt,ϕ is a function in Sc . In fact, for any q ≥ 0 and
0 < a < b < +∞, there exists a positive real number p, depending only on
q, a, b, such that

|Gt,ϕ|q ≤ ‖ϕ‖p
uniformly in t on the compact interval [a, b].
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The above lemma implies that the mapping ϕ ∈ L 7→ Gt,ϕ is a continuous
Sc -valued map. It follows that the composition F (X (t)) is well-defined for
F ∈ S ′ in the following

Definition

For F ∈ S ′ and t > 0, we define 〈〈F (X (t)), ϕ〉〉 = (FF , Gt,ϕ) for ϕ ∈ L,
where FF is the Fourier transform of F and (·, ·) is the S ′c -Sc pairing. In
particular, when F = δa, the Dirac delta function concentrated on the
point a, δa(X (t)) (= δ(X (t)− a)) is called the Donsker’s delta function of
the Lévy process X .
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Note that

δ(X (t)− a) =
1

2π

∫ +∞

−∞
e ir(X (t)−a) dr in L−p,c ,

for any sufficiently large p > 0 so that σ2 − (τ2/λ
2p
0 ) > 0, where the

integral exists in the sense of Bochner (see [16]). Moreover,

〈〈F (X (t)− a), ϕ 〉〉 = (F[s], 〈〈δ(X (t)− a− s), ϕ〉〉),

where (·, ·) is the S ′-S pairing, and F[s] means that F acts on the test
functions in the variable s.
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Itô formula for F (X (t))[17]

We are ready to show the Itô formula for the L′-valued process F (X (t))
with F ∈ S ′, t > 0.
By differentiating F (X (t) with respect to t, we obtain Let F ∈ S ′. Then,
for b > a > 0,

F (X (b))−F (X (a)) = τ1

∫ b

a
F ′(X (t)) dt

+

∫ b

a

∫ +∞

−∞

κu F (X (t))− F (X (t))− u F ′(X (t))

u2
dλ(t, u)

+

∫ b

a

∫ +∞

−∞
∂∗(t,u)

κu F (X (t))− F (X (t))

u
dλ(t, u),

in L′, where F ′ is the first distribution derivative of F , κu F = F (·+ u) is
the translate of F ; and the integrals exist in the sense of Bochner.
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Representation of Complex Brownian Motion

• By a complex Brownian functionals we mean a function of complex
Brownian motion given by

Z (t, ω) = B1(t, ω) + iB2(t, ω)

where B1 and B2 are independent real-valued standard Brownian motions.
Z (t) is normally distributed with mean zero and variance parameter |t|.
• Let (S ′c ,B(S ′c), ν(dz)) be the underlying probability space, where S is
the Schwartz space with dual space S ′, S ′c is the complexification of S ′c
which is identified as the product space S ′ × S ′, B(S ′c) the Borel field of
S ′ × S ′ and ν(dz) denotes the product measure µ1/2(dx)µ1/2(dy),
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Yuh-Jia Lee (Department of AM NUK Kaohsiung, TAIWAN)Itô formula for generalized white noise functionals, revisited
10th Workshop on Markov Processes and Related Topics Xidian and BNU, 14 -18 Aug., 2014 37

/ 67



Representation of Complex Brownian Motion

• By a complex Brownian functionals we mean a function of complex
Brownian motion given by

Z (t, ω) = B1(t, ω) + iB2(t, ω)

where B1 and B2 are independent real-valued standard Brownian motions.
Z (t) is normally distributed with mean zero and variance parameter |t|.
• Let (S ′c ,B(S ′c), ν(dz)) be the underlying probability space, where S is
the Schwartz space with dual space S ′, S ′c is the complexification of S ′c
which is identified as the product space S ′ × S ′,

B(S ′c) the Borel field of
S ′ × S ′ and ν(dz) denotes the product measure µ1/2(dx)µ1/2(dy),
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where µt denotes the Gaussian measure defined on S ′ with characteristic
function given by

C (ξ) =

∫
S′

e i(x ,ξ)µt(dx) = e−t|ξ|
2/2.

• The complex Brownian motion on (S ′c ,B(S ′c), ν(dz)) may be
represented by

Zt(x , y) = 〈x , ht〉+ i〈y , ht〉,

where

ht =

{
1(0,t] , t > 0,

−1[t,0] , t < 0.
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The calculus of complex Brownian functional is then performed with
respect to the measure µ(dz).

For example, let f : C→ C be an entire
function of exponential growth. Then we have

E [|f (Z (t))|2] =

∫
S′

∫
S′
|f (〈x + iy , ht〉)|2 µ1/2(dx)µ1/2(dy)

The above identity gives a connection between the function of complex
Brownian motion and the Segal-Bargmann entire functionals.
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Itô formula for entire Brownian Functionals

We shall show that, for any Segal-Bargmann entire function F , the Itô
formula is given by

F (Z (b))− F (Z (a)) =

∫ b

a
F ′(Z (t))dZ (t).
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Definition of Segal-Bargmann space L[12]

A single-valued function f defined on Hc is called a Segal-Bargmann entire
function if it satisfies the following conditions:

(i) f is analytic in Hc .

(ii) The number

Mf := sup
P

∫
H

∫
H
|f (Px + iPy)|2nt(dx)nt(dy)

is finite, where nt denoted as the Gaussian cylinder measure on H
with variance parameter t > 0 and P’s run through all orthogonal
projections on H.
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Denote the class of Segal-Bargmann entire function on H by SBt [H] and
define ‖f ‖SBt [H] =

√
Mf . Then (SBt [H], ‖ · ‖SBt [H]) is a Hilbert space.
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It follows immediately from L[12] that we have

‖f ‖2
SBt [H] =

∞∑
k=0

(2t)k

k!

 N∑
i1,...,ik=1

∣∣∣Dk f (0)ei1 · · · eik
∣∣∣2


=
∞∑
k=0

(2t)k

k!
‖Dnf (0)‖2

HS2[H]
, (6.1)

When t = 1/2, we simply denote SBt [H] by SB[H].
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where ‖S‖HSn[H] denotes the Hilbert-Schmidt norm of a n-linear operator
S ∈ Ln(H) defined by

‖S‖HSn(H) :=

 ∞∑
i1,...,ik=1

|Sei1 · · · eik |
2

1/2

which is independent of the choice of CONS {ei} of H.
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Definition of Infinite-dimensional Segal-Bargman entire
functionals

Definition

For each p ∈ R, define

|||φ|||p =

( ∞∑
n=0

‖Dnφ(0)‖2
HSn[S−p ]

n!

)1/2

and set
SBp = {φ ∈ SB[S−p] : |||φ|||p <∞}
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Let SB∞ be the projective limit of SBp for p ≥ 0 and let SB′∞ be the
dual space of SB∞. We note that

SB∞ = A∞.

SB∞ is a nuclear space and we have the following continuous inclusions:

SB∞ ⊂ SBp ⊂ SB[L2] = SB ⊂ SB′p ⊂ SB′∞.
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The space SB∞ will serve as test functionals and SB′∞ is referred as the
generalized complex Brownian functionals.
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The space SB′p may be identified as the space of entire functions defined
on Sp,c such that : |||φ|||−p <∞ and the pairing of SB′∞ and SB∞ is defined
by

〈〈Φ, ϕ〉〉 =
∞∑
n=0

1

n!
〈〈DnΦ(0),Dnϕ(0)〉〉HSn ,

where

〈〈DnΦ(0),Dnϕ(0)〉〉HSn

:=
n∑

i1,...,in=1

[
DnΦ(0)ei1 · · · einDnϕ(0)ei1 · · · ein

]
.
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One-dimensional Segal-Bargman entire functions

If φ(z) can be represented by a formal power series
∑∞

n=0 anzn,
we define

|φ|p =

( ∞∑
n=0

(2n + 2)2pn!|an|2
)1/2

and let
SBp(R) = {φ : |φ|p <∞}
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One-dimensional Segal-Bargman entire functions, cont.

If φ(z) is a formal power series represented by
∑∞

n=0 bnzn,
we define

|φ|−p =

( ∞∑
n=0

n!|bn|2(2n + 2)−2p

)1/2

.

Then the dual space SB′p of SBp is characterized by

SB−p(R) = {φ : |φ|−p <∞}

The space SB∞[R] is defined as the projective limit of SBp[R] with dual
space SB′∞[R] =

⋃
p>0 SB′p[R].
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Composition of generalized function with complex
Brownian motion

Let ψ ∈ SB∞. Then, for any one dimensional generalized Segal-Bargman
entire function f ∈ SB′∞(R), represented by ψ(z) =

∑∞
n=0 anzn, we have

〈〈f (Z (t)), ψ〉〉c =
∞∑
n=0

bnDnψ(0)hn
t . (6.2)

(6.2) gives the definition of f (Z (t)).
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It can be proved that the composition f (Z (t)) defined in Example 6 is in
fact a generalized Segal-Bargmann functional. This follows straight
forward from the identity (6.2). We state it as a theorem without proof.

Theorem

Let ψ ∈ SB∞. If f ∈ SB′∞(R), then f (Z (t)), defined by (6.2), is a
member of SB′∞. More precisely, for each t > 0, ∃p 3 |ht |−p ≤ 1, and

|〈〈f (Z (t)), ψ〉〉c | ≤ |f |−p|||ψ|||p
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Itô formula for Generalized Complex Brownian functionals

Let f ∈ SB′∞(R). Then we have

d

dt
〈〈f (Z (t)), φ〉〉c

=
∞∑
n=0

bnDnφ(0)hn−1
t δt =

∞∑
n=0

bnnDn−1(Dφ(0)δt)hn−1
t

=
∞∑
n=0

bnnDn−1(∂tφ)(0)hn−1
t = 〈〈∂∗t f ′(Z (t)), φ〉〉c

where ∂t = ∂δt and ∂∗t is the adjoint operator of ∂t . It follows that

d

dt
f (Z (t)) = ∂∗t f ′(Z (t)).
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Itô formula

This proves the Itô formula for complex Brownian motion. As a summary,
we state the above result as a theorem.

Theorem

Let f ∈ SB′∞(R). Then we have

d

dt
f (Z (t)) = ∂∗t f ′(Z (t)).

or in the integral form,

f (Z (b))− f (Z (a)) =

∫ b

a
∂∗t f ′(Z (t))dt.
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As in the case of real Brownian motion, the term on the right hand side of
Itô formula may be interpreted as stochastic integral as shown below.

Definition

Suppose that f ∈ SB′∞. Define the stochastic integral f (Z (t)) as follows:

〈〈
∫ b

a
f (Z (t))dZ (t), φ〉〉c

:= lim
‖4n‖→0

〈〈
n∑

i=1

f (Z (ti−1))(Z (ti )− Z (ti−1)), φ〉〉c

where a = t0 < t1 < t2 < · · · < tn = b and ‖4n‖ = maxj |tj − tj−1|.
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Stochastic integral

Theorem

Let f ∈ SBα(R) and φ ∈ SBα. Then

〈〈
∫ b

a
f (Z (t))dZ (t), φ〉〉c = 〈〈

∫ b

a
∂∗t f (Z (t))dt, φ〉〉c .
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A connection between the Itô formulas for the complex
and real Brownian motion

Recall the Itô formula of f (t,Bt),

f (b,Bb)− f (a,Ba) =

∫ b

a
ft(t,Bt) ds +

∫ b

a
fx(t,Bt)dBt

+
1

2

∫ b

a
fxx(t,Bt)dt.

Take S−transform, we obtain

µbf (〈ξ, hb〉)− µaf (〈ξ, ha〉) =

∫ b

a
ξ(t)(µt f )′(〈ξ, ht〉)dt +

1

2
µt f
′′(〈ξ, ht〉)dt,

where µt f (u) =
∫
R f (u +

√
tv)µ(dv).
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Replace ξ by Ż (t) in the above equation, we have

µbf (Zb)− µa(Za) =

∫ b

a
µt f
′(Zt)dZt +

1

2

∫ b

a
µf ′′(Zt)dt.

The above formula indeed follows from the Itô formula of complex
Brownian motion by applying the Itô formula to µt f (t,Zt):

µbf (Zb)− µa(Za) =

∫ b

a
µt f
′(Zt)dZt +

∫ b

a

d

dt
(µt f )(Zt)dt,

where the last term is verified by the following computation∫ b

a

d

dt
(µt f )(Zt)dt

=
1

2

∫ b

a

1√
t

∫
R

[f ′(Zt +
√

tu)] · u µ(du)dt

=
1

2

∫ b

a
µt f
′′(Zt)dt.
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Example
To evaluate the integral

I =

∫ b

a
∂∗t B(1) dt.

We first take S-transform of I to obtain

S(I )(ξ) = e−
1
2
‖ξ‖2

0

∫ b

a
〈〈∂∗t B(1), e〈·,ξ〉〉〉 dt

=

∫ b

a
ξ(t)〈ξ, h1〉 dt.

Replace ξ by Ż , we obtain

S(I )(Ż ) =

∫ b

a
Ż (t)〈Ż , h1〉 dt = (Z (b)− Z (a))Z (1).

It follows that

I =

∫
S′
〈x + iy , hb − ha〉〈x + iy , h1〉µ(dy) = B(1)(B(b)− B(a))− (b − a).
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A remark

The above theory remains true that if we replace the Brownian motion and
the associated Hilbert space H = L2(R, dx) by a Lévy process together
with the Hilbert space L2(R2, dλ).
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Volterra Gaussian processes [1]

Consider the Gaussian Processes of the form

Z (t) =

∫ t

0
K (t, s) dB(s), 0 ≤ t ≤ 1,

where K (t, s) is a kernel function from [0, 1]× [0, 1] into R satisfying

sup
t∈[0, 1]

∫ t

0
|K (t, s)|2 ds < +∞.

For each t ∈ [0, 1], define

Kt(s) =

∫ s∧t

0
K (t, u) du, 0 ≤ s ≤ 1.

Then Kt ∈H with K̇t = K (t, ·) · 1[0, t].
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Moreover,

Z (t) = 〈·, Kt〉, 0 ≤ t ≤ 1, on (C ,B(C ), ω).

Let F ∈ L1(R) and ϕ be a test Brownian functional. Then

〈〈F (Z (t)), ϕ〉〉 =

∫
C

F (〈x , Kt〉)ϕ(x)ω(dx)

=
1√
2π

∫
C

{∫ ∞
−∞

F̂ (u) e i 〈x ,Kt〉 u du

}
ϕ(x)ω(dx)

=
1√
2π

∫ ∞
−∞

F̂ (u)

{∫
C
ϕ(x + i uKt)ω(dx)

}
e−

1
2
u2

∫ t
0 |K(t, s)|2 ds du

=
1√
2π

∫ ∞
−∞

F̂ (u) · Sϕ(i uKt) · e−
1
2
u2

∫ t
0 |K(t, s)|2 ds du,

where F̂ (u) = 1√
2π

∫∞
−∞ F (r) e−i ur dr .
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Define

Gt, ϕ(u) =
1√
2π

Sϕ(i uKt) · e−
1
2
u2

∫ t
0 |K(t, s)|2 ds , u ∈ R.

Then Gt, ϕ ∈ S. Thus, for F ∈ S ′, we can define F (Z (t)) as a generalized
Brownian functional by

〈〈F (Z (t)), ϕ〉〉 = (F̂ , Gt, ϕ),

where (·, ·) is the S ′-S dual pairing.
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Fact

Assume that K (t, u) is differentiable in the variable t in
{(t, u); 0 < u ≤ t < 1}, and both K and ∂K

∂t are continuous in
{(t, u); 0 < u ≤ t < 1}. For 0 < t < 1, let

ht(s) = K (t, t) · 1[t,1](s) +

∫ s∧t

0

∂K

∂t
(t, u) du, s ∈ [0, 1].

Then

lim
ε→0

Kt+ε − Kt

ε
= ht in L2([0, 1]).
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There are two typical Volterra Gaussian processes as follows:
(a)(Fractional Brownian motion)
Let

K (t, s) := KH(t, s) =

c
H
1[0, t](s) (t − s)H−

1
2

∫ 1

0
uH− 3

2

(
1−

(
1− t

s

)
u
)H− 1

2
du, (H ∈ ( 1

2 , 1)),

1[0, t](s), (H = 1
2 ),

bH

[( t

s

)H− 1
2

(t − s)H−
1
2

−
(

H − 1

2

)
s

1
2
−H
∫ t

s
(u − s)H−

1
2 uH− 3

2 du

]
, (H ∈ (0, 1

2 )),

Yuh-Jia Lee (Department of AM NUK Kaohsiung, TAIWAN)Itô formula for generalized white noise functionals, revisited
10th Workshop on Markov Processes and Related Topics Xidian and BNU, 14 -18 Aug., 2014 65

/ 67



where

c
H

=

√
H(2H − 1)

β(2− 2H, H − 1
2 )

and bH =

√
2H

(1− 2H)β(1− 2H, H + 1
2 )

(β(z , w) =
∫ 1

0 xz−1(1− x)w−1 dx with <z , <w > 0). Then
{Z (t); t ∈ [0, T ]} is a fractional Brownian motion (fBm for short) of
Hurst index H ∈ (0, 1) (see [2]).
(b) (Brownian bridge) Let T = 1 and

K (t, s) =


1−t
1−s , if 0 ≤ s ≤ t < 1,

0, otherwise.
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Thank You for your attention!
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