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Try to understand the Monte Carlo method from a mathematical
viewpoint.

U is a given energy function and π the probability with density
proportional to e−U(x). To sample from π a usually used
diffusion is the time reversible Langevin equation with π as
equilibrium measure

dXt =
√

2 dWt −∇U(Xt ) dt , (1)

where (Wt ) is a Brownian motion.
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Markov processes (chains), regarded as ’conceptual
algorithms’, are used to approximate/ sample from π.

How to evaluate the approximation?
Define comparison criteria depending on various purposes.

Asymptotic variance, spectral gap, variational norm, the
second-largest eigenvalue in absolute value (spectral radius)(*).

Worst-case analysis, average-case analysis, uniform analysis.
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Perturbing the reversible diffusion by adding an antisymmetric
drift term results in

dXt =
√

2 dWt −∇U(Xt ) dt + C(Xt ) dt , (2)

where the vector field C is weighted divergence-free with
respect to π, i.e., div(Ce−U) = 0. This ensures that the
non-reversible diffusion also has equilibrium π. That there are
many ways to choose such a perturbation C, such as taking
C = Q∇U for an antisymmetric matrix Q. Note that, in any
case, it is unnecessary to know the normalization constant for
π.
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Let −L (we use the sign convention to make L positive) denote
the infinitesimal generator of (1). Formally

L = −∆ +∇U · ∇

This process is reversible, which amounts to saying that L is
symmetric in L2(π), the space of square-integrable complex
functions with respect to π.
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On the other hand, the generator of the modified equation is
given by −LC , where

LC = L− C · ∇.

It has the adjoint L∗C f = L∗f + div(fC). Hence, to ensure that the
diffusion (2) also has π as its invariant measure, it is necessary
to assume that L∗Cπ = 0, i.e., div(Ce−U) = 0. In [H., Hwang-Ma,
Sheu 2005] it is shown therein that LC has a larger spectral gap
than L, which is just a way to say that the irreversible algorithm
performs better than the reversible one.
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The spectral gap measures the exponential rate in the
convergence of the distribution of (Xt ) to π. The comparison of
these algorithms in terms of asymptotic variance rather
measures the speed of convergence of the average of f (Xt ) to
the mean

∫
f dπ.

Let us explain our motivation and results. Assume that (Xt )t≥0
is an ergodic Markov process with equilibrium measure π. Let
L2(π) be the space of functions which are square-integrable
with respect to π, with inner product 〈·, ·〉π. Denote by −G the
generator of (Xt ) in L2(π), with domain D. Take f ∈ L2(π) and
assume that there is a solution h ∈ D to the Poisson equation

Gh = f . (3)
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Then a central limit theorem holds:

√
t
(

1
t

∫ t

0
f (Xs) ds −

∫
f dπ

)
(d)→ N (0, σ2(f )),

where
σ2(f ) = 2〈f ,h〉π (4)

is called the asymptotic variance (associated with f ),Chapter 2
of [Komorowski, Landim, Olla 2012]. This explains why the
asymptotic variance is a natural gauge of the efficiency of the
Monte-Carlo algorithm. Finite state case was studied in
[Frigessi, H, Younes 1992], [Chen, Chen, H, Pai 2012], [Chen,
H 2013].
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We prove that, in the sense of asymptotic variance, the
irreversible diffusion (2) converges to equilibrium faster than (1).
More precisely, if σ2

C(f ) and σ2
0(f ) denote the corresponding

asymptotic variances, then under mild conditions,

σ2
C(f ) ≤ σ2

0(f ). (5)

This amounts to proving that

〈L−1
C f , f 〉π ≤ 〈L−1f , f 〉π, (6)

and that is merely a result on operators.
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First we provide conditions on operators for (6) to hold. Under
mild conditions the diffusions (1) and (2) are well-behaved, that
the CLT holds, and that their generators enjoy properties that
ensure (6).

We characterize the cases of equality in (5), study the
worst-case analysis, and finally the behavior of σ2

C(f ) when the
amplitude of the drift grows, as was done in [Franke, Hwang,
Pai, Sheu 2010] for the spectral gap.
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Statement of the main inequality
Preparation
Main computation

Consider a complex Hilbert space H with an inner product 〈·, ·〉,
and a self-adjoint operator T with domain D. Let σ(T ) ⊂ R be
its spectrum.

1 For any bounded Borel function φ : σ(T )→ C, one can
define the bounded operator φ(T ), and φ 7→ φ(T ) is an
algebra homomorphism.

2 For any v ∈ H, there exists a Borel measure µv , called the
spectral measure associated with v , such that for any
bounded Borel function φ : σ(T )→ C,

〈v , φ(T )(v)〉 =

∫
σ(T )

φ(s) µv (ds).

In particular µv (σ(T )) = 〈v , v〉.
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Statement of the main inequality
Preparation
Main computation

We want to establish inequality (6) under the general
assumptions (G1), (G2) and (G3) below. This result says that,
formally, adding an antisymmetric perturbation to a reversible
Markov process decreases the asymptotic variance. It however
relies on fine properties of the generators, which are usually
hard to check.

We obviously want to consider real functions. Hence, we fix a
real Hilbert space H with an inner product 〈·, ·〉. Take S to be an
(unbounded) operator on H with domain D, A be another
operator whose domain contains D, and let SA = S + A (with
domain D).

Chii-Ruey Hwang Variance Reduction for Diffusions



Introduction
General Results

Two examples of diffusion processes
Extensions
Conclusion
Reference
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Preparation
Main computation

(G1) S is symmetric and positive, and A is antisymmetric;
(G2) S is a bijection from D onto H with a bounded inverse;
(G3) SA and S−A are bijections from D onto H.

Theorem (2.1)
Assume (G1), (G2) and (G3). Then, for any f ∈ H,

〈S−1
A f , f 〉 ≤ 〈S−1f , f 〉.

The proof of this result is essentially computation. The goal of
our assumptions, however, is to obtain nice properties for some
operators which allow to rigorously justify that computation.
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Although we work with real functions, however, the spectrum of
our operators lies in the complex plane. Consider HC the
complexification of H, with inner product still written 〈·, ·〉. The
inner product is taken to be sesquilinear on the left to have the
same convention as in Volume I of [Reed, Simon]. The domain
and range of the operators are complexified accordingly with
the same notations for both spaces.

S is a symmetric bijection from D onto HC;
S−1 is a bounded self-adjoint bijection from HC onto D;
V = S−1/2 is a bounded self-adjoint bijection from HC onto
R = V (HC);
the restriction of V to R is a bijection onto D.
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Define
B = iVAV

with domain R. Since V is symmetric and A antisymmetric,

B∗ ⊃ −i(V )∗A∗(V )∗ ⊃ −iV (−A)V = B,

so that B is symmetric. The main reason for (G3) is that it
allows to prove the much stronger following result.

Lemma (2.1)
The operator B is essentially self-adjoint.
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Statement of the main inequality
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Informally a formula for S−1
A = (S + A)−1 is

(S + A)−1 =
(

S1/2(I + S−1/2AS−1/2)S1/2
)−1

= S−1/2(I + VAV )−1S−1/2

= V (I − iB)−1V .

Lemma (2.2)
We have the equality

S−1
A = V (I − iB)−1V .
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Statement of the main inequality
Preparation
Main computation

The essential point for the proof of Theorem (2.1) is the
following computation.

Let f ∈ H (not HC) and g = Vf . Let µg be the spectral measure
of B associated with g. By Lemma (2.2)

〈S−1
A f , f 〉 = 〈V (I − iB)−1Vf , f 〉

= 〈(I − iB)−1g,g〉

=

∫
σ(B)

1
1− iy

µg(dy)

=

∫
σ(B)

1 + iy
1 + y2µg(dy)

=

∫
σ(B)

1
1 + y2µg(dy),
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where the last inequality is justified by the fact that we consider
real quantities, or alternatively that µg is symmetric. Finally,∫
σ(B)

1
1 + y2µg(dy) ≤

∫
σ(B)

1 µg(dy)

= µg(σ(B)) = 〈g,g〉 = 〈Vf ,Vf 〉 = 〈S−1f , f 〉.

Theorem (2.1) follows.
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On Euclidean space
On a compact manifold

We now apply the results in the previous section to the
generators of the diffusions (1) and (2) on a space M: either
M = Rd , or M is a smooth compact connected d-dimensional
Riemannian manifold with the following assumptions.

(A1) U : M → R is C2 and C : M → M is C1;
(A2)

∫
M e−U(x) dx <∞;

(A3) div(Ce−U) = 0.
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On Euclidean space
On a compact manifold

To simplify, in the manifold case, we will even assume
(A1’) U : M → R and C : M → M are smooth.

In the compact manifold case, there is no issue with explosion
of the diffusion, or boundedness of the functions considered,
and that is all we shall assume. On Rd , we will need certain
growth conditions on U and C.
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On Euclidean space
On a compact manifold

The norm of L2(π) is denoted by ‖ · ‖π and the inner product by

〈f ,g〉π =

∫
M

f g dπ.

For m ≥ 0, Hm(π) is the completion of C∞c with respect to

〈f ,g〉Hm(π) =
∑
|a|≤m

〈∂af , ∂ag〉π.

For any subspace X of L2(π), we set

X0 =

{
f ∈ X ,

∫
f dπ = 0

}
.
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On Euclidean space
On a compact manifold

Let us define
L = −∆ +∇U · ∇ (7)

and
LC = L− C · ∇. (8)

With well-chosen domains they are operators on L2(π). In any
case for f ,g ∈ C∞c ,

〈Lf ,g〉π = 〈∇f ,∇g〉π = 〈f ,Lg〉π (9)

and
〈C · ∇f ,g〉π = −〈f ,C · ∇g〉π. (10)
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On Euclidean space
On a compact manifold

On Rd we make the following extra growth assumptions on U
and C:

(A4) for all ε > 0, there is a cε > 0 such that

|C · ∇U|+ |D2U| ≤ ε|∇U|2 + cε,

where D2U is the Hessian matrix of U and | · | is any norm;
(A5) there is a constant K such that

|C| ≤ K (|∇U|+ 1);

(A6) as x →∞,
|∇U(x)| → ∞.
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On Euclidean space
On a compact manifold

The assumptions are similar to those in [Lunadi 1997],
[Metafune, Prüss, Rhandi, Schnaubelt 2005].

Theorem (3.1)
Assume (A1), (A2), (A3) , (A4), (A5). Then the following hold.

1 Equation (2) has a unique strong solution, and this solution
is not explosive.

2 The measure π is its unique invariant distribution.
3 The generator of (2) on L2(π) is −LC , with domain H2(π).
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On Euclidean space
On a compact manifold

Theorem (3.2)
Assume (A1), (A2), (A3), (A4), (A5), (A6). Then LC is onto
L2(π)0, and for f ∈ L2(π)0 and h ∈ H2(π) such that LCh = f :

t−1/2
∫ t

0
f (Xs) ds

converges weakly to a normal variable r .v . with mean zero,
variance

σ2
C(f ) = 2〈f ,h〉π.

And adding an antisymmetric drift reduces the asymptotic
variance, that is for all f ∈ L2(π)0,

σ2
C(f ) ≤ σ2

0(f ).
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On Euclidean space
On a compact manifold

For simplicity assume that U and C are smooth. Let

W2(π) =
{

f ∈ H1(π), Lf ∈ L2(π)
}
.

Operators L, C · ∇ and LC make sense as unbounded
operators on L2(π), with domainW2(π).

Theorem (3.3)
Assume (A1’), (A2), (A3). Then the following hold.

1 Equation (2) has a unique strong solution.
2 The measure π is its unique invariant distribution.
3 The generator of (1) on L2(π) is given by −L, with domain
W2(π).

4 The generator of (2) on L2(π) has a domain containing
W2(π), and is equal to −LC onW2(π).
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On Euclidean space
On a compact manifold

Theorem (3.4)

Assume (A1’), (A2), (A3). Then LC is onto L2(π)0, and for
f ∈ L2(π)0 and h ∈ H2(π) such that LCh = f ,

t−1/2
∫ t

0
f (Xs) ds

converges weakly to a normal r .v . with mean zero, variance

σ2
C(f ) = 2〈f ,h〉π.

And adding an antisymmetric drift reduces the asymptotic
variance, that is for all f ∈ L2(π)0,

σ2
C(f ) ≤ σ2

0(f ).
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Equality
Worst-case analysis
Growing Perturbation

We have shown that for any f ∈ L2(π)0,

σ2
C(f ) = 2

∫
σ(B)

1
1 + y2 µg(dy)

≤ 2
∫
σ(B)

1 µg(dy) = 2‖g‖2π = 2‖L−1/2f‖2π = σ2(f ),

(11)

where B = iL−1/2(C · ∇)L−1/2, g = L−1/2f , and µg is the
spectral measure of B associated with the vector g. We will
derive more detailed results concerning the variance reduction.
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Worst-case analysis
Growing Perturbation

Let us first give a condition for equality in (11).

Corollary (4.1)
Under the assumptions of Theorem 3.2 (resp. Theorem 3.4),
we have σ2

C(f ) = σ2(f ) if and only if f ∈ L(Ker(C · ∇)). In
particular, σ2

c (f ) < σ2
0(f ) for all nonzero f ∈ L2(π)0 when C · ∇

is injective on H2(π)0 (resp. W2(π)0).
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Equality
Worst-case analysis
Growing Perturbation

Proof.

From (11) σ2
C(f ) = σ2(f ) if and only if µg puts all its mass at

zero, which means that g ∈ Ker(B), i.e. C · ∇L−1f = 0, whence
the first part follows. The second part only uses that L−1 has
range H2(π)0 (resp. W2(π)0).

Therefore, one would prefer a C such that Ker(C · ∇) = {0},
even more considering the following results. However, we do
not know how to find such a C, or even if one necessarily exists.
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Equality
Worst-case analysis
Growing Perturbation

consider the worst-case analysis comparison

sup
‖f‖π=1

σ2
C(f ) ≤ sup

‖f‖π=1
σ2

0(f ), (12)

where the sup is over the real f ∈ L2(π)0. The following result
provides a condition such that the irreversible algorithm
performs strictly better than the reversible algorithm in the worst
possible situation. It is worth mentioning that this result is
similar to Theorem 1 in [H, Hwang-Ma, Sheu 2005]. Let λ
denote the spectral gap of L.
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Worst-case analysis
Growing Perturbation

Theorem (4.1)
Under the assumptions of Theorem 3.2 or 3.4, if

Ker(L− λ) ∩ Ker(C · ∇) = {0},

then
sup
‖f‖π=1

σ2
C(f ) < sup

‖f‖π=1
σ2

0(f ) =
2
λ
. (13)
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Worst-case analysis
Growing Perturbation

Theorem (4.2)

For any f ∈ L2(π), σ2
kC(f ) is decreasing in k and P is the

projection on Ker B,

lim
k→∞

σ2
kC(f ) = 2‖PL−1/2f‖2π.

If Ker(C · ∇) = {0}, then

lim
k→∞

σ2
kC(f ) = 0.

If B has a spectral gap, then

lim
k→∞

sup
‖f‖π=1

σ2
kC(f ) = 0.
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Worst-case analysis
Growing Perturbation

In [H, Hwang-Ma, Sheu 1993], for Ornstein-Uhlenbeck
processes it is shown that the spectral gap needs not be
increasing in k , and that the smallest spectral gap can be
attained for some finite k . In [Pai, H 2013], antisymmetric
perturbations of the Laplace-Beltrami operator on the torus are
considered, and the authors prove that the spectral gap as a
finite limit as k → +∞, but can be made arbitrarily close to 0 for
well-chosen C. In [Franke, H, Pai, Sheu 2005], the limit of the
spectral gap as k → +∞ is investigated, and shown to be
infinite, except if a very strict condition is verified. We ignore
whether the condition that B has a spectral gap in our result is
restrictive.
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Our results mainly provide qualitative information on the
asymptotic variance, with less quantitative information due to
the difficulty encountered in the manipulation of spectral
measures. Of course, within the family of all possible choices of
C (with unit norm, say), one would like the one that gives the
smaller asymptotic variance, and maybe even the value of this
lower bound. The theoretical existence and practical
construction of such a perturbation C would of course be of
great interest. In a similar direction, the results of Section
(Extensions) show that a C with Ker(C · ∇) = {0} is preferable.
As mentioned, we do not know if such a C always exists, and,
even more to the point, if it can be constructed. The same goes
for finding a B with a spectral gap as in Theorem 4.2.
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In the case of an Ornstein-Uhlenbeck process, where U is
quadratic, it is reasonable to only consider C of the form Q∇U,
for an antisymmetric matrix Q. The existence of a best C of this
type is then obvious, and it would be interesting to get a closed
form for it. However, one cannot have Ker(C · ∇) = {0}, so that
σ2

kC(f ) has a positive limit as k → +∞. A closed form for this
limit might shed some light on the open questions considered
above.
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