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Model – Markov Chain indexed by the genealogical tree

Genealogical tree T

We consider a population with non-overlapping generations. The genealogical
tree T describes the genealogy of the population in discrete time, and the nodes
of the tree are the individuals.
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Markov Chain indexed by the genealogical tree
We consider a trait in the population. Let (X ,BX ) be the state
space of this trait. For each u ∈ T, denote its trait by X (u) ∈ X .
The process X = (X (u))u∈T satisfies: for u of generation n,

P(X (u1) ∈ dx1, · · · ,X (uk) ∈ dxk |N(u) = k ,X (u) = x)

= p(k)
n (x ,dx1, · · · ,dxk ),

where for each k ,n and x , p(k)
n (x , ·) is a probability on X k .

We call X = (X (u))u∈T a Markov Chain indexed by the
genealogical tree T.

Chunmao HUANG



Introduction
Main results

Objective
Let Tn := {u ∈ T : |u| = n} be the set of all individuals in
generation n and

Zn :=
∑
u∈Tn

δX(u)

be the counting measure of individuals of generation n. In fact,
for A ∈ BX ,

Zn(A) = #{u ∈ Tn : X (u) ∈ A}

denotes the number of individuals of generation n whose traits
belong to A. In particular, we write

Nn := Zn(X ) = #Tn.

Objective:
Zn(A)

Nn
→?
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Case I: fixed genealogical tree
We first consider the case where T is fixed (no random).

Theorem 1.1
Let A ∈ BX . We assume that

(i) Nn →∞ as n→∞;

(ii) lim sup
n→∞

P(|Un ∧ Vn| ≥ K )→ 0 as K →∞, where Un, Vn are two individuals

uniformly and independently chosen in Tn;

(iii) there exists µ(A) ∈ R such that for all u ∈ T satisfying Nn(u) > 0 for all n ≥ 1,
and for all x ∈ X , where U(u)

n denotes an individual uniformly chosen in T|u|+n,

lim
n→∞

P
(

X(U(u)
n ) ∈ A

∣∣∣∣X(u) = x
)

= µ(A).

Then
Zn(A)

Nn
→ µ(A) in P-probability.
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Assumptions (i) and (ii) hold for many genealogies, such as supercritical
branching genealogies. The assumption (iii) is difficult to obtain in
general. Here we provide a simple example where it holds.

Example 1: Homogeneous kernels

Assume that
1
k

k∑
i=1

p(k)
n (x ,X i−1dyX k−i ) =: p(x , dy)

depends neither of k nor of n. Let Y = (Yn) be the Markov chain with
transition kernel p. The assumption (iii) in fact is

Px (Yn ∈ A)→ µ(A)

for every x ∈ X . This convergence is related to the ergodicity of the Markov
chain Y , for which sufficient conditions are known, see e.g.[4].
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Case II: in random environment
In random environment
Let ξ = (ξ0, ξ1, · · · ) be a stationary and ergodic process. Each ξn

corresponds to a distribution p(ξn) = (pk (ξn))∞k=0 on
N0 = {0, 1, · · · } and a class of probabilities p(k)

ξn
(x , dx1, · · · , dxk )

on X k for each k , n, x . Such ξ is called a random environment.

We consider the case where the population evolves following a
branching process in a random environment (so that T is random).
Given ξ, the offspring number N(u) of individual u of generation n
is distributed as p(ξn) and its offspring traits {X (ui)} are
determined by

Pξ(X (u1) ∈ dx1, · · · ,X (uk) ∈ dxk |N(u) = k ,X (u) = x)

= p(k)
ξn

(x , dx1, · · · , dxk ),

where Pξ represents the conditional probability given ξ and is
usually called quenched law.
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Branching process in a random environment (BPRE)
The population of generation n, Nn, is a BPRE. Put

mn =
∑

k

kpk (ξn) (n ≥ 0) and Pn = m0 · · ·mn−1 (n ≥ 1).

It is well known that the normalized population

Wn =
Nn

Pn

is a non-negative martingale and its limit W = lim
n→∞

Wn exists a.s.

Consider the supercritical non-degenerated case

0 < E(log m0) <∞ and E
(

logEξW 2
1

)
<∞. (A)

This assumption ensures that Wn → W in L2 under Pξ and so the
limit W > 0 on the non-extinction event {Nn →∞}, see [2].
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The auxiliary Markov Chain Y = (Yn)
Let

P(k,i)
ξn

(x , ·) = p(k)
ξn

(x ,X i−1 × · × X k−i )

be the i th marginal distribution of p(k)
ξn

(x , ·) and we introduce the
random transition probability

Qn(x , ·) :=
1

mn

∞∑
k=0

pk (ξn)
k∑

i=1

P(k,i)
ξn

(x , ·).

Given the environment ξ, we define an auxiliary Markov chain in
varying environment Y = (Yn), whose transition probability in time
j is Qj :

Pξ(Yj+1 ∈ dy |Yj = x) = Qj (x , dy).

We’ll see that the convergence of the measure Zn(·)/Nn comes
from the ergodic behavior of Yn.
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Law of large numbers in generation n
Similarly to the result of Delmas and Marsalle [1] for deterministic
environment case, we have

Theorem 2.1 Law of large numbers in generation n

Let A ∈ BX . We assume that there exists a sequence (µξ,n(A))n ⊂ R such
that for almost all ξ and for each r ∈ N,

lim
n→∞

(PT r ξ,x (Yn−r ∈ A)− µξ,n(A)) = 0 for every x ∈ X . (1)

Then we have for almost all ξ, conditionally on the non-extinction event,

Zn(A)

Nn
− µξ,n(A)→ 0 in Pξ-probability.

Pξ,x denotes the quenched law when the process Y starts from the
initial value x and T ξ = (ξ1, ξ2, · · · ) if ξ = (ξ0, ξ1, · · · ).
The condition (1) holds if Y is weakly ergodic. For sufficient conditions
of weak ergodicity in the non-homogeneous case, see Mukhamedov [4].
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Corollary

Let A ∈ BX . We assume that there exists µ(A) ∈ R such that for
almost all ξ,

lim
n→∞

Pξ,x(Yn ∈ A) = µ(A) for every x ∈ X . (2)

Then we have for almost all ξ, conditionally on the non-extinction
event,

Zn(A)
Nn

→ µ(A) in Pξ-probability.

The condition (2) holds if Y is ergodic. However, the ergodicity in the
non-homogeneous case is difficult to get under general assumptions. If
Y is homogeneous, the sufficient conditions are known, see e.g.[4].
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Law of large numbers on the whole tree

Theorem 2.2 Law of large numbers on the whole tree

Let A ∈ BX . We assume that there exists µ(A) ∈ R such that for
almost all ξ,

lim
n→∞

1
n

n∑
k=1

Pξ,x(Yk ∈ A) = µ(A) for every x ∈ X . (3)

Then we have for almost all ξ, conditionally on the non-extinction
event,

1
n

n∑
k=1

Zk (A)
Nk

→ µ(A) in Pξ-probability.

A sufficient condition for (3) was shown in Seppäläinen [5].
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Central limit theorem
When the auxiliary Markov chain Y satisfies a central limit theorem, the
measure Zn(·)/Nn maybe also satisfies a central limit theorem.

Theorem 2.3 Central limit theorem

Let X ⊂ R. We assume that for almost all ξ, Yn satisfies a central limit
theorem: there exits a sequence of random variables {(an(ξ), bn(ξ)}
satisfying bn(ξ) > 0 such that

lim
n→∞

Pξ,x
(

Yn − an(ξ)

bn(ξ)
≤ y

)
= Φ(y) for every x ∈ X , (4)

where Φ is a continuous function on R. If for each r ∈ N fixed,

lim
n→∞

bn(ξ)

bn−r (T rξ)
= 1 and lim

n→∞

an(ξ)− an−r (T rξ)

bn−r (T rξ)
= 0 a.s., (5)

then we have for almost all ξ, conditionally on the non-extinction event,

Zn(−∞, bn(ξ)y + an(ξ)]

Nn
→ Φ(y) in Pξ-probability.
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Example 2: Branching random walk with a random environment in
time (Huang and Liu [3])

Given the environment ξ = (ξn), each particle u of generation n, located at
X (u) ∈ R, is independently replaced by N(u) new particles of generation
n + 1 which scatter on R with positions determined by

X (ui) = X (u) + Li (u),

where the point process (N(u); L1(u), L2(u), · · · ) has the normalized intensity
measure qn = q(ξn) for u ∈ Tn. In this model, we can see that

Qn(x , dy) = qn(dy − x).

Let µn =
∫
R tqn(dt) and σ2

n =
∫
R(t − µn)2qn(dt). Huang and Liu [3] obtained

(under certain assumptions) the condition (4), with

an(ξ) =
n−1∑
i=0

µn, bn(ξ) =

(
n−1∑
i=0

σ2
n

)1/2

.
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