[Introduction](#page-1-0) [Main results](#page-4-0)

Law of large numbers for some Markov chains along non-homogeneous genealogies

Chunmao Huang

(A joint work with Vincent Bansaye)

Harbin institute of technology at Weihai

The 10th Workshop on Markov processes and related topics August 14-18, 2014, Xian

イロメ イ押 メイヨメ イヨメ

 $2Q$

Chunmao HUANG

[Introduction](#page-1-0)

[Main results](#page-4-0)

Model – Markov Chain indexed by the genealogical tree

• Genealogical tree T

We consider a population with non-overlapping generations. The genealogical tree T describes the genealogy of the population in discrete time, and the nodes of the tree are the individuals. イロメ 不優 トメ ヨ メ ス ヨ メー \equiv

 2990

• Markov Chain indexed by the genealogical tree

We consider a trait in the population. Let $(\mathcal{X}, B_{\mathcal{X}})$ be the state space of this trait. For each $u \in \mathbb{T}$, denote its trait by $X(u) \in \mathcal{X}$. The process $X = (X(u))_{u \in \mathbb{T}}$ satisfies: for *u* of generation *n*,

$$
\mathbb{P}(X(u1)\in dx_1,\cdots,X(uk)\in dx_k|N(u)=k,X(u)=x)\\ =p_n^{(k)}(x,dx_1,\cdots,dx_k),
$$

イロメ イ押メ イヨメ イヨメー

G. QQQ

where for each k, n and $x, p_n^{(k)}(x, \cdot)$ is a probability on $\mathcal{X}^k.$

We call $X = (X(u))_{u \in \mathbb{T}}$ a Markov Chain indexed by the genealogical tree T.

• Objective

Let $\mathbb{T}_n := \{u \in \mathbb{T} : |u| = n\}$ be the set of all individuals in generation *n* and

$$
Z_n := \sum_{u \in \mathbb{T}_n} \delta_{X(u)}
$$

be the counting measure of individuals of generation *n*. In fact, for $A \in B_{\mathcal{X}}$.

$$
Z_n(A)=\#\{u\in\mathbb{T}_n:X(u)\in A\}
$$

denotes the number of individuals of generation *n* whose traits belong to *A*. In particular, we write

$$
N_n:=Z_n(\mathcal{X})=\#\mathbb{T}_n.
$$

Objective:

$$
\frac{Z_n(A)}{N_n}\rightarrow ?
$$

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

ミー QQQ

• Case I: fixed genealogical tree

We first consider the case where T is fixed (no random).

Theorem 1.1

Let $A \in B_{\mathcal{X}}$. We assume that

- (i) $N_n \to \infty$ as $n \to \infty$;
- $\mathcal{L}(\mathsf{ii})$ lim sup $\mathbb{P}(|U_n \wedge V_n| \geq K) \to 0$ as $K \to \infty$, where U_n , V_n are two individuals *n*→∞ uniformly and independently chosen in T*n*;
- (iii) there exists $\mu(A) \in \mathbb{R}$ such that for all $u \in \mathbb{T}$ satisfying $N_n(u) > 0$ for all $n > 1$, and for all $x\in\mathcal{X},$ where $\mathcal{U}^{(u)}_n$ denotes an individual uniformly chosen in $\mathbb{T}_{|u|+n},$

$$
\lim_{n\to\infty}\mathbb{P}\left(X(U_n^{(u)})\in A\bigg|X(u)=x\right)=\mu(A).
$$

4 ロ) (何) (日) (日)

 \equiv

 290

Then

$$
\frac{Z_n(A)}{N_n} \to \mu(A) \quad \text{in \mathbb{P}-probability.}
$$

Assumptions (i) and (ii) hold for many genealogies, such as supercritical branching genealogies. The assumption (iii) is difficult to obtain in general. Here we provide a simple example where it holds.

Example 1: Homogeneous kernels

Assume that

$$
\frac{1}{k}\sum_{i=1}^k p_n^{(k)}(x, x^{i-1}dy x^{k-i}) =: p(x, dy)
$$

depends neither of *k* nor of *n*. Let $Y = (Y_n)$ be the Markov chain with transition kernel *p*. The assumption (iii) in fact is

$$
\mathbb{P}_x(Y_n \in A) \to \mu(A)
$$

for every $x \in \mathcal{X}$. This convergence is related to the ergodicity of the Markov chain *Y*, for which sufficient conditions are known, see e.g.[\[4\]](#page-14-0).

4 ロ) (何) (日) (日)

 QQQ

Case II: in random environment

• In random environment

Let $\xi = (\xi_0, \xi_1, \dots)$ be a stationary and ergodic process. Each ξ_n corresponds to a distribution $p(\xi_n) = (p_k(\xi_n))_{k=0}^{\infty}$ on $\mathbb{N}_0 = \{0, 1, \dots\}$ and a class of probabilities $p_{\xi_n}^{(k)}(x, dx_1, \dots, dx_k)$ on \mathcal{X}^k for each k, n, x . Such ξ is called a random environment.

We consider the case where the population evolves following a branching process in a random environment (so that T is random). Given ξ, the offspring number *N*(*u*) of individual *u* of generation *n* is distributed as $p(\xi_n)$ and its offspring traits $\{X(u) \}$ are determined by

$$
\mathbb{P}_{\xi}(X(u1) \in dx_1, \cdots, X(uk) \in dx_k | N(u) = k, X(u) = x)
$$

= $p_{\xi_n}^{(k)}(x, dx_1, \cdots, dx_k),$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

G. QQQ

where \mathbb{P}_{ξ} represents the conditional probability given ξ and is usually called quenched law.

• Branching process in a random environment (BPRE) The population of generation *n*, *Nn*, is a BPRE. Put

$$
m_n=\sum_{k}kp_k(\xi_n)\ (n\geq 0)\quad\text{and}\quad P_n=m_0\cdots m_{n-1}\ (n\geq 1).
$$

It is well known that the normalized population

$$
W_n=\frac{N_n}{P_n}
$$

is a non-negative martingale and its limit $W = \lim\limits_{n \to \infty} W_n$ exists a.s. Consider the supercritical non-degenerated case

$$
0<\mathbb{E}(\log m_0)<\infty\quad\text{and}\quad\mathbb{E}\left(\log\mathbb{E}_\xi W_1^2\right)<\infty.\hspace{1cm}(\mathsf{A})
$$

This assumption ensures that $W_n \to W$ in L^2 under \mathbb{P}_ξ and so the limit *W* > 0 on the non-extinction event $\{N_n \to \infty\}$, see [\[2\]](#page-14-1).

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

 QQQ

• The auxiliary Markov Chain $Y = (Y_n)$ Let

$$
P_{\xi_n}^{(k,i)}(x,\cdot)=p_{\xi_n}^{(k)}(x,x^{i-1}\times\cdot\cdot\times x^{k-i})
$$

be the *i*th marginal distribution of $p_{\xi_n}^{(k)}(x, \cdot)$ and we introduce the random transition probability

$$
Q_n(x,\cdot):=\frac{1}{m_n}\sum_{k=0}^{\infty}p_k(\xi_n)\sum_{i=1}^k P_{\xi_n}^{(k,i)}(x,\cdot).
$$

Given the environment ξ , we define an auxiliary Markov chain in varying environment $Y = (Y_n)$, whose transition probability in time *j* is *Q^j* :

$$
\mathbb{P}_{\xi}(Y_{j+1}\in dy|Y_j=x)=Q_j(x,dy).
$$

K ロ ト K 伺 ト K ヨ ト K ヨ ト

G. QQQ

We'll see that the convergence of the measure $Z_n(\cdot)/N_n$ comes from the ergodic behavior of *Yn*.

Law of large numbers in generation *n* Similarly to the result of Delmas and Marsalle [\[1\]](#page-14-2) for deterministic environment case, we have

Theorem 2.1 Law of large numbers in generation *n*

Let $A \in B_{\mathcal{X}}$. We assume that there exists a sequence $(\mu_{\mathcal{E},n}(A))_n \subset \mathbb{R}$ such that for almost all ξ and for each $r \in \mathbb{N}$,

$$
\lim_{n\to\infty} \left(\mathbb{P}_{T^r\xi,x}(Y_{n-r}\in A) - \mu_{\xi,n}(A) \right) = 0 \quad \text{for every } x\in\mathcal{X}.
$$
 (1)

Then we have for almost all ξ , conditionally on the non-extinction event,

$$
\frac{Z_n(A)}{N_n}-\mu_{\xi,n}(A)\to 0\qquad\text{in }\mathbb{P}_{\xi}\text{-probability.}
$$

 $\mathbb{P}_{\xi,x}$ denotes the quenched law when the process Y starts from the initial value *x* and $T\xi = (\xi_1, \xi_2, \cdots)$ if $\xi = (\xi_0, \xi_1, \cdots)$. The condition [\(1\)](#page-9-0) holds if *Y* is weakly ergodic. For sufficient conditions of weak ergodicity in the non-homogeneous case, see Mukhamedov [\[4\]](#page-14-0).

イロメ 不優 トメ ヨ メ ス ヨ メー

 $2Q$

Corollary

Let $A \in B_{\mathcal{X}}$. We assume that there exists $\mu(A) \in \mathbb{R}$ such that for almost all ξ ,

$$
\lim_{n\to\infty}\mathbb{P}_{\xi,x}(Y_n\in A)=\mu(A)\qquad\text{for every }x\in\mathcal{X}.\tag{2}
$$

Then we have for almost all ξ , conditionally on the non-extinction event,

$$
\frac{Z_n(A)}{N_n} \to \mu(A) \quad \text{in } \mathbb{P}_{\xi} \text{-probability.}
$$

The condition [\(2\)](#page-10-0) holds if *Y* is ergodic. However, the ergodicity in the non-homogeneous case is difficult to get under general assumptions. If *Y* is homogeneous, the sufficient conditions are known, see e.g.[\[4\]](#page-14-0).

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

ă. QQQ

● Law of large numbers on the whole tree

Theorem 2.2 Law of large numbers on the whole tree

Let $A \in B_{\mathcal{X}}$. We assume that there exists $\mu(A) \in \mathbb{R}$ such that for almost all ξ ,

$$
\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\mathbb{P}_{\xi,x}(Y_k\in A)=\mu(A)\qquad\text{for every }x\in\mathcal{X}.\tag{3}
$$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

ミー QQQ

Then we have for almost all ξ , conditionally on the non-extinction event,

$$
\frac{1}{n}\sum_{k=1}^n \frac{Z_k(A)}{N_k} \to \mu(A) \quad \text{in } \mathbb{P}_{\xi} \text{-probability.}
$$

A sufficient condition for [\(3\)](#page-11-0) was shown in Seppäläinen [\[5\]](#page-14-3).

Chunmao HUANG

• Central limit theorem

When the auxiliary Markov chain *Y* satisfies a central limit theorem, the measure $Z_n(\cdot)/N_n$ maybe also satisfies a central limit theorem.

Theorem 2.3 Central limit theorem

Let $X \subset \mathbb{R}$. We assume that for almost all ξ , Y_n satisfies a central limit theorem: there exits a sequence of random variables $\{(a_n(\xi), b_n(\xi)\})$ satisfying $b_n(\xi) > 0$ such that

$$
\lim_{n\to\infty}\mathbb{P}_{\xi,x}\left(\frac{Y_n-a_n(\xi)}{b_n(\xi)}\leq y\right)=\Phi(y)\qquad\text{for every }x\in\mathcal{X},\qquad\qquad(4)
$$

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

 \equiv

 290

where Φ is a continuous function on R. If for each $r \in \mathbb{N}$ fixed,

$$
\lim_{n\to\infty}\frac{b_n(\xi)}{b_{n-r}(T^r\xi)}=1\qquad\text{and}\qquad\lim_{n\to\infty}\frac{a_n(\xi)-a_{n-r}(T^r\xi)}{b_{n-r}(T^r\xi)}=0\quad a.s.,\quad (5)
$$

then we have for almost all ξ , conditionally on the non-extinction event,

$$
\frac{Z_n(-\infty,b_n(\xi)y+a_n(\xi)]}{N_n}\to\Phi(y)\qquad\text{in }\mathbb{P}_\xi\text{-probability.}
$$

[Introduction](#page-1-0) [Main results](#page-4-0)

Example 2: Branching random walk with a random environment in time (Huang and Liu [\[3\]](#page-14-4))

Given the environment $\xi = (\xi_n)$, each particle *u* of generation *n*, located at $X(u) \in \mathbb{R}$, is independently replaced by $N(u)$ new particles of generation $n + 1$ which scatter on $\mathbb R$ with positions determined by

 $X(ui) = X(u) + L_i(u)$,

where the point process $(N(u); L_1(u), L_2(u), \cdots)$ has the normalized intensity measure $q_n = q(\xi_n)$ for $u \in \mathbb{T}_n$. In this model, we can see that

 $Q_n(x, dy) = q_n(dy - x)$.

Let $\mu_n=\int_{\mathbb{R}}t\bm{q}_n(dt)$ and $\sigma_n^2=\int_{\mathbb{R}}(t-\mu_n)^2\bm{q}_n(dt).$ Huang and Liu [\[3\]](#page-14-4) obtained (under certain assumptions) the condition [\(4\)](#page-12-0), with

$$
a_n(\xi) = \sum_{i=0}^{n-1} \mu_i, \qquad b_n(\xi) = \left(\sum_{i=0}^{n-1} \sigma_n^2\right)^{1/2}.
$$

イロト イ団ト イヨト イヨト

G. QQQ

References

J-F. Delmas, L. Marsalle.

Detection of cellular aging in a Galton-Watson process. *Stoch. Proc. Appl. 120 (2010), 2495-2519.*

C. Huang, Q. Liu.

Convergence in L^p and its exponential rate for a branching process in a random environment. *Available via http://arxiv.org/abs/1011.0533.*

C. Huang, Q. Liu.

Branching random walk with a random environment in time. *Available via http://arxiv.org/abs/1407.7623.*

F. Mukhamedov.

On *L*1-weak ergodicity of nonhomogeneous discrete Markov processes and its applications. *Rev. Mat. Complut. 26 (2013) 799-813.*

T. Seppäläinen.

Large deviations for Markov chains with Random Transitions. *Ann. Prob. 22 (1994), 713-748.*

イロメ イ押 メイヨメ イヨメ

 $2Q$

[Introduction](#page-1-0) [Main results](#page-4-0)

Thank you !

cmhuang@hitwh.edu.cn

メロメメ 御きメモ メモ おく

高山 2990

Chunmao HUANG