Density convergence for some nonlinear Gaussian stationary sequences

Yaozhong Hu The University of Kansas

at The Tenth International Workshop on Markov Processes and Related Topics Beijing Normal University and Xidian University, Aug 14-18, 2014

KORKA SERKER ORA

Joint work with

David Nualart (University of Kansas)

Samy Tindel (University Nancy)

Fangjun Xu (East China Normal University)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Based on a joint work with

David Nualart, Samy Tindel, Fangjun Xu

Density convergence in the Breuer-Major theorem for nonlinear Gaussian stationary sequences.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

To appear in Bernoulli.

Outline

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- 1. Motivation
- 2. Main results
- 3. Idea of the proof

1. Motivation

Central limit theorem:

Let X_1, \dots, X_n be independent, identically distributed random variables with mean m and variance σ^2 .

$$
F_n := \sqrt{n} \left(\frac{X_1 + \dots + X_n}{n} - \mathbb{E}(X_1) \right) \longrightarrow N(0, \sigma^2)
$$

$$
\frac{X_1 + \dots + X_n}{n} - \mathbb{E}(X_1) \approx \frac{\xi}{\sqrt{n}}, \text{ where } \xi \sim N(0, \sigma^2).
$$

1. Motivation

Central limit theorem:

Let X_1, \cdots, X_n be independent, identically distributed random variables with mean m and variance σ^2 .

$$
F_n := \sqrt{n} \left(\frac{X_1 + \dots + X_n}{n} - \mathbb{E}(X_1) \right) \longrightarrow N(0, \sigma^2)
$$

$$
\frac{X_1 + \dots + X_n}{n} - \mathbb{E}(X_1) \approx \frac{\xi}{\sqrt{n}}, \text{ where } \xi \sim N(0, \sigma^2).
$$

The above convergence is in the sense of distribution

$$
F_n \to N(0, \sigma^2) \quad \text{in distribution}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

1. Motivation

Central limit theorem:

Let X_1, \cdots, X_n be independent, identically distributed random variables with mean m and variance σ^2 .

$$
F_n := \sqrt{n} \left(\frac{X_1 + \dots + X_n}{n} - \mathbb{E}(X_1) \right) \longrightarrow N(0, \sigma^2)
$$

$$
\frac{X_1 + \dots + X_n}{n} - \mathbb{E}(X_1) \approx \frac{\xi}{\sqrt{n}}, \text{ where } \xi \sim N(0, \sigma^2).
$$

The above convergence is in the sense of distribution

$$
F_n \to N(0, \sigma^2) \quad \text{in distribution}
$$

$$
P(F_n \leq a) \rightarrow \int_{-\infty}^a \phi_\sigma(x) dx \quad \forall \quad a \in \mathbb{R}
$$

-
이외어 - 레크 시골 - 세트 - 이제어

where $\phi_{\sigma}(x) = \frac{1}{\sqrt{2}}$ $rac{1}{2\pi\sigma}e^{-\frac{x^2}{2\sigma^2}}$ $\overline{2\sigma^2}$. Other examples of multiple Itô integral F_n

$$
F_n=\int_{[0,T]^q}f_n(t_1,\cdots,t_q)dB_{t_1}\cdots dB_{t_q},
$$

where q is an fixed positive integer, $(B_t,t\geq 0)$ is a standard Brownian motion, f_n is a sequence of deterministic functions such that

$$
\int_{[0,T]^q} f_n^2(t_1,\cdots,t_q) dt_1\cdots dt_q
$$

KORK ERKER ADE YOUR

Theorem If $F_n = I_q(f_n)$, then the following are equivalent: (i) $\lim_{n\to\infty} \mathbb{E}[F_n^4] = 3\sigma^4$, (ii) For all $1 \le r \le q-1$, $\lim_{n\to\infty} ||f_n \otimes_r f_n||_{H^{\otimes 2(q-r)}} = 0$, (iii) $\|DF_n\|_H^2 \to q\sigma^2$ in $L^2(\Omega)$ as $n \to \infty$. (iv) F_n converges in distribution to the normal law $N(0,\sigma^2)$ as $n \to \infty$.

KORK ERKER ADE YOUR

Nualart, D.; Peccati, G. Central limit theorems for sequences of multiple stochastic integrals.

Ann. Probab. 33 (2005), 177-93.

Nualart, D.; Ortiz-Latorre, S.

Central limit theorems for multiple stochastic integrals and Malliavin calculus.

KORK ERKER ADE YOUR

Stochastic Process. Appl. 118 (2008), 614-628.

Let $X = \{X_k; k = 0, 1, 2, \dots\}$ be a centered Gaussian stationary sequence with unit variance. For all v , we set

$$
\rho(v) = \mathbb{E}[X_0 X_{|v|}]
$$

Let γ be the standard Gaussian probability measure and $f\in L^2(\gamma)$ be a fixed deterministic function such that $\mathbb{E}[f(X_1)] = 0$.

KORK ERKER ADE YOUR

$$
f(x)=\sum_{j=d}^{\infty}a_jH_j(x),
$$

KO KKOK KEK KEK LE I KORO

with $a_d \neq 0$ and $d \geq 2$.

$$
f(x)=\sum_{j=d}^{\infty}a_jH_j(x),
$$

with $a_d\neq 0$ and $d\geq 2$. Define $V_n=\frac{1}{\sqrt{2}}$ $\frac{1}{n}\sum_{k=0}^{n-1}f(X_k).$

$$
f(x)=\sum_{j=d}^{\infty}a_jH_j(x),
$$

with $a_d\neq 0$ and $d\geq 2$. Define $V_n=\frac{1}{\sqrt{2}}$ $\frac{1}{n}\sum_{k=0}^{n-1}f(X_k).$ The Breuer-Major Theorem

$$
f(x)=\sum_{j=d}^{\infty}a_jH_j(x),
$$

with $a_d\neq 0$ and $d\geq 2$. Define $V_n=\frac{1}{\sqrt{2}}$ $\frac{1}{n}\sum_{k=0}^{n-1}f(X_k).$ The Breuer-Major Theorem Suppose that $\sum_{\nu=-\infty}^{\infty}|\rho(\nu)|^d<\infty$ and suppose

$$
\sigma^2 = \sum_{j=d}^{\infty} j! a_j^2 \sum_{\nu=-\infty}^{\infty} \rho(\nu)^j
$$

is in $(0, \infty)$. Then we have

$$
V_n \xrightarrow{\text{Law}} N(0, \sigma^2)
$$

KORK ERKER ADE YOUR

P. Breuer and P. Major Central limit theorems for non-linear functionals of Gaussian fields. J. Mult. Anal. 13 (1983), 425–441.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Corollary

Consider $2 \le d \le q \le \infty$ and a family of real numbers $\{a_j;\,j=d,\ldots,q\}$. Let H_j be the jth order Hermite polynomial, and assume that $\sigma^2\in (0,\infty)$, where $\sigma^2\equiv\sum_{j=d}^q j! a_j^2\sum_{v\in\mathbb{Z}}\rho(v)^j$. Set

$$
V_n^{d,q} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \sum_{j=d}^q a_j H_j(X_k).
$$

Then $V_n^{d,q} \xrightarrow{Law} \mathcal{N}(0, \sigma^2)$ as n tends to infinity. In particular, we have:

$$
\lim_{n\to 0} \mathbf{E}\left[\left(V_n^{d,q}\right)^4\right] = 3\sigma^4.
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

There are some development along this direction.

Convergence in density of multiple integrals

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

Convergence in density of multiple integrals Are there $f_n(x)$ such that

$$
P(F_n \leq a) = \int_{-\infty}^a f_n(x) dx
$$

and

$$
f_n(x) \longrightarrow \phi_\sigma(x)?
$$

2. Main result

Let $X = \{X_k, k \geq 0\}$ be a Gaussian stationary sequence whose spectral density $f_{\rho}(\lambda) = \frac{1}{2\pi}$ \sum_{ν}^{∞} $\rho(\nu)e^{i\nu\lambda}$ satisfies $\nu=-\infty$ $f_\rho\in L^{1/2}([-\pi,\pi])$ and $\log(f_\rho)\in L^{1}([-\pi,\pi])$, where for all ν , we set

 $\rho(v) = \mathbb{E}[X_0 X_{|v|}]$

Let

$$
V_n^{d,q} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \sum_{j=d}^q a_j H_j(X_k),
$$

イロト イ御 トイミト イミト ニミー りんぴ

where $d \geq 2$.

Let

$$
V_n^{d,q} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \sum_{j=d}^q a_j H_j(X_k),
$$

where $d > 2$. Assume

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Let

$$
V_n^{d,q} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \sum_{j=d}^q a_j H_j(X_k),
$$

where $d \geq 2$. Assume

$$
\sigma^2 \equiv \sum_{j=d}^q j! a_j^2 \sum_{v \in \mathbb{Z}} \rho(v)^j \in (0,\infty).
$$

Then for any $p \geq 1$, there exists n_0 such that

$$
\sup_{n\geq n_0}\mathbf{E}\left[\|DV_n^{d,q}\|^{-p}\right]<\infty.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

In the case of a fixed Wiener chaos we can obtain the following consequence.

Corollary

Under the conditions of above theorem, if $q = d$, and we define $F_n = V_n^{d,d}/\sigma_n$, where $\sigma_n^2 = \mathsf{E}[(V_n^{d,d})^2]$, then, for all $m \geq 0$ there exists an n_0 (depending on m) such that

$$
\sup_{n \ge n_0} \sup_{x \in \mathbb{R}} |p_{F_n}^{(m)}(x) - \phi^{(m)}(x)| \le c_m \sqrt{\mathbf{E}[F_n^4] - 3}.
$$

KORK ERKER ADE YOUR

In the case $q \neq d$,

Corollary

Under the conditions of the above theorem, if we define $\mathcal{F}_n = \mathcal{V}_n^{d,q}/\sigma_n$, where $\sigma_n^2 = \mathsf{E}[(\mathcal{V}_n^{d,q})^2]$, then, for all $m \geq 0$ we have

$$
\lim_{n\to\infty}\sup_{x\in\mathbb{R}}|p_{F_n}^{(m)}(x)-\phi^{(m)}x)|=0.
$$

KORK ERKER ADE YOUR

Discussion of the hypothesis

$$
f_{\rho}(\lambda) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \rho(k) e^{ik\lambda}, \qquad \lambda \in [-\pi, \pi].
$$

We assume that

 $f_\rho\in L^{1/2}([-\pi,\pi])$ and $\log(f_\rho)\in L^1([-\pi,\pi]).$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

This condition $\log(f_\rho)\in L^1([-\pi,\pi])$ is referred to as p urely nondeterministic property in the literature.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Proposition

Let ρ be the covariance function of X. We have the following statements.

Proposition

Let ρ be the covariance function of X. We have the following statements.

(i) If $\rho \in \ell^1$, then the spectral density f_ρ exists and is a nonnegative L^2 function defined on $[-\pi,\pi].$ Then the condition is thus fulfilled.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Proposition

Let ρ be the covariance function of X. We have the following statements.

(i) If $\rho \in \ell^1$, then the spectral density f_ρ exists and is a nonnegative L^2 function defined on $[-\pi,\pi].$ Then the condition is thus fulfilled.

(ii) If $\lim_{k\to\infty} |k|^{\alpha} \rho(k)=c_\rho$ for some $\alpha\in(0,1)$ and some positive constant c_{ρ} , then the spectral density exists, is strictly positive almost everywhere and satisfies lim $_{\lambda\rightarrow 0}\, |\lambda|^{1-\alpha} f_\rho(\lambda) = c_f.$ In particular, the condition is satisfied.

Example 1

Gaussian autoregressive fractionally integrated moving-average (Gaussian ARFIMA) processes. Denote by B the one lag backward operator $(BX_k = X_{k-1})$. Let $\phi(z)$ and $\theta(z)$ be two polynomials which have no common zeros and such that the zeros of ϕ lie outside the closed unit disk $\{z, |z| \leq 1\}$. Suppose that X_k is given by

$$
\phi(B)X_k = (\mathrm{Id} - B)^{-d}\theta(B)w_k,
$$

where $-1 < d < 1/2$, and where the operator $({\rm Id}-B)^{-d}$ is defined by:

$$
(\mathrm{Id}-B)^{-d}=\sum_{j=1}^{\infty}\eta_jB^j\quad\text{with}\quad\eta_j=\frac{\Gamma(d+j)}{\Gamma(j+1)\Gamma(d)}.
$$

KORK ERKER ADE YOUR

The sequence $(w_k)_{k \in \mathbb{Z}}$ is a discrete Gaussian white noise. It is well-known that under the above conditions, $\{X_k, k \in \mathbb{N}\}\$ admits a spectral density whose exact expression is:

$$
f(\lambda) = \frac{1}{2\pi} \left[2 \sin \frac{\lambda}{2} \right]^{-2d} \frac{|\theta(e^{-i\lambda})|^2}{|\phi(e^{-i\lambda})|^2}.
$$

KORK ERKER ADE YOUR

It is thus readily checked that the conditions are satisfied, and hence X_k has a causal representation.

Example 2

Our second example is the fractional Gaussian noise. Let $\{B_t,t\geq 0\}$ be a fractional Brownian motion of Hurst parameter $H \in (0, 1)$. Then $\{X_k = B_{k+1} - B_k, k \in \mathbb{N} \cup \{0\}\}\)$ is a stationary Gaussian process with correlation

$$
\rho(k) = \frac{1}{2} \left[(k+1)^{2H} - 2k^{2H} - (k-1)^{2H} \right].
$$

Its spectral density is:

$$
f(\lambda)=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}\rho(|k|)e^{i\lambda}=2c_f(1-\cos(\lambda))\sum_{j=-\infty}^{\infty}|2\pi j+\lambda|^{-2H-1},
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

where $c_f=(2\pi)^{-1}\sin(\pi H) \mathsf{\Gamma}(2H+1).$

If $H \le 1/2$, it is clear that $\sum_{k=-\infty}^{\infty} |\rho(|k|)| < \infty$. This implies

$$
\sup_{\lambda\in[-\pi,\pi]}|f(\lambda)|<\infty.
$$

Thus $f\in L^{1/2}.$ If $1/2 < H < 1,$ then $0\leq f(\lambda) \ \ \leq \ \ 2c_f(1-\cos(\lambda)) |\lambda|^{-2H-1} + 2c_f \sum |2\pi j+\lambda|^{-2H-1} \, .$ $i\neq 0$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

The first term is in L^1 since $H < 1$. When $j \neq 0$, $\int_{-\pi}^{\pi}|2\pi j+\lambda|^{-2H-1}d\lambda\leq Cj^{-2H}$ for some positive constant $C.$ Thus $\int_{-\pi}^{\pi}\sum_{j\neq 0}|2\pi j+\lambda|^{-2H-1} \,d\lambda<\infty,$ owing to the fact that $H > 1/2$. Therefore, we have $f \in L^1$ and hence $f \in L^{1/2}$. Summarizing we have $f\in L^{1/2}$ for all $H\in (0,1).$ This also implies $\log^+ f(\lambda) \in L^1.$ To see $\log^- f(\lambda) \in L^1.$ we notice that

$$
f(\lambda) \geq 2c_f(1-\cos(\lambda))|\lambda|^{-2H-1}
$$

.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

So $\log^- f(\lambda) \le C + |\log \left[(1 - \cos(\lambda)) |\lambda|^{-2H-1} \right]|$ which is in L^1 . In conclusion, the sequence X satisfies Hypothesis.

3. Idea of the proof

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Causal representation

Proposition

Let X be a Gaussian stationary sequence satisfying the hypothesis. Then for each $k \in \mathbb{N} \cup \{0\}$ the random variable X_k can be decomposed as

$$
X_k=\sum_{j\geq 0}\psi_j w_{k-j},
$$

where $(w_k)_{k \in \mathbb{Z}}$ is a discrete Gaussian white noise and the coefficients ψ_i are deterministic. With a slight abuse of notation, extend the sequence ψ to $(\psi_i)_{i\in\mathbb{Z}}$ by setting $\psi_{-i} = 0$ for $j \geq 0$.

Then one can choose ψ such that it enjoys the following properties: (i) The sequence ψ admits a spectral density f_{ψ} such that $f_{\psi} = \frac{f_{\rho}^{1/2}}{2\pi}.$ *(ii)* In particular, $\psi_0 = \frac{1}{2\pi}$ $\frac{1}{2\pi} \int_{-\pi}^{\pi} f_{\rho}^{1/2}(\lambda) d\lambda$ and $\psi_0 > 0$. (iii) For all $k_1, k_2 \in \mathbb{N}$ we have $\rho(k_1 - k_2) = \sum_{l=-\infty}^{k_1 \wedge k_2} \psi_{k_1-l} \psi_{k_2-l}$.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Malliavin calculus

Let $\mathfrak H$ be a real separable Hilbert space with inner product $\langle \cdot, \cdot \rangle_{\mathfrak H}$. The norm of $\mathfrak H$ will be denoted by $\|\cdot\| = \|\cdot\|_{\mathfrak H}$. Recall that we call isonormal Gaussian process over $\mathfrak H$ any centered Gaussian family $W = \{W(h) : h \in \mathfrak{H}\}\,$, defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and such that $\mathbf{E}[W(h)W(g)] = \langle h, g \rangle_{\mathfrak{H}}$ for every $h, g \in \mathfrak{H}$. In our application the underlying Gaussian family will be a discrete Gaussian white noise $(w_k)_{k \in \mathbb{Z}}$. The space \mathfrak{H} is given here by $\mathfrak{H} = \ell^2({\mathbb Z})$ (the space of square integrable sequences indexed by ${\mathbb Z})$

equipped with its natural inner product. Set $\{\varepsilon^j; \, j\in \mathbb{Z}\}$ for the canonical basis of $\ell^2(\mathbb{Z})$, that is $\varepsilon_k^j = \delta_j(k)$. We thus identify w_j with $W(\varepsilon^j).$ Assume from now on that our underlying σ -algebra ${\mathcal F}$ is generated by W .

For any integer $q \in \mathbb{N} \cup \{0\}$, we denote by \mathcal{H}_q the qth Wiener *chaos* of W. \mathcal{H}_q is the closed linear subspace of $L^2(\Omega)$ generated by the family of random variables $\{H_a(W(h)), h \in \mathfrak{H}, \|h\|_{\mathfrak{H}} = 1\},\$ with H_q the q-th Hermite polynomial given by

$$
H_q(x) = (-1)^q e^{\frac{x^2}{2}} \frac{d^q}{dx^q} \left(e^{-\frac{x^2}{2}} \right).
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Let S be the set of all cylindrical random variables of the form

$$
F = g(W(h_1), \ldots, W(h_n)),
$$

where $n > 1$, $h_i \in \mathfrak{H}$, and g is infinitely differentiable such that all its partial derivatives have polynomial growth. The Malliavin derivative of F is the element of $L^2(\Omega;\mathfrak{H})$ defined by

$$
DF = \sum_{i=1}^n \frac{\partial g}{\partial x_i} (W(h_1), \ldots, W(h_n)) h_i.
$$

By iteration, for every $m \geq 2$, we define the mth derivative D^mF . This is an element of $L^2(\Omega; \mathfrak{H}^{\odot m})$, where $\mathfrak{H}^{\odot m}$ designates the symmetric mth tensor product of \mathfrak{H} .

For $m \ge 1$ and $p \ge 1$, $\mathbb{D}^{m,p}$ denote the closure of $\mathcal S$ with respect to the norm $\|\cdot\|_{m,p}$ defined by

$$
||F||_{m,p}^p = \mathbf{E}[|F|^p] + \sum_{j=1}^m \mathbf{E}\left[||D^j F||_{\mathfrak{H}^{\otimes j}}^p\right].
$$

Set $\mathbb{D}^{\infty} = \cap_{m,p} \mathbb{D}^{m,p}$. One can then extend the definition of D^m to $\mathbb{D}^{m,p}.$ When $m=1,$ one simply write D instead of $D^1.$ As a consequence of the hypercontractivity property of the Ornstein-Uhlenbeck semigroup, all the $\|\cdot\|_{m,p}$ -norms are equivalent in any finite sum of Wiener chaoses.

Finally, let us recall that the Malliavin derivative D satisfies the following *chain rule*: if $\varphi:\mathbb{R}^n\to\mathbb{R}$ is in \mathcal{C}^1_b (that is, belongs to the set of continuously differentiable functions with a bounded derivative) and if $\{F_i\}_{i=1,...,n}$ is a vector of elements of $\mathbb{D}^{1,2}$, then $\varphi(\mathcal{F}_1,\ldots,\mathcal{F}_n)\in\mathbb{D}^{1,2}$ and

$$
D\varphi(F_1,\ldots,F_n)=\sum_{i=1}^n\frac{\partial\varphi}{\partial x_i}(F_1,\ldots,F_n)\,DF_i.
$$

Let ${F_n}$ be a sequence of random variables belonging to a fixed chaos of order greater than or equal to 2.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Let ${F_n}$ be a sequence of random variables belonging to a fixed chaos of order greater than or equal to 2. Suppose $\mathbb{E}[F_n^2]=1$ and $\lim_{n\to\infty} \mathbb{E}[F_n^4] = 3.$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Let ${F_n}$ be a sequence of random variables belonging to a fixed chaos of order greater than or equal to 2. Suppose $\mathbb{E}[F_n^2]=1$ and $\lim_{n\to\infty}\mathbb{E}[F_n^4]=3.$ Let p_{F_n} be the density of the random variable \mathcal{F}_n and let $\phi(x) = (2\pi)^{-1/2} \exp(-|x|^2/2)$ be the density of the standard Gaussian distribution on R.

Let ${F_n}$ be a sequence of random variables belonging to a fixed chaos of order greater than or equal to 2. Suppose $\mathbb{E}[F_n^2]=1$ and $\lim_{n\to\infty}\mathbb{E}[F_n^4]=3.$ Let p_{F_n} be the density of the random variable \mathcal{F}_n and let $\phi(x) = (2\pi)^{-1/2} \exp(-|x|^2/2)$ be the density of the standard Gaussian distribution on R. (i) Suppose that for some $\epsilon > 0$,

$$
\sup_n \mathbb{E}\left[\|D F_n\|^{-4-\epsilon}\right] < \infty.
$$

Let ${F_n}$ be a sequence of random variables belonging to a fixed chaos of order greater than or equal to 2. Suppose $\mathbb{E}[F_n^2]=1$ and $\lim_{n\to\infty}\mathbb{E}[F_n^4]=3.$ Let p_{F_n} be the density of the random variable \mathcal{F}_n and let $\phi(x) = (2\pi)^{-1/2} \exp(-|x|^2/2)$ be the density of the standard Gaussian distribution on R. (i) Suppose that for some $\epsilon > 0$,

$$
\sup_n \mathbb{E}\left[\|DF_n\|^{-4-\epsilon}\right] < \infty.
$$

Then, there exists a constant c such that for all $n \geq 1$.

$$
\sup_{x\in\mathbb{R}}|p_{F_n}(x)-\phi(x)|\leq c\sqrt{\mathbb{E}[F_n^4]-3}.
$$

A O A G A 4 O A C A G A G A 4 O A C A

(ii) Suppose that for all $p \geq 1$,

$$
\sup_n \mathbb{E}\left[\|D F_n\|^{-p}\right] < \infty.
$$

Then, for any $m \geq 0$, there exists a constant c_m such that for all $n \geq 1$,

$$
\sup_{x \in \mathbb{R}} |p_{F_n}^{(m)}(x) - \phi^{(m)}(x)| \leq c_m \sqrt{\mathbb{E}[F_n^4] - 3}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Hu, Y. ; Lu, F. and Nualart, D.

Convergence of densities of some functionals of Gaussian processes.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

J. Funct. Anal. 266 (2014), 814-875.

A key lemma

Our future computations will heavily rely on an efficient way to compute conditional expectations. Towards this aim, we state here some general results. Let us start with a decomposition for Hermite polynomials:

Lemma

For any $q \ge 1$, let H_q be the Hermite polynomial. Consider $y,z\in\mathbb{R}$ and two real parameters a, b with $a^2+b^2=1.$ Then the following relation holds true:

$$
H_q(ay+bz)=\sum_{\ell=0}^q \binom{q}{\ell}a^{q-\ell}b^{\ell} H_{q-\ell}(y) H_{\ell}(z).
$$

KORK ERKER ADE YOUR

short proof

By the definition of the Hermite polynomials, we have

$$
e^{aty - \frac{(at)^2}{2}} = \sum_{i=0}^{\infty} (at)^i H_i(y), \text{ and } e^{tbz - \frac{(bt)^2}{2}} = \sum_{j=0}^{\infty} (bt)^j H_j(z);
$$

$$
e^{t(ay + bz) - t^2/2} = \sum_{q=0}^{\infty} t^q H_q(ay + bz).
$$

Since $a^2 + b^2 = 1$, we obviously have $e^{aty - \frac{(at)^2}{2}} e^{tbz - \frac{(bt)^2}{2}} = e^{t(ay + bz) - t^2/2}$. Thus, we have

$$
\sum_{q=0}^{\infty} t^q H_q(ay+bz)=\sum_{i=0}^{\infty} (at)^i H_i(y)\sum_{j=0}^{\infty} (bt)^j H_j(z),
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

which easily yields the desired identity.

This is to be used in the following computation of conditional expectations:

Proposition

Let Y and Z be two centered Gaussian random variables such that Y is measurable with respect to a σ -algebra $\mathcal{G} \subset \mathcal{F}$ and Z is independent of ${\cal G}$. Assume that ${\sf E}[Y^2]={\sf E}[Z^2]=1.$ Then for any $q\geq 1$, and real parameters a, b such that $a^2+b^2=1$, we have:

$$
\mathbf{E}[H_q(aY+bZ)|\mathcal{G}] = a^q H_q(Y).
$$

KORK ERKER ADE YOUR

Short proof

Apply the key lemma in order to decompose $H_a(aY + bZ)$. Then identity follows easily from the fact that Y is G -measurable, Z is independent from G and Hermite polynomials have 0 mean under a centered Gaussian measure except for $H_0 \equiv 1$.

KORK ERKER ADE YOUR

Carbery-Wright inequality

Proposition

Let $X = (X_1, \ldots, X_n)$ be a Gaussian random vector in \mathbb{R}^n and $Q: \mathbb{R}^n \to \mathbb{R}$ a polynomial of degree at most m. Then there is a universal constant $c > 0$ such that:

$$
(\mathbf{E}[|Q(X_1,\ldots,X_n)|])^{\frac{1}{m}}\mathbf{P}(|Q(X_1,\ldots,X_n)|\leq x)\leq c\,m\,x^{\frac{1}{m}}
$$

KORK ERKER ADE YOUR

for all $x > 0$.

Sketch of the proof

Step 1: Computation of the Malliavin norm.

$$
DV_n^{d,q} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f'(X_k) \left(\sum_{j\geq 0} \psi_j \, \varepsilon^{k-j} \right)
$$

=
$$
\frac{1}{\sqrt{n}} \sum_{l=-\infty}^{n-1} \left(\sum_{k=l^+}^{n-1} \psi_{k-l} f'(X_k) \right) \varepsilon^l,
$$

where $l^+ = \max\{l, 0\}.$

$$
\left\langle DV_n^{d,q}, DV_n^{d,q} \right\rangle_{\mathfrak{H}} = \frac{1}{n} \sum_{k_1, k_2 = 0}^{n-1} f'(X_{k_1}) \rho(k_1 - k_2) f'(X_{k_2}),
$$

$$
\left\langle DV_n^{d,q}, DV_n^{d,q} \right\rangle_{\mathfrak{H}} = \frac{1}{n} \sum_{\ell=-\infty}^{n-1} \left(\sum_{k=\ell^+}^{n-1} \psi_{k-\ell} f'(X_k) \right)^2.
$$

Rearranging terms (namely, change $k - \ell$ to k and then $n - \ell - 1$ to m), we end up with:

$$
\left\langle DV_n^{d,q}, DV_n^{d,q} \right\rangle_{\mathfrak{H}} \geq \frac{1}{n} \sum_{\ell=0}^{n-1} \left(\sum_{k=0}^{n-\ell-1} f'(X_{\ell+k}) \psi_k \right)^2
$$

=
$$
\frac{1}{n} \sum_{m=0}^{n-1} \left(\sum_{k=0}^m f'(X_{n-1-(m-k)}) \psi_k \right)^2 \equiv A_n.
$$

As a last preliminary step we resort to the fact that $X = \{X_k; k \in \mathbb{N} \cup \{0\}\}\$ is a Gaussian stationary sequence, which allows to assert that A_n is identical in law to B_n with

$$
B_n := \frac{1}{n} \sum_{m=0}^{n-1} \left(\sum_{k=0}^m f'(X_{m-k}) \psi_k \right)^2 = \frac{1}{n} \sum_{m=0}^{n-1} \left(\sum_{k=0}^m f'(X_k) \psi_{m-k} \right)^2
$$

We will now bound the negative moments of B_n .

KORK ERKER ADE YOUR

.

Step 2: Block decomposition.

Fix thus an integer $N \ge 1$ and let $M = \lfloor n/N \rfloor$ be the integer part of n/N . Then $n \geq NM$ and as a consequence,

$$
B_n = \frac{1}{n} \sum_{m=0}^{n-1} \left(\sum_{k=0}^m f'(X_k) \psi_{m-k} \right)^2
$$

$$
\geq \frac{1}{n} \sum_{i=0}^{N-1} \sum_{m=iM}^{(i+1)M-1} \left(\sum_{k=0}^m f'(X_k) \psi_{m-k} \right)^2.
$$

For $i = 0, \ldots, N-1$, define

.

$$
B_n^i = \frac{1}{n} \sum_{m=iM}^{(i+1)M-1} \left(\sum_{k=0}^m f'(X_k) \, \psi_{m-k} \right)^2
$$

KORK ERKER ADE YOUR

so that
$$
B_n \geq \sum_{i=0}^{N-1} B_n^i
$$

Then it is readily checked that:

$$
(B_n)^{-\frac{p}{2}} \leq \prod_{i=0}^{N-1} (B_n^i)^{-\frac{p}{2N}}.
$$

we obtain:

$$
\mathbf{E}\left[(B_n)^{-\frac{p}{2}}\right] \leq \mathbf{E}\left[\prod_{i=0}^{N-1} (B_n^i)^{-\frac{p}{2N}}\right]
$$

$$
= \mathbf{E}\left[\mathbf{E}\left[(B_n^{N-1})^{-\frac{p}{2N}}|\mathcal{F}_{(N-1)M}\right] \prod_{i=0}^{N-2} (B_n^i)^{-\frac{p}{2N}}\right].
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Step 3: Application of Carbery-Wright. Let us go back to the particular situation of $f=\sum_{j=d}^q a_j\,H_j$, which means in particular that $f' = \sum_{j=d}^q j \, a_j \, H_{j-1}.$ First, we notice

$$
\mathbf{E}\left[(B_n^{N-1})^{-\frac{p}{2N}} | \mathcal{F}_{(N-1)M} \right] \leq 1 + \frac{p}{2N} \int_0^1 \mathbf{P}\left(B_n^{N-1} \leq x | \mathcal{F}_{(N-1)M} \right) x^{-\frac{p}{2N}-1} dx.
$$

Since B_n^{N-1} is a polynomial of order $m=2(q-1)$, Carbery-Wright's inequality yields:

$$
\mathbf{P}\left(B_n^{N-1} \leq x | \mathcal{F}_{(N-1)M}\right) \leq \frac{c x^{\frac{1}{2(q-1)}}}{\left[\mathbf{E}\left(B_n^{N-1} | \mathcal{F}_{(N-1)M}\right)\right]^{\frac{1}{2(q-1)}}}.
$$

Step 4: Estimates for the conditional expectation. We now estimate the conditional expectation $\textsf{E}[B_{n}^{N-1}|\mathcal{F}_{(N-1)M}].$ We have:

$$
\mathbf{E}\left[B_n^{N-1}|\mathcal{F}_{(N-1)M}\right]
$$
\n
$$
=\frac{1}{n}\sum_{m=(N-1)M}^{NM-1}\mathbf{E}\left[\left(\sum_{k=0}^m f'(X_k)\,\psi_{m-k}\right)^2\Big|\mathcal{F}_{(N-1)M}\right]
$$
\n
$$
\geq \frac{1}{n}\sum_{m=(N-1)M}^{NM-1}A_m,
$$

where we have set

$$
A_m = \text{Var}\bigg(\sum_{k=(N-1)M}^m f'(X_k) \,\psi_{m-k} \bigg| \mathcal{F}_{(N-1)M}\bigg).
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Furthermore, notice that

$$
f'(X_k) = f'\left(\sum_{\ell=-\infty}^k \psi_{k-i} w_i\right) = f'(Y_k + Z_k),
$$

where $Y_k = \sum_{i=-\infty}^{(N-1)M-1} \psi_{k-i}$ w $_i$ is $\mathcal{F}_{(N-1)M}$ -measurable and $Z_k = \sum_{i=(N-1)M}^k \psi_{k-i}$ w_i is independent of $\mathcal{F}_{(N-1)M}$. Recalling that $f' = \sum_{j=d}^{q} j \, a_j \, H_{j-1}$. This gives:

$$
H_{q-1}(X_k) - \mathbf{E}[H_{q-1}(X_k)|\mathcal{F}_{(N-1)M}]
$$

=
$$
\sum_{j=d}^{q} \sum_{\ell=1}^{j-1} j^2 a_j {j-1 \choose \ell} \sigma_{Y_k}^{j-1-\ell} H_{j-1-\ell}(\widetilde{Y}_k) \sigma_{Z_k}^{\ell} H_{\ell}(\widetilde{Z}_k),
$$

where $\sigma_{Y_k}=[\mathsf{Var}(Y_k)]^{1/2},$ $\sigma_{Z_k}=[\mathsf{Var}(Z_k)]^{1/2},$ $\widetilde{Y}_k=Y_k/\sigma_{Y_k}$ and $Z_k = Z_k / \sigma_{Z_k}.$

Therefore,

$$
A_m = \mathbf{E} \left[\left(\sum_{k=(N-1)M}^m \sum_{j=d}^q \sum_{\ell=1}^{j-1} a_{j,\ell,k} H_{j-1-\ell}(\widetilde{Y}_k) H_{\ell}(\widetilde{Z}_k) \psi_{m-k} \right)^2 \middle| \mathcal{F}_{(N-1)M} \right]
$$

=
$$
\mathbf{E} \left[\left(\sum_{\ell=1}^{q-1} \sum_{k=(N-1)M}^m \sum_{j=(\ell+1)\vee d}^q a_{j,\ell,k} H_{j-1-\ell}(\widetilde{Y}_k) H_{\ell}(\widetilde{Z}_k) \psi_{m-k} \right)^2 \middle| \mathcal{F}_{(N-1)M} \right].
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

where we have set $\displaystyle{a_{j,\ell,k}=j^2 a_j\binom{j-1}{\ell}}$ $\sigma^{j-1-\ell}_{\mathsf{Y}_k}$ $\frac{J-1-\ell}{Y_k}\sigma_{Z_k}^{\ell}$.

Recall that the random variables Y_k are $\mathcal{F}_{(N-1)M}$ -measurable while the random variables Z_k are independent of $\mathcal{F}_{(N-1)M}$. By decorrelation properties of Hermite polynomials we thus get:

$$
A_m = \sum_{\ell=1}^{q-1} \mathbf{E} \left[\left(\sum_{k=(N-1)M}^m \sum_{j=(\ell+1)\vee d}^q a_{j,\ell,k} H_{j-1-\ell}(\widetilde{Y}_k) H_{\ell}(\widetilde{Z}_k) \psi_{m-k} \right)^2 \Big| \mathcal{F}_{(N-1)M} \right]
$$

A O A G A 4 O A C A G A G A 4 O A C A

and we trivially lower bound this quantity by taking the term corresponding to $\ell = q - 1$. In this situation the sum $\sum_{j = (\ell + 1) \vee d}^q$ is reduced to the term corresponding to $j = q$, and since $a_{q,q-1,k} = q^2 a_q \sigma_{Z_k}^{q-1}$ Z_k^{q-1} we obtain:

$$
A_m \ge \mathbf{E} \left[\left(\sum_{k=(N-1)M}^m q^2 a_q \sigma_{Z_k}^{q-1} H_{q-1}(\widetilde{Z}_k) \psi_{m-k} \right)^2 \middle| \mathcal{F}_{(N-1)M} \right]
$$

= $q^4 a_q^2 \mathbf{E} \left[\left(\sum_{k=(N-1)M}^m \sigma_{Z_k}^{q-1} H_{q-1}(\widetilde{Z}_k) \psi_{m-k} \right)^2 \right].$

We now invoke the identity $\mathsf{E}[H_p(\tilde{Z}_{k_1})H_p(\tilde{Z}_{k_2})] = \frac{1}{p!}(\mathsf{E}[\tilde{Z}_{k_1}\tilde{Z}_{k_2}])^p$ in order to obtain

$$
A_m \geq \frac{q^5 \, a_q^2}{q!} \sum_{k_1, k_2 = (N-1)M}^{m} \sigma_{Z_{k_1}}^{q-1} \, \sigma_{Z_{k_2}}^{q-1} \, \mathbf{E} \left[\widetilde{Z}_{k_1} \, \widetilde{Z}_{k_2} \right]^{q-1} \psi_{m-k_1} \psi_{m-k_2}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Furthermore, it is readily checked that:

$$
\mathbf{E}\left[\widetilde{Z}_{k_1}\,\widetilde{Z}_{k_2}\right] = \frac{1}{\sigma_{Z_{k_1}}\,\sigma_{Z_{k_2}}}\sum_{i=(N-1)M}^{k_1\wedge k_2} \psi_{k_1-i}\,\psi_{k_2-i},
$$

K ロ X イロ X K ミ X K ミ X ミ → S V Q Q Q

and thus

$$
A_m \geq \frac{q^5 a_q^2}{q!} \sum_{k_1, k_2 = (N-1)M}^m \left(\sum_{i=(N-1)M}^{k_1 \wedge k_2} \psi_{k_1-i} \psi_{k_2-i} \right)^{q-1} \psi_{m-k_1} \psi_{m-k_2}
$$

=
$$
\frac{q^5 a_q^2}{q!} \sum_{i_1, ..., i_{q-1} = (N-1)M}^m \sum_{k_1, k_2 = max(i_1, ..., i_{q-1})}^m \psi_{m-k_1} \psi_{m-k_2} \prod_{j=1}^{q-1} \psi_{k_1-j_j} \psi_{k_2-j_j}
$$

=
$$
\frac{q^5 a_q^2}{q!} \sum_{i_1, ..., i_{q-1} = (N-1)M}^m \left(\sum_{k=max(i_1, ..., i_{q-1})}^m \psi_{m-k} \prod_{j=1}^{q-1} \psi_{k-j_j} \right)^2.
$$

Here again, this sum of squares is trivially lower bounded by taking the term corresponding to $i_1 = \cdots = i_{q-1} = m$, which yields:

$$
A_m \geq c_{a,q,\psi} \quad \text{with} \quad c_{a,q,\psi} \equiv \frac{q^5 \, a_q^2}{q!} \, \psi_0^{2q} > 0.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Step 5: Conclusion. Recalling that N is a given integer whose exact value will be fixed below, we get:

$$
\mathbf{E}\left[B_n^{N-1}|\mathcal{F}_{(N-1)M}\right]\geq \frac{M\,c_{a,q,\psi}}{n}\geq c_{a,q,\psi,N}>0,
$$

as long as N stays bounded. We then get:

$$
\begin{aligned} &\mathbf{P}\left(B_{n}^{N-1} \leq x | \mathcal{F}_{(N-1)M}\right) \\ &\leq 1 + \frac{P C_{a,q,\psi,N}}{2N} \int_{0}^{1} x^{\frac{1}{2(q-1)} - \frac{\rho}{2N} - 1} dx = c_{a,q,\psi,N,\rho} < \infty, \end{aligned}
$$

where we have chosen N such that $\frac{p}{2N}<\frac{1}{2(q-1)}.$ Iterating this bound, we have thus obtained:

$$
\mathsf{E}\left[(B_n)^{-\frac{p}{2}} \right] \leq c_{a,q,\psi,N,p}^N,
$$

which is a finite quantity.

Finally recall from Step 1 that $\mathsf{E}[(B_n)^{-\frac{p}{2}}]=\mathsf{E}[\|D V_n^{d,q}\|_{\mathfrak{H}}^{-p}]$ $\binom{-\rho}{\mathfrak{H}}$, which finishes the proof.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

THANKS

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @