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1. Motivation
Central limit theorem:
Let X1 , · · · ,Xn be independent, identically distributed random
variables with mean m and variance σ2.

Fn :=
√

n

(
X1 + · · ·+ Xn

n
− E(X1)

)
−→ N(0, σ2)

X1 + · · ·+ Xn

n
− E(X1) ≈ ξ√

n
, where ξ ∼ N(0, σ2) .

The above convergence is in the sense of distribution

Fn → N(0, σ2) in distribution

P(Fn ≤ a)→
∫ a

−∞
φσ(x)dx ∀ a ∈ R

where φσ(x) = 1√
2πσ

e−
x2

2σ2 .
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Other examples of multiple Itô integral Fn

Fn =

∫
[0,T ]q

fn(t1, · · · , tq)dBt1 · · · dBtq ,

where q is an fixed positive integer, (Bt , t ≥ 0) is a standard
Brownian motion, fn is a sequence of deterministic functions such
that ∫

[0,T ]q
f 2
n (t1, · · · , tq)dt1 · · · dtq



Theorem
If Fn = Iq(fn), then the following are equivalent:

(i) limn→∞ E[F 4
n ] = 3σ4,

(ii) For all 1 ≤ r ≤ q − 1, limn→∞ ‖fn ⊗r fn‖H⊗2(q−r) = 0,

(iii) ‖DFn‖2H → qσ2 in L2(Ω) as n→∞.

(iv) Fn converges in distribution to the normal law N(0, σ2) as
n→∞.



Nualart, D.; Peccati, G.
Central limit theorems for sequences of multiple stochastic
integrals.
Ann. Probab. 33 (2005), 177-93.

Nualart, D.; Ortiz-Latorre, S.
Central limit theorems for multiple stochastic integrals and
Malliavin calculus.
Stochastic Process. Appl. 118 (2008), 614-628.



Let X = {Xk ; k = 0, 1, 2, · · · } be a centered Gaussian stationary
sequence with unit variance. For all v , we set

ρ(v) = E[X0X|v |]

Let γ be the standard Gaussian probability measure and f ∈ L2(γ)
be a fixed deterministic function such that E[f (X1)] = 0.



We expand f in the orthonormal basis of Hermite polynomials

f (x) =
∞∑
j=d

ajHj(x),

with ad 6= 0 and d ≥ 2.

Define Vn = 1√
n

∑n−1
k=0 f (Xk).

The Breuer-Major Theorem
Suppose that

∑∞
v=−∞ |ρ(v)|d <∞ and suppose

σ2 =
∞∑
j=d

j!a2j

∞∑
v=−∞

ρ(v)j

is in (0,∞). Then we have

Vn
Law−−→ N(0, σ2)
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P. Breuer and P. Major
Central limit theorems for non-linear functionals of Gaussian fields.
J. Mult. Anal. 13 (1983), 425–441.



Corollary

Consider 2 ≤ d ≤ q <∞ and a family of real numbers
{aj ; j = d , . . . , q}. Let Hj be the jth order Hermite polynomial,
and assume that σ2 ∈ (0,∞), where σ2 ≡

∑q
j=d j!a2j

∑
v∈Z ρ(v)j .

Set

V d ,q
n =

1√
n

n−1∑
k=0

q∑
j=d

aj Hj(Xk).

Then V d ,q
n

Law−−→ N (0, σ2) as n tends to infinity. In particular, we
have:

lim
n→0

E

[(
V d ,q
n

)4]
= 3σ4.



There are some development along this direction.



Convergence in density of multiple integrals

Are there fn(x) such that

P(Fn ≤ a) =

∫ a

−∞
fn(x)dx

and
fn(x) −→ φσ(x) ?
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2. Main result

Let X = {Xk , k ≥ 0} be a Gaussian stationary sequence whose

spectral density fρ(λ) =
1

2π

∞∑
ν=−∞

ρ(ν)e iνλ satisfies

fρ ∈ L1/2([−π, π]) and log(fρ) ∈ L1([−π, π]), where for all v , we
set

ρ(v) = E[X0X|v |]



Let

V d ,q
n =

1√
n

n−1∑
k=0

q∑
j=d

aj Hj(Xk) ,

where d ≥ 2.

Assume

σ2 ≡
q∑

j=d

j !a2
j

∑
v∈Z

ρ(v)j ∈ (0,∞) .

Then for any p ≥ 1, there exists n0 such that

sup
n≥n0

E
[
‖DV d ,q

n ‖−p
]
<∞.
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In the case of a fixed Wiener chaos we can obtain the following
consequence.

Corollary

Under the conditions of above theorem, if q = d, and we define
Fn = V d ,d

n /σn, where σ2n = E[(V d ,d
n )2], then, for all m ≥ 0 there

exists an n0 (depending on m) such that

sup
n≥n0

sup
x∈R
|p(m)

Fn
(x)− φ(m)(x)| ≤ cm

√
E[F 4

n ]− 3.



In the case q 6= d ,

Corollary

Under the conditions of the above theorem, if we define
Fn = V d ,q

n /σn, where σ2n = E[(V d ,q
n )2], then, for all m ≥ 0 we have

lim
n→∞

sup
x∈R
|p(m)

Fn
(x)− φ(m)x)| = 0.



Discussion of the hypothesis

fρ(λ) =
1

2π

∑
k∈Z

ρ(k) eıkλ, λ ∈ [−π, π].

We assume that

fρ ∈ L1/2([−π, π]) and log(fρ) ∈ L1([−π, π]).

This condition log(fρ) ∈ L1([−π, π]) is referred to as purely
nondeterministic property in the literature.



Let us now turn to examples for which our standing assumptions of
Hypothesis are met.

Proposition

Let ρ be the covariance function of X . We have the following
statements.

(i) If ρ ∈ `1, then the spectral density fρ exists and is a
nonnegative L2 function defined on [−π, π]. Then the condition is
thus fulfilled.

(ii) If limk→∞ |k |αρ(k) = cρ for some α ∈ (0, 1) and some positive
constant cρ, then the spectral density exists, is strictly positive
almost everywhere and satisfies limλ→0 |λ|1−αfρ(λ) = cf . In
particular, the condition is satisfied.
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Example 1

Gaussian autoregressive fractionally integrated moving-average
(Gaussian ARFIMA) processes. Denote by B the one lag backward
operator (BXk = Xk−1). Let φ(z) and θ(z) be two polynomials
which have no common zeros and such that the zeros of φ lie
outside the closed unit disk {z , |z | ≤ 1}. Suppose that Xk is
given by

φ(B)Xk = (Id− B)−dθ(B)wk ,

where −1 < d < 1/2, and where the operator (Id− B)−d is
defined by:

(Id− B)−d =
∞∑
j=1

ηjB
j with ηj =

Γ(d + j)

Γ(j + 1)Γ(d)
.



The sequence (wk)k∈Z is a discrete Gaussian white noise. It is
well-known that under the above conditions, {Xk , k ∈ N} admits a
spectral density whose exact expression is:

f (λ) =
1

2π

[
2 sin

λ

2

]−2d |θ(e−iλ)|2

|φ(e−iλ)|2
.

It is thus readily checked that the conditions are satisfied, and
hence Xk has a causal representation.



Example 2

Our second example is the fractional Gaussian noise. Let
{Bt , t ≥ 0} be a fractional Brownian motion of Hurst parameter
H ∈ (0, 1). Then {Xk = Bk+1 − Bk , k ∈ N ∪ {0}} is a stationary
Gaussian process with correlation

ρ(k) =
1

2

[
(k + 1)2H − 2k2H − (k − 1)2H

]
.

Its spectral density is:

f (λ) =
1

2π

∞∑
k=−∞

ρ(|k|)e iλ = 2cf (1− cos(λ))
∞∑

j=−∞
|2πj +λ|−2H−1 ,

where cf = (2π)−1 sin(πH)Γ(2H + 1).



If H ≤ 1/2, it is clear that
∑∞

k=−∞ |ρ(|k|)| <∞. This implies

sup
λ∈[−π,π]

|f (λ)| <∞ .

Thus f ∈ L1/2. If 1/2 < H < 1, then

0 ≤ f (λ) ≤ 2cf (1− cos(λ))|λ|−2H−1 + 2cf
∑
j 6=0

|2πj + λ|−2H−1 .



The first term is in L1 since H < 1. When j 6= 0,∫ π
−π |2πj + λ|−2H−1dλ ≤ Cj−2H for some positive constant C .

Thus
∫ π
−π
∑

j 6=0 |2πj + λ|−2H−1 dλ <∞, owing to the fact that

H > 1/2. Therefore, we have f ∈ L1 and hence f ∈ L1/2.
Summarizing we have f ∈ L1/2 for all H ∈ (0, 1). This also implies
log+ f (λ) ∈ L1. To see log− f (λ) ∈ L1, we notice that

f (λ) ≥ 2cf (1− cos(λ))|λ|−2H−1 .

So log− f (λ) ≤ C +
∣∣ log

[
(1− cos(λ))|λ|−2H−1

] ∣∣ which is in L1.
In conclusion, the sequence X satisfies Hypothesis.



3. Idea of the proof



Causal representation

Proposition
Let X be a Gaussian stationary sequence satisfying the hypothesis.
Then for each k ∈ N ∪ {0} the random variable Xk can be
decomposed as

Xk =
∑
j≥0

ψj wk−j ,

where (wk)k∈Z is a discrete Gaussian white noise and the
coefficients ψj are deterministic. With a slight abuse of notation,
extend the sequence ψ to (ψj)j∈Z by setting ψ−j = 0 for j ≥ 0.



Then one can choose ψ such that it enjoys the following properties:
(i) The sequence ψ admits a spectral density fψ such that

fψ =
f
1/2
ρ

2π .

(ii) In particular, ψ0 = 1
2π

∫ π
−π f

1/2
ρ (λ) dλ and ψ0 > 0.

(iii) For all k1, k2 ∈ N we have ρ(k1 − k2) =
∑k1∧k2

l=−∞ ψk1−l ψk2−l .



Malliavin calculus

Let H be a real separable Hilbert space with inner product 〈·, ·〉H.
The norm of H will be denoted by ‖ · ‖ = ‖ · ‖H. Recall that we call
isonormal Gaussian process over H any centered Gaussian family
W = {W (h) : h ∈ H}, defined on a probability space (Ω,F ,P)
and such that E[W (h)W (g)] = 〈h, g〉H for every h, g ∈ H.

In our application the underlying Gaussian family will be a discrete
Gaussian white noise (wk)k∈Z. The space H is given here by
H = `2(Z) (the space of square integrable sequences indexed by Z)
equipped with its natural inner product. Set {εj ; j ∈ Z} for the
canonical basis of `2(Z), that is εjk = δj(k). We thus identify wj

with W (εj). Assume from now on that our underlying σ-algebra F
is generated by W .



For any integer q ∈ N ∪ {0}, we denote by Hq the qth Wiener
chaos of W . Hq is the closed linear subspace of L2(Ω) generated
by the family of random variables {Hq(W (h)), h ∈ H, ‖h‖H = 1},
with Hq the q-th Hermite polynomial given by

Hq(x) = (−1)qe
x2

2
dq

dxq

(
e−

x2

2

)
.



Let S be the set of all cylindrical random variables of the form

F = g(W (h1), . . . ,W (hn)),

where n ≥ 1, hi ∈ H, and g is infinitely differentiable such that all
its partial derivatives have polynomial growth. The Malliavin
derivative of F is the element of L2(Ω;H) defined by

DF =
n∑

i=1

∂g

∂xi
(W (h1), . . . ,W (hn)) hi .

By iteration, for every m ≥ 2, we define the mth derivative DmF .
This is an element of L2(Ω;H�m), where H�m designates the
symmetric mth tensor product of H.



For m ≥ 1 and p ≥ 1, Dm,p denote the closure of S with respect
to the norm ‖ · ‖m,p defined by

‖F‖pm,p = E[|F |p] +
m∑
j=1

E
[
‖D jF‖p

H⊗j

]
.

Set D∞ = ∩m,pDm,p. One can then extend the definition of Dm to
Dm,p. When m = 1, one simply write D instead of D1. As a
consequence of the hypercontractivity property of the
Ornstein-Uhlenbeck semigroup, all the ‖ · ‖m,p-norms are
equivalent in any finite sum of Wiener chaoses.



Finally, let us recall that the Malliavin derivative D satisfies the
following chain rule: if ϕ : Rn → R is in C1b (that is, belongs to the
set of continuously differentiable functions with a bounded
derivative) and if {Fi}i=1,...,n is a vector of elements of D1,2, then
ϕ(F1, . . . ,Fn) ∈ D1,2 and

Dϕ(F1, . . . ,Fn) =
n∑

i=1

∂ϕ

∂xi
(F1, . . . ,Fn) DFi .



Main results we shall use

Let {Fn} be a sequence of random variables belonging to a fixed
chaos of order greater than or equal to 2.

Suppose E[F 2
n ] = 1 and

limn→∞ E[F 4
n ] = 3. Let pFn be the density of the random variable

Fn and let φ(x) = (2π)−1/2 exp(−|x |2/2) be the density of the
standard Gaussian distribution on R.
(i) Suppose that for some ε > 0,

sup
n

E
[
‖DFn‖−4−ε

]
<∞.

Then, there exists a constant c such that for all n ≥ 1,

sup
x∈R
|pFn(x)− φ(x)| ≤ c

√
E[F 4

n ]− 3.
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(ii) Suppose that for all p ≥ 1,

sup
n

E
[
‖DFn‖−p

]
<∞.

Then, for any m ≥ 0, there exists a constant cm such that for all
n ≥ 1,

sup
x∈R
|p(m)

Fn
(x)− φ(m)(x)| ≤ cm

√
E[F 4

n ]− 3.



Hu, Y. ; Lu, F. and Nualart, D.

Convergence of densities of some functionals of Gaussian
processes.

J. Funct. Anal. 266 (2014), 814-875.



A key lemma

Our future computations will heavily rely on an efficient way to
compute conditional expectations. Towards this aim, we state here
some general results. Let us start with a decomposition for
Hermite polynomials:

Lemma
For any q ≥ 1, let Hq be the Hermite polynomial. Consider
y , z ∈ R and two real parameters a, b with a2 + b2 = 1. Then the
following relation holds true:

Hq(ay + bz) =

q∑
`=0

(
q

`

)
aq−`b` Hq−`(y) H`(z).



short proof

By the definition of the Hermite polynomials, we have

eaty−
(at)2

2 =
∞∑
i=0

(at)i Hi (y), and etbz−
(bt)2

2 =
∞∑
j=0

(bt)j Hj(z) ;

et(ay+bz)−t2/2 =
∞∑
q=0

tqHq(ay + bz).

Since a2 + b2 = 1, we obviously have

eaty−
(at)2

2 etbz−
(bt)2

2 = et(ay+bz)−t2/2. Thus, we have

∞∑
q=0

tqHq(ay + bz) =
∞∑
i=0

(at)iHi (y)
∞∑
j=0

(bt)jHj(z),

which easily yields the desired identity.



This is to be used in the following computation of conditional
expectations:

Proposition

Let Y and Z be two centered Gaussian random variables such that
Y is measurable with respect to a σ-algebra G ⊂ F and Z is
independent of G. Assume that E[Y 2] = E[Z 2] = 1. Then for any
q ≥ 1, and real parameters a, b such that a2 + b2 = 1, we have:

E[Hq(aY + bZ )|G] = aqHq(Y ).



Short proof

Apply the key lemma in order to decompose Hq(aY + bZ ). Then
identity follows easily from the fact that Y is G-measurable, Z is
independent from G and Hermite polynomials have 0 mean under a
centered Gaussian measure except for H0 ≡ 1.



Carbery-Wright inequality

Proposition

Let X = (X1, . . . ,Xn) be a Gaussian random vector in Rn and
Q : Rn → R a polynomial of degree at most m. Then there is a
universal constant c > 0 such that:

(E[|Q(X1, . . . ,Xn)|])
1
m P(|Q(X1, . . . ,Xn)| ≤ x) ≤ c m x

1
m

for all x > 0.



Sketch of the proof
Step 1: Computation of the Malliavin norm.

DV d ,q
n =

1√
n

n−1∑
k=0

f ′(Xk)

∑
j≥0

ψj ε
k−j


=

1√
n

n−1∑
l=−∞

(
n−1∑
k=l+

ψk−l f ′(Xk)

)
εl ,

where l+ = max{l , 0}.

〈
DV d ,q

n , DV d ,q
n

〉
H

=
1

n

n−1∑
k1,k2=0

f ′(Xk1)ρ(k1 − k2)f ′(Xk2),

〈
DV d ,q

n , DV d ,q
n

〉
H

=
1

n

n−1∑
`=−∞

(
n−1∑
k=`+

ψk−` f ′(Xk)

)2

.



Rearranging terms (namely, change k − ` to k and then n − `− 1
to m), we end up with:

〈
DV d ,q

n , DV d ,q
n

〉
H
≥ 1

n

n−1∑
`=0

(
n−`−1∑
k=0

f ′(X`+k)ψk

)2

=
1

n

n−1∑
m=0

(
m∑

k=0

f ′(Xn−1−(m−k))ψk

)2

≡ An.

As a last preliminary step we resort to the fact that
X = {Xk ; k ∈ N ∪ {0}} is a Gaussian stationary sequence, which
allows to assert that An is identical in law to Bn with

Bn :=
1

n

n−1∑
m=0

(
m∑

k=0

f ′(Xm−k)ψk

)2

=
1

n

n−1∑
m=0

(
m∑

k=0

f ′(Xk)ψm−k

)2

.

We will now bound the negative moments of Bn.



Step 2: Block decomposition.

Fix thus an integer N ≥ 1 and let M = [n/N] be the integer part
of n/N. Then n ≥ NM and as a consequence,

Bn =
1

n

n−1∑
m=0

(
m∑

k=0

f ′(Xk)ψm−k

)2

≥ 1

n

N−1∑
i=0

(i+1)M−1∑
m=iM

(
m∑

k=0

f ′(Xk)ψm−k

)2

.

For i = 0, . . . ,N − 1, define

B i
n =

1

n

(i+1)M−1∑
m=iM

(
m∑

k=0

f ′(Xk)ψm−k

)2

so that Bn ≥
N−1∑
i=0

B i
n.



Then it is readily checked that:

(Bn)−
p
2 ≤

N−1∏
i=0

(B i
n)−

p
2N .

we obtain:

E
[
(Bn)−

p
2

]
≤ E

[
N−1∏
i=0

(B i
n)−

p
2N

]

= E

[
E
[
(BN−1

n )−
p
2N |F(N−1)M

] N−2∏
i=0

(B i
n)−

p
2N

]
.



Step 3: Application of Carbery-Wright. Let us go back to the
particular situation of f =

∑q
j=d aj Hj , which means in particular

that f ′ =
∑q

j=d j aj Hj−1. First, we notice

E
[
(BN−1

n )−
p
2N |F(N−1)M

]
≤ 1 +

p

2N

∫ 1

0
P
(

BN−1
n ≤ x | F(N−1)M

)
x−

p
2N
−1dx .

Since BN−1
n is a polynomial of order m = 2(q − 1),

Carbery-Wright’s inequality yields:

P
(

BN−1
n ≤ x |F(N−1)M

)
≤ c x

1
2(q−1)[

E
(

BN−1
n |F(N−1)M

)] 1
2(q−1)

.



Step 4: Estimates for the conditional expectation. We now
estimate the conditional expectation E[BN−1

n |F(N−1)M ]. We have:

E
[
BN−1
n |F(N−1)M

]
=

1

n

NM−1∑
m=(N−1)M

E

( m∑
k=0

f ′(Xk)ψm−k

)2 ∣∣∣F(N−1)M


≥ 1

n

NM−1∑
m=(N−1)M

Am,

where we have set

Am = Var

( m∑
k=(N−1)M

f ′(Xk)ψm−k

∣∣∣F(N−1)M

)
.



Furthermore, notice that

f ′(Xk) = f ′

(
k∑

`=−∞
ψk−i wi

)
= f ′(Yk + Zk),

where Yk =
∑(N−1)M−1

i=−∞ ψk−i wi is F(N−1)M -measurable and

Zk =
∑k

i=(N−1)M ψk−i wi is independent of F(N−1)M . Recalling

that f ′ =
∑q

j=d j aj Hj−1. This gives:

Hq−1(Xk)− E[Hq−1(Xk)|F(N−1)M ]

=

q∑
j=d

j−1∑
`=1

j2aj

(
j − 1

`

)
σj−1−`Yk

Hj−1−`(Ỹk)σ`Zk
H`(Z̃k),

where σYk
= [Var(Yk)]1/2, σZk

= [Var(Zk)]1/2, Ỹk = Yk/σYk
and

Z̃k = Zk/σZk
.



Therefore,

Am = E


 m∑

k=(N−1)M

q∑
j=d

j−1∑
`=1

aj,`,k Hj−1−`(Ỹk) H`(Z̃k)ψm−k

2 ∣∣∣F(N−1)M


= E


q−1∑

`=1

m∑
k=(N−1)M

q∑
j=(`+1)∨d

aj,`,k Hj−1−`(Ỹk) H`(Z̃k)ψm−k

2 ∣∣∣F(N−1)M

 ,
where we have set aj ,`,k = j2aj

(j−1
`

)
σj−1−`Yk

σ`Zk
.



Recall that the random variables Ỹk are F(N−1)M -measurable while

the random variables Z̃k are independent of F(N−1)M . By
decorrelation properties of Hermite polynomials we thus get:

Am =

q−1∑
`=1

E


 m∑

k=(N−1)M

q∑
j=(`+1)∨d

aj,`,k Hj−1−`(Ỹk) H`(Z̃k)ψm−k

2 ∣∣∣F(N−1)M


and we trivially lower bound this quantity by taking the term

corresponding to ` = q − 1. In this situation the sum
∑q

j=(`+1)∨d
is reduced to the term corresponding to j = q, and since
aq,q−1,k = q2aqσ

q−1
Zk

we obtain:



Am ≥ E


 m∑

k=(N−1)M

q2 aq σ
q−1
Zk

Hq−1(Z̃k)ψm−k

2 ∣∣∣F(N−1)M


= q4 a2q E


 m∑

k=(N−1)M

σq−1
Zk

Hq−1(Z̃k)ψm−k

2
 .

We now invoke the identity E[Hp(Z̃k1)Hp(Z̃k2)] = 1
p!(E[Z̃k1Z̃k2 ])p

in order to obtain

Am ≥
q5 a2q

q!

m∑
k1,k2=(N−1)M

σq−1Zk1
σq−1Zk2

E
[
Z̃k1 Z̃k2

]q−1
ψm−k1ψm−k2 .



Furthermore, it is readily checked that:

E
[
Z̃k1 Z̃k2

]
=

1

σZk1
σZk2

k1∧k2∑
i=(N−1)M

ψk1−i ψk2−i ,



and thus

Am ≥
q5 a2q

q!

m∑
k1,k2=(N−1)M

 k1∧k2∑
i=(N−1)M

ψk1−i ψk2−i

q−1

ψm−k1ψm−k2

=
q5 a2q

q!

m∑
i1,...,iq−1=(N−1)M

m∑
k1,k2=max(i1,...,iq−1)

ψm−k1ψm−k2

q−1∏
j=1

ψk1−ij ψk2−ij

=
q5 a2q

q!

m∑
i1,...,iq−1=(N−1)M

 m∑
k=max(i1,...,iq−1)

ψm−k

q−1∏
j=1

ψk−ij

2

.

Here again, this sum of squares is trivially lower bounded by taking
the term corresponding to i1 = · · · = iq−1 = m, which yields:

Am ≥ ca,q,ψ with ca,q,ψ ≡
q5 a2q

q!
ψ2q
0 > 0.



Step 5: Conclusion. Recalling that N is a given integer whose
exact value will be fixed below, we get:

E
[
BN−1
n |F(N−1)M

]
≥

M ca,q,ψ
n

≥ ca,q,ψ,N > 0,

as long as N stays bounded. We then get:

P
(

BN−1
n ≤ x |F(N−1)M

)
≤ 1 +

p ca,q,ψ,N
2N

∫ 1

0
x

1
2(q−1)

− p
2N
−1

dx = ca,q,ψ,N,p <∞,

where we have chosen N such that p
2N < 1

2(q−1) . Iterating this
bound, we have thus obtained:

E
[
(Bn)−

p
2

]
≤ cN

a,q,ψ,N,p,

which is a finite quantity.



Finally recall from Step 1 that E[(Bn)−
p
2 ] = E[‖DV d ,q

n ‖−pH ], which
finishes the proof.



THANKS


