The 10th Workshop on Markov Processes and Related Topics, Xi'an, August 14-18, 2014

Stochastic De Giorgi Iteration and Regularity of SPDE

Elton P. Hsu

Northwestern University, USA and University of Science and Technology of China

(Joint work with Zhenan Wang and Yu Wang, Northwestern University)

Stochastic Partial Differential Equation

$$\partial_t u =
abla \cdot (A
abla u) + f(t,x,u) + \sum_{i=1}^\infty g_i(t,x,u) \dot{w}_t^i$$

Assumptions:

(1) $\{w_i\}$ are independent Brownian motions;

- (2) A, f, g progressively measurable;
- (3) A uniformly elliptic;
- (4) f and g at most linear growth in u;

Our emphasis is on the assumption that diffusion coefficients A are progressively measrable, hence random.

What we know from PDE Theory

(1) Homogeneous equation

$$\partial_t u = \nabla \cdot (A \nabla u).$$

We know that the fundamental solution p(t, x, y) is Hölder continuous in (t, x).

This is a classic result of John Nash. The method of proof: De Gorgi-Nash-Moser iteration.

(2) Inhomogeneous equation

$$\partial_t u =
abla \cdot (A
abla u) + h(t,x).$$

We have Duhamel's principle:

$$u(t,x)=\int_0^t\,ds\int_{\mathbb{R}}p(t-s,x,y)h(s,y)\,dy.$$

Goal of the work

For the SPDE

$$\partial_t u =
abla \cdot (A
abla u) + f(t,x,u) + \sum_{i=1}^\infty g_i(t,x,u) \dot{w}_t^i,$$

we want to show

(1) the solution is almost surely Hölder in (t, x);

(2) moment estimates for the solution.

Theorem. There is an $\alpha \in (0,1)$ such that for any T > 0, the solution $u \in C^{\alpha}([T,2T] \times \mathbb{R}^n)$ almost surely. Furthermore, for every p > 0, there is a constant C such that

$$\mathbb{E} \| u \|_{C^{lpha}([T,2T] imes \mathbb{R}^n)}^p \leq C \left(\| u_0 \|_{L^2(\mathbb{R}^n)} + 1
ight)^p.$$

Problem with an Obvious Approach

The fundamental solution p(t, x, y) of the homogeneous equation

 $\partial_t u = \nabla \cdot (A \nabla u)$

is progressively measurable and Hölder continuous in (t, x). Applying Duhamel's principle to the (simplified) inhomogeneous equation

 $\partial_t u =
abla \cdot (A
abla u) + g(t, x, u) \dot{w}_t,$

we have

$$u(t,x) = \int_0^t \left[\int_{\mathbb{R}} p(t-s,x,y) g(s,y,u(y,s)) \, dy
ight] dw_s.$$

This is NOT an adapted Itô stochastic integral because p(t - s, x, y) is not adapted to the filtration \mathscr{F}_s .

A different approach is needed.

Our Approach

Recall the equation again:

$$\partial_t u =
abla \cdot (A
abla u) + f(t,x,u) + \sum_{i=1}^\infty g_i(t,x,u) \dot{w}_t^i$$

To prove Hölder continuity for the solution, we use the following steps:

(1) A stochastic De Giorgi iteration to obtain moment estimate for $||u||_{\infty,[T,2T]\times\mathbb{R}^n}$;

(2) Krylov's trick to eliminate Brownian motions from the SPDE. This trick reduces Hölder estimates to moment estimates for the random variables $||u||_{\infty,[T,2T]\times\mathbb{R}^n}$;

(3) From uniform boundedness to Hölder continuity is a well known result from PDE theory.

Our contribution is (1).

Krylov's Trick

This is a very nice trip for SPDE. Consider the two equations:

$$\partial_t u =
abla \cdot (A
abla u) + f(t,x,u) + \sum_{i=1}^\infty g_i(t,x,u) \dot{w}_t^i$$

$$\partial_t v = \Delta v + \sum_{i=1}^\infty g_i(t,x,u) \dot{w}_t^i.$$

(1) v has constant diffusion coefficients and can be handled by Duhamel's principle if we have good moment bounds for $||u||_{\infty,[T,2T]\times\mathbb{R}^n}$. Thus we reduce the problem to moment estimates for u.

(2) Let $\phi = u - v$. We find that it satisfies the equation.

$$\partial_t \phi = \nabla \cdot (A \nabla \phi) + f(\phi + v) + \nabla \cdot (A \nabla v) - \Delta v.$$

It has no Brownian motion terms. This can be handled path by path.

Thus everything reduces to moment estimates for $||u||_{\infty,[T,2T]\times\mathbb{R}^n}$.

What is the De Giorgi Iteration?

For divergence form elliptic (or parabolic) equations, it is easy to obtain L^p estimates by functional analysis, but not easy to get L^{∞} estimates, i.e., proving the solution is uniformly bounded.

De Giorgi's iteration is a method to go from L^p to L^∞ . It is usually the first step towards smoothness of solutions. Say that we want to show that u is bounded from above by B on [T, 2T]. We let $\{I_k\}$ be a sequence of intervals shrinking to [T, 2T] and B_k a sequence increasing to B (say $B_k = (1 - 2^{-(k+1)})B$). Let

$$U_k = \left[\int_{I_k} \|(u(t) - B_k)^+\|_2^4 \, dt
ight]^{1/2}$$

De Giorgi's iteration is (by Sobolev inequalities and uniform ellipticity and proper choices of I_k and B_k)

$$U_{k+1} \leq C^k U_k^{1+\lambda}$$

for some positive constants *C* and λ . In our case $\lambda = 1/(n+1)$.

De Giorgi iteration (continued)

Recall the iterative inequality $U_{k+1} \leq C^k U_k^{1+\lambda}$ for some positive constants C and λ .

Lemma. If U_0 is sufficiently small, then $U_k \leq Kr^k$ for some K and 0 < r < 1.

If *B* is siffuciently big, then from

$$U_0 = \left[\int_{I_k} \|(u(t) - B_0)^+\|_2^4 dt
ight]^{1/2}$$

and $B_0 = B/2$ we know that U_0 is small enough (or B is big enough). Hence $U_k \rightarrow 0$, which means

$$\int_T^{2T} \|(u(t)-B)^+\|_2^4 \, dt = 0.$$

This shows that $u \leq A$. By symmetry, we can show $\|u\|_{\infty,[T,2T] imes \mathbb{R}^n} \leq B$.

Stochastic De Giorgi Iteration

For the SPDE

$$\partial_t u =
abla \cdot (A
abla u) + f(t,x,u) + \sum_{i=1}^\infty g_i(t,x,u) \dot{w}_t^i,$$

we need to allow a stochastic error term in the usual De Giorgi iteration

$$U_{k+1} \leq C^k U_k^{1+\lambda}.$$

Stochastic De Giorgi iteration

$$U_{k+1} \leq C^k (U_k + X_k) U_k^\lambda.$$

The random variable X_k can be computed explicitly and it turns out that it is the maximum process of a martingale whose quadratic variation is controlled by U_k . This means that X_k can be controlled by U_k .

Lemma. Let $\{M_t\}$ be a local martingale, then

$$\mathbb{P}\left\{\max_{0\leq t\leq T}M_t\geq a,\quad \langle M
angle_t\leq b
ight\}\leq e^{-a^2/2b}.$$

Key Estimate

Recall the stochastic De Giorgi estimate

$$U_{k+1} \leq C^k (U_k + X_k) U_k^\lambda.$$

We need to show that X_k is comparable with U_k . It turns out that all we need to show is that when X_k is big, U_k cannot be small.

Proposition. There is a constant *C* such that for any positive α and β we have

$$\mathbb{P}\left\{X_k\geq lphaeta, \quad U_k\leq eta
ight\}\leq e^{-lpha^2/C^k}.$$

By a good choice of α and β depending on k, we can use a Borel-Cantelli type argument to prove the following comparison result.

Proposition. There is a constant M_0 such that for all $M \ge M_0$ we have

$$\mathbb{P}\left\{\|u^+\|_{\infty,[T,2T] imes \mathbb{R}^n}>a,\;MU_0\leq a
ight\}\leq e^{-M^{1/(n+1)}}$$

Key Estimates (continued)

We see that in a probabilistic sense, we have bounded $||u||_{\infty}$ by $||u||_{2}$. An easy argument shows that

$$\mathbb{E}{\left\| u
ight\|}_{\infty,[T,2T] imes \mathbb{R}^n}^p \leq C_p \mathbb{E} U_0^p.$$

Recall that

$$U_0^2 = \int_{I_0} \|u(t)^+\|_2^4 dt.$$

Its moments can be estimated by simple L_p theory.

This way we have shown that $||u||_{\infty,[T,2T]\times\mathbb{R}^n}$ has finite moments.

Recapitulation

Stochastic partial differential equation is

$$\partial_t u =
abla \cdot (A
abla u) + f(t,x,u) + \sum_{i=1}^\infty g_i(t,x,u) \dot{w}_t^i.$$

Compare with the equation

$$\partial_t v = \Delta v + \sum_{i=1}^\infty g_i(t,x,u) \dot w_t^i.$$

(1) The solution of v is Hölder continuous if we have bounds for $||u||_{\infty}$ because it has constant diffusion coefficients. (2) The difference $\phi = u - v$ satisfies the equation

$$\partial_t \phi =
abla \cdot (A
abla \phi) + f(\phi + v) +
abla \cdot (A
abla v) - \Delta v.$$

It is Hölder continuous pathwise by PDE theory. (3) We use a stochastic De Giorgi iteration to show that $||u||_{\infty}$ can be bounded if $||u||_2$ can be bounded. (4) $||u||_2$ can be bounded by general L_p -theory.

Thank You!

• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit