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1. Motivation
Topological Structure of Networks.

• Classical Random Graphs (Erdös-Rényi (1959)): For pn = c
n ,

Pk = e−c
ck

k!
. (1)

• Complex Networks

Small-world Networks (Watts and Strogatz(1998))

Scale-free Netorks (Barabási and Albert(1999)): For pi = di∑
j dj

,

Pk =
4

k(k + 1)(k + 2)
∼ 4

kτ
(2)

where τ = 3.

Here Pk is the limit probability that a node has k degree in the

random graphs when n nodes goes to infinity.
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There were many works on the random processes taking place on

complex networks with power law degree distribution.

• Epidemic spreading in scale-free networks (Pastor and Vespignani

(2001), λc =
∑∞
k=1 kPk∑∞
k=1 k

2Pk
= 0 for 2 < τ ≤ 3 and λc > 0 for τ > 3 )

• Virtual Round Table on ten leading questions for network research (

Amaral, etc. (2004))

• Random walks on complex networks (Noh and Rieger (2006))

• Conservation laws for the voter model in complex networks (Suchec-

ki, Egúıluz and Miguel (2006))

• Contact processes on random graphs with power law degree distri-

butions have critical value 0 (Chatterjee and Durrett (2009))

• Contact processes on scale-free networks (Chen and Liu (2010))
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• Some features of the spread of epidemics and information on a ran-

dom graph (Durrrett (2010))

• Epidemic spread in networks: Existing methods and current chal-

lenges (Miller and Kiss (2014))
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The interacting graph-valued Markov processes can be used to de-

scribe the interaction between a random dynamic network and a random

dynamic process taking place on the network.

• Let x = (xij) denote a network.

• Denoted by Dk(x) = ]{i : xi = k} the number of the nodes with

degree k, where xi denotes the degree of node i in the network x .
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Network Growth: At every one-step we add a new node which has

no virus and one edge that links the new node to the node i with prob-

ability proportional to a function [α(1 − yi) + βyi](xi + θ) ∧m which

depends on the degree xi and the virus (yi = 1 ) or no virus ( yi = 0 )

at note i,where the two nonnegative numbers α and β denote the inten-

sity of connecting an edge to node without and with epidemic disease

respectively, the nonnegative number θ represents initial attractiveness

when the degree, xi, of node i is zero, m denotes that the degree of

node i is at most m.

Epidemic Dynamics: The virus spreading on the evolving network

considered here is the susceptible-infected-susceptible (SIS) model in

which each susceptible node i becomes infected and therefore has a

virus with the rate of the epidemic spreading λ > 0 if at least one of

neighbors {j : xij = 1} has the virus. Infected nodes, on the other

hand, recover and become susceptible again with the rate γ > 0.
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Two Problems

• Degree distribution.

• The critical surface (value) of epidemic spread
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2. Degree distribution

Let X(t) =
(
Xij(t)

)
be adjacency matrix of the evolving network

at time t, which describes the network growing in the environment of

virus spreading.

Y (t) =
(
Yi(t), i ≥ 1

)
: describes the virus spreading in the growth

network, where Yi(t) = 1 means that the node i has a virus, otherwise

Yi(t) = 0 at t .
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The disturbed network growth process considered here is a continuous-

time Markov chain Z(t) = (X(t), Y (t)) with the following one-step

jump probabilities:

q(z, z′) =


[α(1−yi)+βyi](xi+θ)∧m

S(z) if z′ = z + (ei,n(x)+1, 0)∑n(x)
j=1 λ(1−yi)xijyj+γyi

S(z) if z′ = z + (0, 1− yi)
0 otherwise

where z = (x, y), z′ = (x′, y′), both nonnegative numbers α and β

satisfying α + β > 0, denote the rates of connecting the infected node

and healthy node respectively, and S(z) = S1(z)+S2(z) is normalization

factor.
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(I).

lim
t→∞

Ez(S1(Z(t)))

t
= s1 > 0, lim

t→∞

Ez(S2(Z(t)))

t
= s2 ≥ 0

(II). For every k ≥ 1,

lim
t→∞

Ez
( n(X(t))∑

j=1

Xij(t)

Xi(t)
Yj(t)

)
= ρm

The probability that a link from a node to an infected node.

(III). The degrees of any two nodes are asymptoticly independent

(t→∞)
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Theorem 1 Let s = s1 + s2 and p = s1/s. Then

lim
t→∞

S1(Z(t))

t
= s1, lim

t→∞

S2(Z(t))

t
= s2

lim
t→∞

n(X(t))

t
= p, a.s. -Pz
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Proof of Theorem 1. For any fixed t > 0, the stochastic process

M(s) = Ez[S1(Z(t))|σs] is a martingale for 0 6 s 6 t, and therefore,

Ez(M(s4) −M(s3))(M(s2) −M(s1)) = 0 for 0 ≤ s1 < s2 ≤ s3 <

s4 ≤ t. Then, we have

Ez[S1(Z(t)) − Ez(S1(Z(t)))]2

= Ez[M(t)−M(dte)−
dte∑
k=1

(M(k)−M(k − 1))]2

= Ez(M(t)−M(dte))2 +

dte∑
k=1

Ez(M(k)−M(k − 1))2.
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Since

|M(k)−M(k − 1)| ≤ 2 max{α, β, m}N(1)

for 1 ≤ k ≤ dte, it follows that

Ez[S1(Z(t))− Ez(S1(Z(t)))]2

≤ 4(max{α, β, m})2EzN 2(t− dte) + dteEzN 2(1)

= 8(max{α, β, m})2t.

and therefore

lim
t→∞

S1(Z(t))

t
= s1, a.s. -Pz. (3)
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Dk(x) =
∑n(x)

i=1 Ik(xi) , number of nodes with degree k.

Ek(z) =
∑n(x)

i=1 yiIk(xi) , number of infected nodes with degree k.

Pk , probability that a node has degree k.

Qk , probability that a node has degree k and is infected.



16/31

JJ
II
J
I

Back

Close

Theorem 2 Let s = s1 + s2 and Wm(x) = (x + θ) ∧m. Pk
and Qk can be expressed in the following vector form:

(Pk, Qk)
T = lim

t→∞
(
Ez[Dk(X(t))]

N(X(t))
,

Ez[Ek(Z(t))]

N(X(t))
)T

= (A(k) + I)−1[

k−1∏
i=1

B(i)(A(i) + I)−1](s1/s, 0)T

a.s. -Pz, where

A(k) = s−1

(
αWm(k) (β − α)Wm(k)

−λ(m ∧ k)ρm βWm(k) + λ(m ∧ k)ρm + γ

)

B(k) = s−1

(
αWm(k) (β − α)Wm(k)

0 βWm(k)

)
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Corollary 1 If α = β, then

Pk =
αW (k − 1)

αW (k) + s
Pk−1 =

s

αW (k) + s

k−1∏
i=1

αW (i)

αW (i) + s
∼ Ck−3
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Corollary 2 If β = 0 and for large λ such that ρm(λ) ≥ ρ > 0

we have

Pk ∼ C1A
kk−B

where

A =
γ + s

γ + s + 2λρ
, B =

2(γ + s)

γ + s + 2λρ
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Proof of Theorem 2 Let Dk(t) = Ez[Dk(X(t))] and Ek(t) =

Ez[Ek(Z(t))]. Both D′k(t) and E ′k(t) can be written

D′k(t) = αWm(k − 1)
Dk−1(t)

st
− αWm(k)

Dk(t)

st

+(β − α)Wm(k − 1))
Ek−1(t)

st
− (β − α)Wm(k))

Ek(t)

st
+δk1p + εk(t) (4)

and

E ′k(t) = βWm(k − 1)
Ek−1(t)

st
− βWm(k)

Ek(t)

st
− γEk(t)

st

+λ(m ∧ k)ρm
Dk(t)− Ek(t)

st
+ ek(t) (5)

for large t, where εk(t)→ 0 and ek(t)→ 0 as t→∞ for all k ≥ 1.
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Let Uk(t) = (Dk(t), Ek(t))
T , Ξk(t) = (εk(t), ek(t))

T and Pk1 =

(δk1p, 0)T . We can rewrite the above two equations in the matrix form

U ′k(t) = B(k − 1)
Uk−1(t)

t
− A(k)

Uk(t)

t
+ Pk1 + Ξk(t) (6)

Note that

eA log t =

∞∑
i=0

(A log t)i

i!
, e−I log t =

∞∑
i=0

(−I log t)i

i!
=

1

t
I

where A is a matrix and I is the unit matrix.
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It follows that

lim
t→∞

Uk(t)

t
=

k∏
j=1

[(A(j) + I)−1[B(j − 1)(A(j − 1) + I)−1]](p, 0)T

for k ≥ 1. Thus, we have

(Pk, Qk)
T = lim

t→∞
(
Dk(X(t))

n(X(t))
,
Ek(Z(t))

n(X(t))
)T

= (A(k) + I)−1[

k−1∏
i=1

B(i)(A(i) + I)−1](1, 0)T , a.s. -Pz
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3. The Critical surface of Epidemic Spread

Note that the number ρm = ρm(α, β, γ, θ, λ, ) is dependent on the

five parameters, α, β, γ, θ and λ. Now we define a critical value λc(m)

for every m ≥ 1 in the following.

Definition. For fixed α, β, γ and θ, the epidemic critical value

λc(m) = λc(α, β, γ, θ,m) for m ≥ 1 is defined by

λc(m) = inf{λ > 0 : ρm(α, β, γ, θ, λ) > 0}.

The critical value means that if λ(m) > λc(m), the infection spreads

and becomes endemic. Below it, i.e., λ(m) < λc(m), the infection dies

out finally (ρm = 0). The function λc(α, β, γ, θ,m) on α, β, γ and θ

can be seen as the critical surface for any fixed m.
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Theorem 3 Let Λm = (αµm + γ)(1 + σm)− βδm.

If limλ↘λc(m) ρm(α, β, γ, θ, λ) = 0, then the critical valueλc(m) can be

expressed as

λc(m) =

{
Λm

∑∞
k=1(m∧k)Pk∑∞

k=1 k(m∧k)Pk
if Λm > 0

0 if Λm ≤ 0.
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Here

σm =

∑∞
k≥m(k −m)qm(k)∑∞
k=1(m ∧ k)qm(k)

, δm =

∑∞
k=1Wm(k)qm(k)∑∞
k=1(m ∧ k)qm(k)

and for large k, where

qm(k) ∼


Ak(ν)

(k+θ)1+ν
if k ≤ m

Ak(ν)(1− ν
m)k−m

(m+θ)1+ν
+

Pk−1
β

∑k
j=m+1

Pj−1
Pk−1

(1− ν
m)k−j if k > m

for large k, where

Ak(ν) =


A(ν) = 1

α(2+θ)f1
+ 1

β(1+θ−ν) if ν < 1 + θ
1

α(2+θ)f1
+ ln k

β if ν = 1 + θ
1

α(2+θ)f1
+ kν−1−θ

β(ν−1−θ) if ν > 1 + θ.
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Proof of Theorem 3. Let f (Z(t)) =
∑n(X(t))

i=1 Yi(t)Xi(t) and

fm(Z(t)) =
∑n(X(t))

i=1 Yi(t)Wm(Xi(t)). It follows that

Ez(f (Z(t)))− f (z) =

∫ t

0

(
β
Ez(fm(Z(u)))

su
− γEz(f (Z(u)))

su

+λρm
Ez[
∑n(X(u))

i=1 (1− Yi(u))Xi(u)(Xi(u) ∧m)]

su
+ ε(u)

)
du,

where ε(t)→ 0 as t→∞. We can further prove that

(s + γ)

∞∑
k=1

(k ∧m)Qk + (s + γ)

∞∑
k≥m

(k −m)Qk − β
∞∑
k=1

Wm(k)Qk

= λρm

∞∑
k=1

k(k ∧m)(Pk −Qk).
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Note that

ρm =

∑∞
k=1 kQk∑∞
k=1 kPk

.

Thus

[(s + γ)(1 + σm)− βδm]

∞∑
k=1

(k ∧m)Pk = λ

∞∑
k=1

k(k ∧m)(Pk −Qk).
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Corollary 3 If −1 < θ ≤ 0 and

limλ↘λc(m) ρm(α, β, γ, θ, λ) = 0 for all m ≥ 1, then

lim
m→∞

λc(m) = λc = 0

for any fixed α, β and γ. That is to say, the infection can spread and

become endemic on the scale-free network with the power τ = 3+θ, 2 <

τ ≤ 3, as long as there is a small rate of the epidemic spreading when

the maximum degree m is large. This result was found first by Pastor-

Satorras and Vespignani (2001).
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Corollary 4 If θ > 0, αβ > 0, and

limλ↘λc(m) ρm(α, β, γ, θ, λ) = 0 for all m ≥ 1, then

lim
m→∞

λc(m) =

{
0 if β ≥ α(2 + θ) + γ

α(2 + θ) + γ − β if β < α(2 + θ) + γ.

Let

Sc = {(α, β, γ, λ) : α(2 + θ) + γ > β, αβ > 0, γ, λ ≥ 0}
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Note that
∑∞

k=1 kPk = 2. Let λc = limm→∞ λc(m),

A = −2(2 + θ), B = 2, C = −2, D =

∞∑
k=1

k2Pk.

Then, we can write Aα+Bβ +Cγ +Dλc = 0 as m→∞ for θ > 0.

Remark. For a fixed θ > 0, we can define the critical hyperplane

(surface) Γc as follows

Γc = {(α, β, γ, λ) ∈ Sc : Aα + Bβ + Cγ + Dλ = 0}

and

Γ+ = {(α, β, γ, λ) ∈ Sc : Aα + Bβ + Cγ + Dλ > 0},
Γ− = {(α, β, γ, λ) ∈ Sc : Aα + Bβ + Cγ + Dλ < 0}.

Thus, the infection spreads and becomes endemic for (α, β, γ, λ) ∈ Γ+,

and the infection dies out finally for (α, β, γ, λ) ∈ Γ−.
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