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1. Motivation

Topological Structure of Networks.

e Classical Random Graphs (Erdos-Rényi (1959)): For p, = ©,
k
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e Complex Networks
Small-world Networks (Watts and Strogatz(1998))

Scale-free Netorks (Barabasi and Albert(1999)): For p; = Zd?'d, :
77
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where 7 = 3.

Here P is the limit probability that a node has k degree in the
random graphs when n nodes goes to infinity.




There were many works on the random processes taking place on
complex networks with power law degree distribution.

e Epidemic spreading in scale-free networks (Pastor and Vespignani

(2001),Acz%z(ﬁor2<7§3and)\C>Ofor7>3)

e Virtual Round Table on ten leading questions for network research (

Amaral, etc. (2004))
e Random walks on complex networks (Noh and Rieger (2006))

e Conservation laws for the voter model in complex networks (Suchec-
ki, Eguiluz and Miguel (2006))

e Contact processes on random graphs with power law degree distri-
butions have critical value 0 (Chatterjee and Durrett (2009))

e Contact processes on scale-free networks (Chen and Liu (2010))




e Some features of the spread of epidemics and information on a ran-
dom graph (Durrrett (2010))

e Epidemic spread in networks: Existing methods and current chal-
lenges (Miller and Kiss (2014))




The interacting graph-valued Markov processes can be used to de-
scribe the interaction between a random dynamic network and a random
dynamic process taking place on the network.

o Let ©x = (z;;) denote a network.

e Denoted by Dy(x) = t{i : x; = k} the number of the nodes with
degree k, where x; denotes the degree of node 7 in the network x .




Network Growth: At every one-step we add a new node which has
no virus and one edge that links the new node to the node i with prob-
ability proportional to a function [a(1 — y;) + By;|(z; + 0) A m which
depends on the degree x; and the virus (y; = 1 ) or no virus (y; =0 )
at note 7,where the two nonnegative numbers o and 3 denote the inten-
sity of connecting an edge to node without and with epidemic disease
respectively, the nonnegative number 6 represents initial attractiveness
when the degree, x;, of node 7 is zero, m denotes that the degree of
node 7 is at most m.

Epidemic Dynamics: The virus spreading on the evolving network
considered here is the susceptible-infected-susceptible (SIS) model in
which each susceptible node ¢ becomes infected and therefore has a
virus with the rate of the epidemic spreading A > 0 if at least one of
neighbors {j : x;; = 1} has the virus. Infected nodes, on the other
hand, recover and become susceptible again with the rate v > 0.




Two Problems

e Degree distribution.

e The critical surface (value) of epidemic spread




2. Degree distribution

Let X () = (Xz(t)) be adjacency matrix of the evolving network

at time ¢, which describes the network growing in the environment of
virus spreading.

v(t) = (Vi)
network, where Y;(t) =
Yi(t)=0att.

>: describes the virus spreading in the growth

means that the node 7 has a virus, otherwise




The disturbed network growth process considered here is a continuous-
time Markov chain Z(t) = (X (¢),Y(t)) with the following one-step
jump probabilities:

( fali- %W?“m%m if 2/ =2+ (€ 1: 0)

)
n() .

0 otherwise

\

where z = (x,y),2" = (2/,1'), both nonnegative numbers o and 3
satisfying o + 3 > 0, denote the rates of connecting the infected node
and healthy node respectively, and S(z) = S;(z)+55(z) is normalization
factor.
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(1). For every k > 1,

n(X(0)
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The probability that a link from a node to an infected node.

(111). The degrees of any two nodes are asymptoticly independent
(t — o0)




Theorem 1 Let s = s; + s9 and p = s1/s. Then
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Proof of Theorem 1. For any fixed ¢ > 0, the stochastic process
M(s) = E,[S1(Z(t))|os] is a martingale for 0 < s < ¢, and therefore,
E.(M(s4) — M(s3))(M(s2) — M(s1)) = 0 for 0 < 51 < 55 < 53 <
sy < t. Then, we have

E[S1(Z(t)) — E.(Su(Z(t))
1]

= E.[M(t) - M([t]) — S (M(k) — M(k — 1))
k=1
i

= BL(M(0) = M)+ 2 EAM() = Mk~ 1))




Since
\M (k) — M(k—1)] <2max{a, 5, m}N(1)
for 1 <k < [t], it follows that
E.[S1(Z(t)) — E.(Si(Z(1))
< 4(max{a, B, m})*E.N?(t — [t]) + [t]E.N*(1)
= S(max{a, B, m})*t.

and therefore

L SiZ()

t—00

=51, as. -P.. (3)




Dy(z) = Z?:(? I(z;) , number of nodes with degree k.
Ei(z) = Z?g) yilr(x;) , number of infected nodes with degree k.
P, probability that a node has degree .

() , probability that a node has degree k and is infected.




Theorem 2 Let s = s;+ s9 and Wy, (z) = (x +0) Am. B,
and (), can be expressed in the following vector form:

T g (B DHX @) E[ER(Z@)]
(P Q)" = Jim N&@)) | N&(t)) )

HB )(s1/s, 0)7

a.s. -IP., where

[ aW(k) (6 — )Wal(k)
Alk) = s ( XM AE)pm BWin(k) + Mm A k)pm + )

| aWp(k) (8 — )Wy (k)
s =5 (M priiosd




Corollary 1 If a = (3, then

aW(k —1) s -
pu— P _ pr—

aW(k)+s "' aW(k)+s H




Corollary 2 If 3 = 0 and for large A such that p,,(A\) > p > 0
we have

P, ~ C AFE=B

where

v+ s B_ 2(v + )

A = , —
v+Ss+2M\p vH+Ss+2M\p




Proof of Theorem 2 Let Dy(t) = E.[Dy(X(t))] and Ex(t) =
E.[Ex(Z(t))]. Both D) (t) and E}(t) can be written

Dit) = aWp(k— 12 ’:tl(t) - an(/@D’;f)
+8— Wk — 1)) 2 (5 — a2
—|—5k1p + €k<t) (4)

and

() = pW(k — 1210

B (t B (t
— BWi(k) k(t) 0 k(2)
st st st
Dy(t) — Ei(t
i ( >st k() elt) (5)
for large ¢, where €;(t) — 0 and ex(t) — 0 as t — oo for all & > 1.

+A(m A k)pm




Let Ui(t) = (Di(t), Ex(t)", Zp(t) = (ex(t), ex(t))? and Py =

(6x1p, 0). We can rewrite the above two equations in the matrix form

Uj(t) = B(k — 1)U’*"1(t) Ukl®)

— A(k)

+ P+ Ek<t> (6)
Note that

algt N (Alogt) 0 o~ (S logt) 1
¢ _g a0 ° _; T

where A is a matrix and [ is the unit matrix.




It follows that

lim Us(t)

t—oo

k

= TTIAG) + DB — D(AG — 1)+ D), 0)

J=1

for kK > 1. Thus, we have

r_ . DuX() Ep(Z(),r
(P, Qr)" = Jim( n]EX(t)) / nIZX(t))>

HB )N, 0f,  as. -P.




3. The Critical surface of Epidemic Sprea

Note that the number p,,, = pi.(, 3,7, 0, A, ) is dependent on the
five parameters, o, 5,7, 60 and X\. Now we define a critical value \.(m)
for every m > 1 in the following.

Definition. For fixed «, 5, and 6, the epidemic critical value
Ae(m) = Ae(a, B,7,6,m) for m > 1 is defined by

Ac(m) = inf{A > 0: py(e, B,7,0,\) > 0}.

The critical value means that if A(m) > A.(m), the infection spreads
and becomes endemic. Below it, i.e., A(m) < A.(m), the infection dies
out finally (p,, = 0). The function \.(a, 5,7,60,m) on «, 3,7 and 6
can be seen as the critical surface for any fixed m.




Theorem 3 Let A, = (ot + ) (1 + o) — Bom.
If iy (m) P, 8,7, 0, A) = 0, then the critical valueA.(m) can be
expressed as

Am 22021 (m/\k)Pk .
Ae(m) = > e k(mAk) Py, it Ap >0
¥ if A, <0.




Here

Xk ma®) SR WaRaa(k)
" D et (m A k)G (k) -

and for large k, where

Ap(v) if k<m

k+0)1+v
(k) ~ 4 G-y

P i
(m—|—9)71n+1’ k 1 Zg =m+1 Pk 1( o %)k Jifk>m

for large k, where

1 1 :
Av(v) =% ammon T s - if v=1+6
L A if v>1+6.

a(2+0)f1 * Blv—1-0)




Proof of Theorem 3. Let f(Z(t)) = "Dy (1) Xi(¢) and
FlZ(t) = PO Y)W, (X(1). It follows that

B(F20) - fl2) = [ (p2 ) BT

Su SuU

X (1 Vi) X () X () A 1
o, B = Vi) X, ) () A )

SuU

where ¢(t) — 0 as t — oo. We can further prove that

(s4+7) Z(k Am)Qr + (s+7) Z(k —m)Q — 5 Z Win (k) Qk
k=1 k>m k=1

= Aom > _ k(k Am)(Pe — Q).

k=1




Note that

P :Ziilek
" ZZilkPk'

Thus

8

(s + )L+ om) = Bow] > (K Am)Pe= XY k(k Am)(Pr — Q).
k=1

k=1




Corollary 3 If -1 <60 <0 and
iy . (m) Pm(cv, B,7,0, ) = 0 for all m > 1, then
lim A.(m) =X =0

m—00

for any fixed o, 5 and ~. That is to say, the infection can spread and
become endemic on the scale-free network with the power 7 = 34+6,2 <
7 < 3, as long as there is a small rate of the epidemic spreading when
the maximum degree m is large. This result was found first by Pastor-
Satorras and Vespignani (2001).




Corollary 4 If 0 > 0,a8 > 0, and
By . (m) Pm(cv, B,7,0, ) = 0 for all m > 1, then

. [0 if 0>al2+0)+~
n%gnoo)\c(m)_{a@%—@)—l—’y—ﬁ f B <al2+0) +.
Let

Se={(a,8,7,A) 1 a2+0)+v>p, af>0,7,A >0}




Note that >, kPy = 2. Let A\, = lim,;, 00 Ac(m),
A=-202+0), B=2 C=-2 D=) kP
k=1

Then, we can write Ao+ BB+ Cv+ DX. =0 as m — oo for 8 > 0.
Remark. For a fixed & > 0, we can define the critical hyperplane
(surface) I, as follows

[.={(a,8,7,\) €S.: Aa+ B+ Cvy+ D) =0}
and

' = {(a, 8,7, A\) €S.: Aa+ BB+ Cvy+ DX > 0},
™ = {(a,8,7,A) €S.: Aa+ B+ Cvy+ DX < 0}.

Thus, the infection spreads and becomes endemic for (o, 3,7, A) € I't,
and the infection dies out finally for (o, 3,7y, \) € I'".




References

[1] Amaral, L.A.N., etc. (2004) Virtual Round Table on ten
leading questions for network research, Eur. Phys. J. B 38,
143-145.

[2] Liggett, T. M. (1999) Stochastic Interacting Systems:
Contact, Voter and Exclusion Processes. Springer, New York.

[3]Ganesh, A. G. and Massoulie, D. T. (2005) The effect of
network topology on the spread of epidemics.
http:/ /ieeexplore.ieee.org/xpls

[4]Pastor-Satorras, R. and Vespignani, A. (2001) Epidemic spread-
ing in scale-free networks. Phys. Rev. Letters, 86, 3200-3203.

[5]Chen, D. Y. and Liu, Q. (2007) On the contact processes
on scale-free networks.




Thank You !




	Outline
	1. Motivation
	2. Degree distribution 
	3. The Critical surface of Epidemic Spread 
	References

