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1. The model of continuous-time MDP

• in: State at time tn, which is in the state space S

• θn+1: The holding time at state in

• q(j|t, i, a): Transition rates depending on action a ∈ A(i)

• r(t, i, a): Reward function of time t, states i and actions a
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Let

• Ω0 := (S × (0,∞))∞,

• Ω := Ω0
⋃{(i0, θ1, i1, . . . , ik,∞, ∆,∞, . . .)| i0 ∈ S, il ∈

S, θl ∈ (0,∞), for each 1 ≤ l ≤ k, k ≥ 1}, with ∆ 6∈ S

• F : σ-algebra on Ω. For e = (i0, θ1, i1, . . . , θk, ik, · · · ) ∈ Ω,

let Tk(e) := θ1 + θ2 + . . . + θk, T∞(e) := limk→∞ Tk(e)

• Define the state process {xt, t ≥ 0} by

xt :=
∑

k≥0

I{Tk≤t<Tk+1}ik + ∆I{t≥T∞}, for t ≥ 0. (1)

Here and below, IE stands for the indicator function on E.
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• Randomized history-dependent policies π(da|e, t): is defined

by the following expression

π(da|e, t) =
∑

k≥0

I{Tk<t≤Tk+1}π
k(da|i0, θ1, i1, . . . , θk, ik, t− Tk)

+I{t=0}π0(da|i0, 0) + I{t≥T∞}δa∆
(da), (2)

depending on histories (i0, θ1, i1, . . . , θk, ik)

• Markov policies π: π(da|i, t)
• Πm: The class of all Markov policies.

• Π : The class of all randomized history-dependent policies.
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2. The optimality problem

Given the transition rates q(j|i, a)(i, j ∈ S, a ∈ A(i)), each

π ∈ Π (with a fixed i ∈ S) ensures a unique p.m. P π
i on F .

Vπ(0, i) := Eπ
i

[∫ T

0

∫

A

r(s, xs, a)π(da|e, s)ds + g(T, xT )

]

Vπ(t, i) := Eπ
t,i

[∫ T

t

r(s, xs, a)π(da|xs, s)ds + g(T, xT )

]

for Markov policy π, where Eπ
t,i[X ] := Eπ

i [X|xt = i].

The value function V ∗(t, i) (i ∈ S, t ≥ 0) is defined by

V ∗(0, i) = sup
π∈Π

Vπ(0, i), V ∗(t, i) := sup
π∈Πm

Vπ(t, i), t > 0.

Optimal policy π∗: V (0, π∗) ≥ V ∗(0, i) for all i ∈ S.
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Remark 1:

Concerning the value function V ∗(t, i), we state the unsolved

problems by Yushkevich (Theory Probab. Appl., 22, 215–235,

1977): “Unsolved problems. In analogy to the discrete time

case it would be desirable to extend Theorems 4.1 and 4.2 to

arbitrary summable models and in Theorems 5.1 and 5.2 to do

away with the required boundedness of vt”.

In the unsolved problems, which are also called open questions

by H.-J. Engelbert in [MR0458603 (56#16803)], vt is the value

function here.
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3. Extensions of some results for “MC”

To guarantee the regularity of {xt} and the finiteness of

V ∗(t, i), we give the following condition:

Assumption A. A function w ≥ 1, positive constants

c, b ≥, subsets Sk ↑ S, such that

(1)
∑

j∈S w(j)q(j|t, i, a) ≤ cw(i) + b, i ∈ S, a ∈ A(i);

(2) infi 6∈Sk
w(i) ↑ +∞ as k →∞, with inf ∅ := ∞;

(3) supa∈A(i),i∈Sk,t≥0 |q(i|t, i, a)| < ∞ for k ≥ 1;

(4) |r(t, i, a)| + |g(T, i)| ≤ Mw(i), with some M > 0.
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Theorem 1. Under Assumptions A(1)-A(3), we have

(a) P π
i (T∞ = ∞) ≡ 1, and P π

i (xt ∈ S) ≡ 1;

(b) the analog of the forward Kolmogorov equation holds:

P π
i (xt = j) = δij + Eπ

i

[∫ t

0

∫

A

π(da|e, s)q(j|s, xs, a)ds

]
;

(c) if the additional Assumption A(4) holds, then

(c1) |Vπ(0, i)| ≤ (T + 1)M1e
cT [ω(i) + b

c], π ∈ Π;

(c2) |Vπ(t, i)| ≤ (T + 1)M1e
c(T−t)[ω(i) + b

c], π ∈ Πm.

Remark 2: Theorem 1 (b) gives the analog of the forward

Kolmogorov equation.

8



To further derive the analog of Ito-Dynkin formula for the

process {x(t)}, we consider the condition below:

Assumption B. With ω as in Assumption A, a function

w′ ≥ 1, constants c′ > 0, b′ ≥ 0 and M2 > 0 such that

q∗(i)w(i) ≤ M2w
′(i), and

∑

j∈S

w′(j)q(j|t, i, a) ≤ c′w′(i) + b′

where q∗(i) := supt≥0,a∈A(i) |q(i|t, i, a)|.
C1,0

ω,ω′ := {ϕ : ϕ(t, i) has the derivative ϕ′(t, i) at a.e. t, and

sup
i,t

|ϕ(t, i)

w(i)
< ∞, sup

i,t

|ϕ′(t, i)
w(i) + w′(i)

< ∞}

9



Theorem 2. Under Assumptions A and B, for each ϕ ∈
C1,0

ω,ω′, the following assertions hold.

(a) (The Ito-Dynkin formula): For each π ∈ Πm,

Eπ
t,i




∫ T

t


ϕ′(s, xs) +

∑

j∈S

ϕ(s, j)q(j|s, xs, a)π(da|xs, s)


 ds




= Eπ
t,iϕ(T, xT )− ϕ(t, i).

(b) (The analog of Ito-Dynkin formula): For every π ∈ Π,

Eπ
0,i




∫ T

0


ϕ′(s, xs) +

∑

j∈S

∫

A

ϕ(s, j)q(j|s, xs, a)π(da|e, s)


 ds




= Eπ
0,iϕ(T, xT )− ϕ(0, i).
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Theorem 3. Under Assumptions A and B, for π ∈ Πm,

Vπ(t, i) is a unique solution in C1,0
ω,ω′ of the following equation





ϕ′(t, i) + r(t, i, πt) +
∑

j∈S

ϕ(t, j)q(j|t, i, πt) = 0

ϕ(T, i) = g(T, i)

where, u(s, i, πt) :=
∫

A(i) u(t, i, a)π(da|i, t).
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Theorem 4. Under Assumptions A and B, if there exists

ϕ ∈ C1,0
ω,ω′, such that, for all t ≥ 0, i ∈ S, a ∈ A(i),




ϕ′(t, i) + r(t, i, a) +
∑

j∈S

ϕ(t, j)q(j|t, i, a) ≤ 0

ϕ(T, i) = g(T, i)

then,

(a) Vπ(0, i) ≤ ϕ(0, i), for all π ∈ Π, i ∈ S;

(b) Vπ(t, i) ≤ ϕ(t, i), for all π ∈ Πm, t ≥ 0, i ∈ S.

Remark 3: A key point is how to establish the existence

of a function ϕ in Theorem 4.
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4. Existence of optimal Markov policies

The arguments are given by an approximation technique.

Lemma 5. Suppose that the transition rates are bounded

(i.e., supi∈S,a∈A(i) |q(i|i, a)| < ∞) and Assumption A is satis-

fied. Then, the following assertions hold.

(a) There exists a unique ϕ(t, i) in C1,0
ω,ω satisfying the follow-

ing optimality equation (OE):



φ′(t, i) + sup
a∈A(i)

[r(t, i, a) +
∑

j∈S

φ(t, j)q(j|t, i, a)] = 0,

φ(T, i) = g(T, i),

(b) ϕ(t, i) = V ∗(t, i), with ϕ(t, i) as in (a) above.

13



Proof. (i). Show that the OE is equivalent to the equation:

ψ(t, i) = eβtg(T, i)

+eβt

∫ T

t

sup
a∈A(i)

[
r(s, i, a) + e−βs

∑

j∈S

ψ(s, j)q(j|s, i, a)
]
ds.

(ii). Define an operator G by

Gψ(t, i) = eβtg(T, i)

+eβt

∫ T

t

sup
a∈A(i)

[
r(s, i, a) + e−βs

∑

j∈S

ψ(s, j)q(j|s, i, a)
]
ds.

Since the transition rates are bounded, we can prove that G is

a contraction operator on a Banach space.
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Let ψ∗(t, i) be the fixed point of G, ϕ(t, i) := e−βtψ∗(t, i).

Then, ϕ(t, i) is a required solution for part (a).

(iii). By Theorem 4 and the generalization of the measurable

selection theorem, we can prove (b).

The condition is given for the existence of an optimal policy.

Assumption C (Continuity-compactness conditions):

(i) A(i) is compact for every i ∈ S;

(ii) For each i, j ∈ S, t ≥ 0, the functions q(j|t, i, a), r(t, i, a),

and
∑

j∈S ω(j)q(j|t, i, a) are continuous in a ∈ A(i).
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Theorem 6. Under Assumptions A, B and C, the following

assertions hold.

(a) There exists a unique ϕ(t, i) in C1,0
ω,ω′ satisfying the opti-

mality equation.

(b) ϕ(t, i) = V ∗(t, i) for all (t, i), with ϕ(t, i) as in (a) above.

(c) There exists a Markov policy f ∗ ∈ Πm such that

ϕ′(t, i) + r(t, i, f ∗(t, i)) +
∑

j∈S

ϕ(t, j)q(j|t, i, f ∗(t, i)) = 0

and the Markov policy f ∗ is optimal.
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Proof of Part (a)–(i). Without loss of generalization, let

S := {0, 1, . . . , n, . . .}, and Sn := {0, 1, . . . , n}, and

qn(j|t, i, a) :=

{
q(j|t, i, a), i ∈ Sn, a ∈ A(i),
0, otherwise.

Thus, obtain a sequence of models {Mn} of CTMDPs:

Mn := {S, A, (A(i), i ∈ S), r(t, i, a), qn(j|t, i, a)} (3)

Obviously, for each model Mn, the Assumptions A and B still

hold, and the corresponding transition rates are bounded.
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Proof of Part (a)–(ii). Let un(t, i) be the unique solution

to the OE for the Mn. Thus,

un(t, i) = g(T, i)

+

∫ T

t

sup
a∈A(i)

[r(s, i, a) +
∑

j∈S

un(s, j)qn(j|s, i, a)]ds

We can prove that {un(s, i), n ≥ 1} is equicontinuous in

(s, i). Ascoli theorem ensures the existence of a subsequence

{unk
(t, i), k ≥ 1} of {un(t, i), n ≥ 1} and a continuous func-

tion ϕ such that

lim
k→∞

unk
(t, i) = ϕ(t, i), and |ϕ(t, i)| ≤ Dω(i)
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Proof of Part (a)–(iii).

We further show limk→∞Hnk
(s, i) = H(s, i), where

Hn(s, i) := sup
a∈A(i)

[r(s, i, a) +
∑

j∈S

un(s, j)qn(j|s, i, a)];

H(s, i) := sup
a∈A(i)

[r(s, i, a) +
∑

j∈S

ϕ(s, j)q(j|s, i, a)].

Hence,

ϕ(t, i) = g(T, i)

+

∫ T

t

sup
a∈A(i)

[r(s, i, a) +
∑

j∈S

ϕ(s, j)q(j|s, i, a)]ds,

which is equivalent to the OE.
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Proof of Parts (b)-(c): Using the measurable selection

theorem, by Part (a) and Theorem 4 we see that parts (b) and

(c) are true.
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5. An example

A controlled birth-death system: For a := (a1, a2)

q(1|t, 0, a) = −q(0|t, 0, a) := λ(t) + a1 (4)

where a1 is explained as an immigration parameter.

q(j|t, i, a) :=





λ(t)i + a1 if j = i + 1,
−[λ(t) + µ(t)]i− a1 − a2 if j = i,
µ(t)i + a2 if j = i− 1,
0 otherwise.

(5)

for each i ≥ 1, a = (a1, a2) ∈ A(i).
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C1. λ(t) and µ(t): continuous, non-negative, and bounded.

C2. A(i) := [−λ1i, (1 + λ2)(1 + i)]× [−µ1i, (1 + µ2)(1 + i)]

where δ1 := inft≥0 δ(t), δ2 := supt≥0 δ(t), for δ ∈ {λ, µ}.
C3. r(t, i, a) is continuous in a; and

|g(T, i)| ≤ M(in + 1), |r(t, i, a)| ≤ M(in + 1),

where n ≥ 1 is some integer.

Proposition 7.

(a) Under C1, C2 and C3, the controlled birth-death system

satisfies Assumptions A, B, and C. Therefore (by Theorem

6), there exists an optimal Markov policy.
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(b) (A special case): Suppose that, in addition,

λ(t) = µ(t) ≡ 0, g(t, i) = 0, A(i) = [0, i]× [0, 2i];

r(t, i, a1, a2) = −2i+(T +3−3et−T
2 )a1+(3

2e
t−T

2 − 3
2−T )a2

for t ∈ [0, T
2 ), and r(t, i, a1, a2) = −2i + (5T

2 − 3t)a1 + (t−
3T
2 )a2 for t ∈ [T2 , T ], where (a1, a2) ∈ A(i). Then,

V ∗(t, i) =




−i(2 + T − 2et−T

2 ), i ≥ 0, t ∈ [0,
T

2
),

−2i(T − t), i ≥ 0, t ∈ [T2 , T ];

which is unbounded in i, and

f ∗(t, i) =





(i, 2i), t ∈ [0,
T

2
),

(0, 0), t ∈ [T2 , T ].
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Many Thanks !!!


