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Random Partitions

For any integer n ≥ 1 and 1 ≤ k ≤ n, a partition π of the set [n] = {1, . . . , n}
into k blocks is a collection of k nonempty unordered disjoint subsets A1, . . . , Ak
of {1, . . . , n} such that

{1, . . . , n} = ∪ki=1Ai.

Let Pn be the set of all finite partitions of {1, . . . , n}.

Definition: A random partition is a random variable Πn taking values in Pn. The
partition Πn is exchangeable if its law is invariant under permutations.

Definition: A consistent (in terms of restriction) family of {Πn : n ≥ 1} denoted
by Π is called a random partition of N = {1, 2, . . .}.

Definition: A random partition Π is exchangeable if for each n ≥ 1 Πn is
exchangeable.
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Let |A| denote the number of elements in A and set

ni = |Ai|, i = 1, . . . , k.

Then n1, . . . , nk is clearly a partition of integer n. For any 1 ≤ j ≤ n, set

mj = #{1 ≤ i ≤ k : ni = j}.

Clearly
n∑
j=1

jmj = n,

n∑
j=1

mj = k.
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A simple example: n = 12 and

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
= {1, 7, 9} ∪ {2, 6} ∪ {3, 4, 5} ∪ {8, 10, 12} ∪ {11}.

For this particular partition, we have

k = 5

m1 = 1,m2 = 1,m3 = 3,m4 = · · · = m12 = 0.
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The total number of set partitions of {1, . . . , n} corresponding to m1, . . . ,mn

is

D(m1, . . . ,mn) =
n!∏n

j=1(j!)
mjmj!

.

Given a random partition Πn, let Kn be the total number of sets in the partition,
Nn

1 , . . . , N
n
Kn

the corresponding set sizes, and

Mn
j = #{i : Nn

i = j}.

Definition: Mn
1 , . . . ,M

n
n are called the frequency counts of the random partition

Πn.

Kn =
∑n
j=1M

n
j is the total frequency counts.
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Construction of Random Partitions

– Poisson point process

– Subordinator and excursion

– Gnedin’s random open sets

– Kingman’s paintbox

– Random distributions

– Species sampling

– Urn models (e.g. Chinese restaurant process)
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Construction Through Random Sampling

Let (X1, . . . , Xn) be a random sample of size n from a population following
certain “nice ”distribution.

A random partition is constructed so that the i, j belongs to the same family iff
Xi = Xj.

Total frequency count Kn = the number of distinct families in the sample.

Frequency count Mn
j = number of families of size j.
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Given X1, . . . , Xn, additional samples of size m are selected resulting in a
sample of total size n+m: X1, . . . , Xn, Xn+1, . . . , Xn+m.

Let K
(n)
m = Km+n − Kn denote the total frequency counts of new blocks

introduced by the additional sample of size m.

Questions

1 What happens to Kn and Mn
j for large n? (unconditional setting)

2 Given X1, . . . , Xn, what happens to K
(n)
m and M

(n+m)
j for large m?

(conditional setting)
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Example Consider a population of r types of individuals with corresponding
proportions p1, . . . , pr. Taking a random sample X1, . . . , Xn from the population
and introducing the equivalent relation i ∼ j iff Xi = Xj. This leads to a random
partition of {1, 2, . . . , n}.

Possible generalizations:

1 The number of types r becomes infinity.

2 p1, . . . , pr becomes random.

The random sample X1, . . . , Xn will be exchangeable instead of iid.

3 Both 1 and 2.
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Finite r

A nice randomization of p1, . . . , pr is the Dirichlet distribution.

r =∞

A nice choice would be the so-called two-parameter Poisson-Dirichlet distribution
or equivalently

p1 = U1, pn = (1− U1) · · · (1− Un−1)Un, n ≥ 2

where U1, U2, . . . are independent Beta random variables with Ui following the
beta(1− α, θ + iα) distribution for some 0 < α < 1, θ + α > 0.

The latter is the focus of this talk.
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Pitman Sampling Formula

For each m1, . . . ,mn, and 0 < α < 1, θ > −α

P{Mn
j = mj, j = 1, . . . , n} = D(m1, . . . ,mn)

(θ)k↑α
(θ)n↑1

n∏
i=1

[(1− α)i↑1]
mi,

where the notation

(a)n↑b = a(a+ b) · · · (a+ (n− 1)b).

This is the two-parameter Pitman model or the Ewens-Pitman model.
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Unconditional Results

Total Frequency Counts Kn

The total frequency counts {Kn}n≥1 is a nondecreasing Markov chain with
K1 = 1 and for any k ≥ 1

P{Kn+1 = k + 1|K1, . . . ,Kn = k} =
kα+ θ

n+ θ

P{Kn+1 = k|K1, . . . ,Kn = k} =
n− kα
n+ θ

.

This describes a natural urn structure as follows.
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• Consider an urn that initially contains a black ball of mass θ.

• Balls are drawn from the urn successively with probabilities proportional to their
masses.

• When a black ball is drawn, it is returned to the urn together with a black ball
of mass α and a ball of new colour with mass 1− α.

• If a non-black ball is drawn, it is returned to the urn with one additional ball of
mass one with the same colour.

• Colors are labelled 1, 2, 3, ... in the order of appearance.

The total frequency counts represent the total number of different new colours
after the nth draw.
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Given 0 < α < 1, θ > −α, the distribution of Kn is given by

P{Kn = k} =
(θ + α)k−1↑α
(θ + 1)n−1↑1

Sα(n, k)

where Sα(n, k) is a generalized Stirling number of the first kind satisfying

x(x+ 1) · · · (x+ n− 1) =

n∑
i=0

Sα(n, i)x(x+ α) · · · (x+ (i− 1)α)

or equivalently

(x)n↑1 =

n∑
i=0

Sα(n, i)(x)i↑α.

– Typeset by FoilTEX – 15



Fluctuation

Let Sα,θ be a positive continuous random variable with density function

gα,θ(x) =
Γ(θ + 1)

Γ( θα + 1)
x
θ
αgα(x),

where

gα(x) =
1

πα

∞∑
i=0

(−1)i+1

i!
Γ(iα+ 1)xi−1 sin(παi)

is the density function of the Mittag-Leffler distribution.

Theorem 1. (Pitman (97))

lim
n→∞

Kn

nα
= Sα,θ a.s.
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Large Deviations

Define

Λα(λ) =

{
− log[1− (1− e−λ)

1
α] if λ > 0,

0, else

and

Iα(x) = sup
λ
{λx− Λα(λ)},

Theorem 2. (F and Hoppe(98)) For appropriate subset A of [0,∞),

P{Kn/n ∈ A} � exp{−n inf
x∈A

Iα(x)}.
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Key Calculations in the Proof

For θ = 0,

E[(Kn)i] =
Γ(i)(αi)n↑1
αΓ(n)

.

For λ > and x = 1− e−λ,

E[(
1

1− x
)Kn] =

∞∑
i=0

xi
(

ı + n− 1

n− 1

)
.

This leads to
1

n
logE[eλKn]→ Λα(λ).
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Frequency Counts Mn
j

Lemma 3. (Favaro and F (2014a)) For any integers j, r ≥ 1, we have for θ 6= 0

E[(Mn
j )r↑1]

=
1

(θ)n↑1

r∑
i=0

(
r − 1

r − i

)
r!

i!

(
α

(1− α)(l−1)↑1

l!

)i(
θ

α

)
i↑1

(n)il↓1(θ + iα)(n−il)↑1

and for θ = 0,

E[(Mn
j )r↑1]

=
1

αΓ(n)

r∑
i=0

(
r

i

)
(r − 1)!

(
α

(1− α)(l−1)↑1

l!

)i
(n)il↓1(iα)(n−il)↑1.
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In particular, one has

E[Mn
j ] =

Γ(θ + 1)

Γ(θ + α)

(1− α)(j−1)↑1

j!

Γ(θ + α+ n− j)
Γ(θ + n)

n!

(n− j)!

E[Mn
j (Mn

j − 1)]

=
(θ + α)Γ(θ + 1)

Γ(θ + 2α)
(
(1− α)(j−1)↑1

j!
)2

Γ(θ + 2α+ n− 2j)

Γ(θ + n)

n!

(n− 2j)!
.
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Let n tends to infinity, we obtain

E[
Mn
j

nα
]→ Γ(θ + 1)

Γ(θ + α)

(1− α)(j−1)↑1

j!
,

Var[
Mn
j

nα
]→ Γ(θ + 1){ (θ + α)

Γ(θ + α)
− Γ(θ + 1)

[Γ(θ + α)]2
}((1− α)j−1↑1

j!
)2.

Define

Sα,θ,j =
αΓ(j − α)

Γ(1− α)Γ(j + 1)
Sα,θ, j = 1, 2, . . . .
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LLN

For any j ≥ 1,
Mn
j

n
→ 0, n→∞, a.s

Fluctuation(Pitman(97)):

Mn
j

nα
⇒ Sα,θ,j, n→∞.
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Large Deviations

For λ > 0, let x = 1− e−λ and

Fn(x; θ, α) = E[eλM
n
j ] = E

[(
1

1− x

)Mn
j
]
.

Theorem 4.

Fn(x; θ, α)

=
1

(θ)n↑1

bnj c∑
i=0

(
x

1− x

)i(
α

(1− α)(j−1)↑1

j!

)i
1

i!

(
θ

α

)
i↑1

(n)ij↓1(θ + iα)(n−ij)↑1.
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In particular for θ = 0, we have

Fn(x; 0, α)

=

bnj c∑
i=0

(
x

1− x

)i(
α

(1− α)(j−1)↑1

j!

)i
n

n− ij

(
n− ij + iα− 1

n− ij − 1

)
.

For λ ≤ 0, set Λα,j = 0. For λ > 0, let

x̃ =
αx(1− α)(j−1)↑1

(1− x)j!

and ε0(λ) be the unique solution of the equation

(j − α) log(1− (j − α)ε)− j log(1− jε)− α logαε− log x̃ = 0.
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For λ > 0, define

Λα,j(λ) = log[1 +
αε0

1− jε0
]

and
Ij(y) = sup{λy − Λα,j(λ) : λ ∈ R}.

Theorem 5. (Favaro and F(2014b)) For any measurable set A ⊂ R, set Ij(A) =
inf{Ij(y) : y ∈ A}. Then

−Ij(A◦) ≤ lim inf
n→∞

1

n
logP{

Mn
j

n
∈ A} ≤ lim sup

n→∞

1

n
logP{

Mn
j

n
∈ A} ≤ −Ij(Ā)

where A◦ and Ā are the interior and closure of A respectively. In other words the
family {Mn

j /n : n ≥ 1} satisfies a LDP under the two-parameter Dirichlet process
with good rate function Ij(·) as n tends to infinity.
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Conditional Results

Total Frequency Counts

Let Pl and El denote the respective conditional law and conditional expectation
given Kn = l.

Theorem 6. (Favaro and F (2014a)) For λ > 0, let x = 1− e−λ. Then

El[eλK
(n)
m ]

= (1− x)l+
θ
α

∑
k≥0

xk

k!
(l +

θ

α
)k↑1

(
n+θ+kα+m−1
n+θ+m−1

)(
n+θ+kα−1
n+θ−1

) .
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Fluctuation

For any c, d > 0, let Bc,d denote the beta random variable with parameters c

and d. Let Sl,nα,θ be the independent product of a beta random variable Bl+θ/α,n/α−l
and Sα,θ.

Theorem 7. (Favaro et al (2009)) Under Pl, we have

K
(n)
m

mα
→ Sl,nα,θ a.s. as m→∞.

In other words, the condition on the first n samples has a long lasting impact about
the fluctuation of future samples.
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Large Deviations

Theorem 8. (Favaro and F(2014a)) For any measurable set A ⊂ R,

−I(A◦) ≤ lim inf
m→∞

1

m
logPl{

K
(n)
m

m
∈ A} ≤ lim sup

m→∞

1

m
logPl{

K
(n)
m

m
∈ A} ≤ −I(Ā)

where A◦ and Ā are the interior and closure of A respectively, and the rate function
is the same as the unconditional case.
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Frequency Counts

Fluctuation

Theorem 9. (Favaro et al (2009)) Under Pl, we have

M
(n+m)
j

mα
→ αΓ(j − α)

Γ(1− α)Γ(j + 1)
Sl,nα,θ, a.s. as m→∞.

In other words, the condition on the first n samples has a long lasting impact about
the fluctuation of future samples.
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Large Deviations

Theorem 10. (Favaro and F(2014b)) For any measurable set A ⊂ R,

−Ij(A◦) ≤ lim inf
m→∞

1

m
logPl{

M
(n+m)
j

m
∈ A}

≤ lim sup
m→∞

1

m
logPl{

M
(n+m)
j

m
∈ A}

≤ −Ij(Ā)

where the rate function turns out to be the same as the unconditional case.
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