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II. Background

Superprocess:

1 WHAT is a superprocess?

2 WHY studying a superprocess?

3 HOW to study a superprocess?

Flow superprocess:

1 WHAT is a flow superprocess?

2 WHY studying a flow superprocess?

3 HOW to study a flow superprocess?

Any difference in between? Independence / Dependence
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II.1 Background: Superprocesses

WHAT is a superprocess and WHY studying it?

1 Heuristically and roughly, a superprocess is used to describe the
evolution of population in an area, evolution of cells in a system,
evolution of clouds, etc; it is a measure-valued Markov process.

2 Mathematically, a superprocess arises as the high density limit of
branching particle systems; it is characterized by∫

M(E)
e−ν(f)Qt(µ, dν) = e−µ(Vtf),

Vtf(x) = Ptf(x)−
∫ t

0
ds

∫
E
φ(y, Vsf(y))Pt−s(x, dy),

φ(x, z) = −γ(x)z + σ(x)z2 +

∫
(0,∞)

(ezu − 1 + zu)m(x, du).
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HOW to study a superprocess?

particle systems approximation, Laplace functional, etc.

NOTATION:

E : Lusin topological space. Usually, E = Rd

M(E) : space of finite Borel measures on E with weak topology

µ(f) ≡ 〈f, µ〉 =
∫
E f(x)dµ(x)

Branching Particle Systems (BPSs)

(1) underlying motion ξ: e.g., Brownian motion, Feller process

(2) lifetime α: exponential

(3) branching mechanism {pi(x)}: reproduction
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Define

Xt(A) = # of particles alive in A at time t

Basic Hypotheses:

(H1) the motions of particles are independent of one another; and

(H2) the branching and motions of particles are independent.

Under (H1) and (H2), X = {Xt : t ≥ 0} is an integer measure-valued
Markov process, which is called a BPS.

A superprocess arises as the scaling limit of BPSs by increasing branching
rates and decreasing the mass. Such a limit, also denoted by X, has
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Canonical Representation

A superprocess X = {Xt : t ≥ 0} is determined by

E
[
e−Xt(f)|X0 = µ

]
=

∫
M(E)

e−ν(f)Qt(µ, dν) = e−µ(Vtf) (1)

{Qt} transition semigroup, and {Vt} cumulant semigroup of X, satisfying

Vtf(x) = Ptf(x)−
∫ t

0
ds

∫
E
φ(y, Vsf(y))Pt−s(x, dy),

with Ptf(x) := Exf(ξt), and branching mechanism

φ(x, z) = −γ(x)z + σ(x)z2 +

∫
(0,∞)

(ezu − 1 + zu)m(x, du)

γ, 0 ≤ σ ∈ B(E), and (u ∧ u2)m(x, du) bounded kernel from E to (0,∞).
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II.2 Background: Flow Superprocesses

WHAT is a flow superprocess and WHY studying it?

Flow superprocesses are short for superprocesses over a stochastic flow

A flow superprocess was used to describe the evolution of “red tide”
phenomenon by Skoulakis and Adler in 2001; it is a measure-valued
Markov process in a random medium.
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Mathematically, a flow superprocess X arises as the high density limit of
branching particle systems over a stochastic flow (FBPSs); it is usually
characterized by

The Martingale Problem–[MP(2,3)’]

Zt(f) := Xt(f)−X0(f)−
∫ t

0
Xs((G+ γ)f)ds (2)

is a continuous square integrable martingale with Z0(f) = 0 and

〈Z(f)〉t =

∫ t

0
Xs(σ

2f2)ds+

∫ t

0
(Xs ×Xs)(Λf)ds, (3)

where Λf(x, y) = a
(m)
ij (x, y)f ′i(x)f ′j(y) and a

(m)
ij (x, y) = cil(x)cjl(y).

γ is called the drift function and σ the branching variance.
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HOW to study a flow superprocess?

FBPSs approximation, martingale problem, duality,
conditional log-Laplace functional (Xiong, 2004), etc.

NOTATION

E := Rd, b : Rd → Rd, c : Rd → Rd×m, e : Rd → Rd×d

W = {W (t) : t ≥ 0} : m-dimensional BM

B = {B(t) : t ≥ 0} : d-dimensional BM, independent of W

Stochastic flow

dY (t) = b(Y (t))dt+ c(Y (t))dW (t), Y (s) = y ∈ E (4)
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The motion of particles over the above flow

dY (t) = b(Y (t))dt+ e(Y (t))dB(t) + c(Y (t))dW (t) (5)

Y = {Y (t) : t ≥ 0} has generator

Gf(x) =

d∑
i=1

bi(x)f ′i(x) +
1

2

d∑
i,j=1

dij(x, x)f
′′
ij(x),

where dij(x, y) =
∑d

k=1 eik(x)ejk(y) +
∑m

l=1 cil(x)cjl(y).

Branching Particle Systems over a Stochastic Flow (FBPSs)

Construction of FBPSs is postponed until next section.

A flow superprocess X = {Xt : t ≥ 0} arises as the scaling limit of FBPSs.
Skoulakis and Adler (2001) showed that X is the unique solution to the
martingale problem [MP(2,3)’] with γ and σ constant.
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III. Our Purpose

Construct flow superprocesses with location dependent branching. That is,
solve the martingale problem [MP(2,3)’] with γ and σ generalized to
functions, denoted by [MP(2,3)]

Martingale Problem–[MP(2,3)]

Zt(f) := Xt(f)−X0(f)−
∫ t

0
Xs((G+ γ)f)ds (2)

is a continuous square integrable martingale with Z0(f) = 0 and
quadratic variation process

〈Z(f)〉t =

∫ t

0
Xs(σ

2f2)ds+

∫ t

0
(Xs ×Xs)(Λf)ds, (3)

where Λf(x, y) = a
(m)
ij (x, y)f ′i(x)f ′j(y), a

(m)
ij (x, y) = cil(x)cjl(y),

γ ∈ Cl(E), and σ ∈ Cl(E)+.
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IV. Main Results

1 Model description

2 Existence (approximation method)

3 Uniqueness (dual method)

4 Properties (moment formula)
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IV.1 Model Description

Construction of FBPSs

NOTATION:

I := {α = (α0, α1, . . . , αk) : αi = 1, 2, . . . , 0 ≤ i ≤ k}
|α| = |(α0, α1, . . . , αk)| = k

α− 1 = (α0, . . . , α|α|−1)

α|i = (α0, . . . , αi)

α ∼n t⇔ |α|/n ≤ t < (1 + |α|)/n, t ≥ 0

E = Rd
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Kn particles located separately at xn1 , . . . , x
n
Kn
∈ E at t = 0. A particle α

born at time |α|/n will die at (1 + |α|)/n with Nα,n offspring produced.

For α ∼n t, the motion of α is determined by

dY α,n(t) = b(Y α,n(t))dt+ e(Y α,n(t))dBα,n(t) + c(Y α,n(t))dWn(t), (6)

where

Y α,n(0) = xnα0

Wn: m-dimensional BM

Bα,n: d-dimensional BM stopped at t = (|α|+ 1)/n

Bα,n(t) = Bα−1,n(t) for t ≤ |α|/n
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Let kn = k/n and an = 1/n. Define for t ∈ [kn, kn + an)

Fn
t = σ(Bα,n, Nα,n : |α| < k)

∨⋂
r>t

σ(Wn
s , B

α,n
s : s ≤ r, |α| = k)

and

F
n
kn = Fn

kn

∨
σ(Wn

s , B
α,n
s : s ≤ kn + an, |α| = k).
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Assume that {Nα,n : |α| = k} are conditionally independent given F
n
kn ,

and that for such Nα,nE
(
Nα,n|Fn

kn

)
= 1 + γn(Y α,n

kn+an
)/n =: βn(Y α,n

kn+an
)

Var
(
Nα,n|Fn

kn

)
= σn(Y α,n

kn+an
)2,

(7)

where γn ∈ Cl(E) and σn ∈ Cl(E)+. Now define

Xn
t (B) =

number of particles alive in B at time t

n
.

Clearly Xn
t = 1

n

∑
α∼t δY α,n(t) (empirical measure).
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Assume there exist p > 2 and C > 0 independent of α and n such that

E[(Nα,n)p] ≤ C, γn ⇒ γ ∈ Cl(E) and σn ⇒ σ ∈ Cl(E)+. (8)

Hypotheses (LU)

(L) |b(x)− b(y)|+ ‖c(x)− c(y)‖+ ‖e(x)− e(y)‖ ≤ K|x− y|, x, y ∈ E.

(U) bi, cil, eik ∈ C2
l (E), i, k = 1, . . . , d, l = 1, . . . ,m, and for any N ≥ 1

there exists λN > 0 such that

N∑
p,q=1

d∑
i,j=1

ξpi dij(xp, xq)ξ
q
j ≥ λN

N∑
p=1

d∑
i=1

(ξpi )2

with dij(x, y) =
∑d

k=1 eik(x)ejk(y) +
∑m

l=1 cil(x)cjl(y).

Congzao Dong (Xidian University (=ÜS>f�E�Æ), Xi’an, Shaanxi)Flow superprocesses with spatially dependent branching Aug 14, 2014 23 / 47



Assume there exist p > 2 and C > 0 independent of α and n such that

E[(Nα,n)p] ≤ C, γn ⇒ γ ∈ Cl(E) and σn ⇒ σ ∈ Cl(E)+. (8)

Hypotheses (LU)

(L) |b(x)− b(y)|+ ‖c(x)− c(y)‖+ ‖e(x)− e(y)‖ ≤ K|x− y|, x, y ∈ E.

(U) bi, cil, eik ∈ C2
l (E), i, k = 1, . . . , d, l = 1, . . . ,m, and for any N ≥ 1

there exists λN > 0 such that

N∑
p,q=1

d∑
i,j=1

ξpi dij(xp, xq)ξ
q
j ≥ λN

N∑
p=1

d∑
i=1

(ξpi )2

with dij(x, y) =
∑d

k=1 eik(x)ejk(y) +
∑m

l=1 cil(x)cjl(y).

Congzao Dong (Xidian University (=ÜS>f�E�Æ), Xi’an, Shaanxi)Flow superprocesses with spatially dependent branching Aug 14, 2014 23 / 47



Let Y = (Y 1, . . . , Y N ) be the solution to
dY 1(t) = b(Y 1(t))dt+ e(Y 1(t))dB1(t) + c(Y 1(t))dW (t)

. . . . . .

dY N (t) = b(Y N (t))dt+ e(Y N (t))dBN (t) + c(Y N (t))dW (t),

where

W : m-dimensional BM

B1, . . . , BN : independent d-dimensional BMs, independent of W

(SNt )t≥0 : semigroup of Y

GN : generator of Y
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Then for f ∈ D(GN )

GNf(x1, . . . , xN )

=

N∑
p=1

d∑
i=1

bi(xp)
∂f(x1, . . . , xN )

∂xp,i

+
1

2

N∑
p=1

d∑
i,j=1

dij(xp, xp)
∂2f(x1, . . . , xN )

∂xp,i∂xp,j

+
1

2

N∑
p,q=1
p 6=q

d∑
i,j=1

a
(m)
ij (xp, xq)

∂2f

∂xp,i∂xq,j
(x1, x2, x3, . . . , xN ).

Notice: G1 ≡ G
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IV.2 Existence of martingale problem

We are to solve the martingale problem [MP(2,3)]. Existence is established
by branching particle systems approximation. Let E = E ∪ {∆}. Recall
E = Rd.

Claim: For each N ≥ 1, ∃ a set D(E
N

) dense in C(E
N

) such that

D(EN ) := D(E
N

)|EN ⊂ C2
l (EN ).

For t ∈ [kn, kn + an] and f ∈ D(E) := D(E1), by the construction of Xn

Xn
t (f) =Xn

0 (f) + [Xn
t (f)−Xn

kn(f)] +
∑
r<k

[Xn
rn+an(f)−Xn

rn(f)]

=Xn
0 (f) +M

(n)
t (f) + J

(n)
t (f) +N

(n)
t (f)

+Z
(n)
t (f) + C

(n)
t (f) +H

(n)
t (f),
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where

M
(n)
t (f) = n−1

∑
r<k

∑
α∼nrn

Mα,rn
rn+an(f)[Nα,n − βn(Y α,n

rn+an)],

J
(n)
t (f) = n−1

∑
α∼nkn

Mα,kn
t (f)

+n−1
∑
r<k

∑
α∼nrn

∫ rn+an

rn

Ĝf(Xα,n
u )du[βn(Y α,n

rn+an)− 1]

+n−1
∑
r<k

∑
α∼nrn

f̂(Xα,n
rn )[βn(Y α,n

rn+an)− βn(Y α,n
rn )]

+n−1
∑
r<k

∑
α∼nrn

Mα,rn
rn+an(f)[βn(Y α,n

rn+an)− βn(Y α,n
rn )],

N
(n)
t (f) = n−1

∑
r<k

∑
α∼nrn

∫ rn+an

rn

Ĝf(Xα,n
u )du[Nα,n − βn(Y α,n

rn+an)],
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Z
(n)
t (f) = n−1

∑
r<k

∑
α∼nrn

f̂(Xα,n
rn )[Nα,n − βn(Y α,n

rn+an)]

+n−1
∑
r<k

∑
α∼nrn

Mα,rn
rn+an(f)βn(Y α,n

rn ),

C
(n)
t (f) = n−1

∑
r<k

∑
α∼nrn

∫ rn+an

rn

Ĝf(Xα,n
u )du

+n−1
∑
α∼nkn

∫ t

kn

Ĝf(Xα,n
u )du =

∫ t

0
Xn
u (Gf)du,

H
(n)
t (f) = n−1

∑
r<k

∑
α∼nrn

f̂(Xα,n
rn )[βn(Y α,n

rn )− 1] =

∫ kn

0
Xn

[ns]n
(fγn)ds,

where ĥ := h on E and ĥ(∆) := 0.
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Lemma (1, Moments of FBPSs)

Let p be as in (8) and T ≥ 0. If Xn
0 ⇒ ν ∈M(E), then

CT = sup
n≥1

E

(
sup

0≤t≤T
Xn
t (1)2

)
<∞and C

′
T = sup

n≥1
E

(
sup

0≤t≤T
Xn
t (1)p

)
<∞.

Proof. Use martingale inequalities and Gronwall’s inequality. �
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Lemma (2, Tightness)

For every f ∈ D(E),

(1) {M (n)(f)}, {N (n)(f)} and {J (n)(f)} =⇒ 0 in DR[0,∞);

(2) {C(n)(f)} and {H(n)(f)} are C-tight in DR[0,∞);

(3) for each n, {(Z(n)
kn

(f),Fn
kn

) : k = 0, 1, . . .} is a square integrable
discrete martingale with quadratic variation process

〈Z(n)(f)〉kn =

∫ kn

0
Xn

[λns]n
(f2S1

an(δ2
n))ds+

∫ kn

0
ds

∫
E2

(
1

an

∫ an

0
S2
u(Λf)(x, y)du

)
βn(x)βn(y)Xn

[λns]n
(dx)Xn

[λns]n
(dy)+

1

n

∫ kn

0
ds

∫
E

(
1

an

∫ an

0

[
S1
u(Ψf)(x)− S2

u(Λf)(x, x)
]
du

)
βn(x)2Xn

[λns]n
(dx)
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Lemma (2-continued, Tightness)

(4) Moreover, let t 7→ 〈Z(n)(f)〉t be the càdlàg extension of
k 7→ 〈Z(n)(f)〉kn such that 〈Z(n)(f)〉t := 〈Z(n)(f)〉kn for
t ∈ [kn, kn + an). Then {(〈Z(n)(f)〉t)} is C-tight in DR[0,∞);

(5) for each integer J ≥ 1,

limn→∞E

(
sup0≤k≤[λnJ ]

∣∣∣Z(n)
(k+1)n

(f)− Z(n)
kn

(f)
∣∣∣2) = 0, and the

sequence {sup0≤k≤[λnJ ] Z
(n)
kn

(f) : n ≥ 1} is uniformly integrable;

(6) {(Z(n)
t (f))} is C-tight in DR[0,∞).

Proof. Omitted. �
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Tightness of {Xn} and martingale characterization of its limits is given by

Theorem (3, Existence of MP(2,3))

{Xn} is C-tight in DM(E)[0,∞). Suppose that X is a weak limit of

{Xn}. Then for any f ∈ D(E),

Zt(f) = Xt(f)− ν(f)−
∫ t

0
Xs((G+ γ)f)ds (9)

is a continuous square integrable (FX
t )-martingale with Z0(f) = 0 and

quadratic variation process

〈Z(f)〉t =

∫ t

0
Xs((σf)2)ds+

∫ t

0
(Xs ×Xs)(Λf)ds. (10)

Moreover, P{X ∈ CM(E)[0,∞)} = 1.
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Proof.

C-tightness of {Xn}:

Lemma 2 ⇒ {Xn(f)} tight ⇒ {Xn} tight

quadratic variation process:

Use Skorokhod’s Representation Theorem

X({∆}) = 0 P-a.s.

Use martingale equality �
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IV.3 Uniqueness of the martingale problem

Equivalent martingale problems

The MP(2,3) will be equivalent to another martingale problem for L , a
diffusion operator on C(M(E)) defined by

LF (µ) =

∫
E

(G+ γ)

(
dF (µ)

dµ(x)

)
µ(dx) +

1

2

∫
E
σ(x)2d

2F (µ)

dµ(x)2
µ(dx)

+
1

2

d∑
i,j=1

∫
E

∫
E
a

(m)
ij (x, y)

∂2

∂xi∂yj

(
d2F (µ)

dµ(x)dµ(y)

)
µ(dx)µ(dy)
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Let D(L ) = D1(L ) ∪D2(L ) with Di(L ) ⊂ C(M(E)) and

D1(L ) = {F : Ff (µ) = 〈f, µN 〉, f ∈ D(EN )},

D2(L ) = {F : Ff,φ(µ) = f(µ(φ)), f ∈ C2
b (R+), φ ∈ D(E)+}⋃

{F : Ff,φ(µ) = f(µ(φ1), . . . , µ(φN )), f ∈ C2
b (RN ), {φi} ⊂ D(E)}.

Let X be a solution to MP(2,3). Equivalence is established by

Lemma (4, Equivalence)

(1) Eν [Xt(1)n] is locally bounded in t for each n ≥ 1.

(2) X is also a solution of the martingale problem for (L ,D(L ), ν).
That is, for all F ∈ D(L )

F (Xt)− F (ν)−
∫ t

0
LF (Xs)ds (11)

is a continuous martingale with X0 = ν.

(3) MP(2,3) and the martingale problem (11) are equivalent.
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Note that for f ∈ D(EN )

LFf (µ) =FGNf (µ) + 1/2

N∑
p,q=1
p6=q

FΦp,qf (µ) + 1/2

N∑
p=1

FΦpf (µ)

=Fµ(GNf,N) + 1/2

N∑
p,q=1
p 6=q

[Fµ(Φp,qf,N − 1)− Fµ(f,N)]

+1/2

N∑
p=1

[Fµ(Φpf,N)− Fµ(f,N)] + 1/2N2Fµ(f,N), (12)

where for h ∈ B(En) and x = (x1, . . . , xn) ∈ En, Fµ(h, n) ≡ Fh(µ),

Φp,qh(x1, . . . , xn−1) := σ(xn−1)2h(x1, . . . , xn−1, . . . , xn−1, . . . , xn−2)

Φph(x) := 2γ(xp)h(x).
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Construction of a dual process.

Let B := ∪∞n=1B(En) be endowed with pointwise convergence on each
B(En) and N := {1, 2, . . .}. Assume {e1, e2, . . .} is a sequence of
mutually independent unit exponential random variables with e0 := 0.
Define a sequence Γ = {Γk : k = 1, 2, . . .} of random operators on B and
a B-valued càdlàg process L = {Lt : t ≥ 0} as follows: Given a B-valued
random variable L0, independent of {e1, e2, . . .}, define recursively
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Lt = S

N(Lτk )
t−τk ΓkS

N(Lτk−1
)

ηk · · ·Γ2S
N(Lτ1 )
η2 Γ1S

N(Lτ0 )
η1 Lη0 , if τk ≤ t < τk+1

P{Γk+1 = Φp,q|N(Lτk) = nk+1} = 1
n2
k+1

for 1 ≤ p 6= q ≤ nk+1

P{Γk+1 = Φp|N(Lτk) = nk+1} = 1
n2
k+1

for 1 ≤ p 6= q ≤ nk+1

Lτk+1
= Γk+1S

N(Lτk )
ηk+1 ΓkS

N(Lτk−1
)

ηk · · ·Γ2S
N(Lτ1 )
η2 Γ1S

N(Lτ0 )
η1 Lη0 , k = 0, 1, 2 . . . ,

where η0 = 0, ηn = 2en
N(Lτn−1 )2

, τk =
∑k

i=0 ηi and N(h) := l if h ∈ B(El).

Define Mt = N(Lt).
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Let X be a solution to the martingale problem (11).

Theorem (5, Dual Relationship and Uniqueness)

Suppose that hypotheses (LU) hold. Then for all n ≥ 1, t ≥ 0 and
h ∈ B(En) we have

E [〈h,Xn
t 〉] = Eh,n

[
〈Lt, µMt〉 exp

{
1

2

∫ t

0
M2
s ds

}]
, (13)

where Xn
t = Xt × · · · ×Xt ∈M(En). Moreover, uniqueness holds for the

martingale problem (11) and hence for MP(2,3).

Proof. Use martingale equalities, approximation, and moment problem.
Techniques developed in Dawson et al. [1]. �
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Proof. Use martingale equalities, approximation, and moment problem.
Techniques developed in Dawson et al. [1]. �
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Theorem (6, Weak Convergence and Martingale Characterization)

If Xn
0 = 1

nνn ⇒ ν in M(E), then under the hypotheses (LU), Xn ⇒ X in
DM(E)[0,∞), where X ∈ CM(E)[0,∞) is the unique solution of the
following martingale problem: for any f ∈ D(E),

Zt(f) = Xt(f)− ν(f)−
∫ t

0
Xs((G+ γ)f)ds (14)

is a continuous square integrable martingale with Z0(f) = 0 and quadratic
variation process

〈Z(f)〉t =

∫ t

0
Xs(σ

2f2)ds+

∫ t

0
(Xs ×Xs)(Λf)ds. (15)

Proof. This is immediate from Theorem 3 and Theorem 5. �
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IV.4 Moments of flow superprocesses

Definition (7, Flow Superprocess (G, γ, σ))

An adapted càdlàg process in M(E) which satisfies [MP(2,3)] is called a
superprocess over a stochastic flow, or simply flow superprocess (G, γ, σ).

For h ∈ B(En), define operators U (n) and V (n) by

U (n)h =
1

2

∑
p 6=q∈{1,...,n}

Φp,qh, and V (n)h =
1

2

n∑
p=1

Φph.

Recall that SN is the semigroup of Y . Define a semigroup Tn as follows

Tnt h(y) = Ey

[
e
∫ t
0 V

(n)(Y (s))dsh(Y (t))
]
.
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Let X be a flow superproccess (G, γ, σ).

Proposition (8, Moments)

For h ∈ B(En) and each n ≥ 1

Eν〈h ,Xn
t 〉 = 〈Tnt h, νn〉

+

n−1∑
i=1

〈
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ ti−1

0
Tn−iti

Π(n)(i− 1; t)hdti, ν
n−i〉,

where Π(n)(i− 1; t) = (U (n−(i−1))T
n−(i−1)
ti−1−ti · · ·U

(n−1)Tn−1
t1−t2)U (n)Tnt−t1 .

Congzao Dong (Xidian University (=ÜS>f�E�Æ), Xi’an, Shaanxi)Flow superprocesses with spatially dependent branching Aug 14, 2014 42 / 47



Proof. Use the dual relation (13), the following relation and the Markov
property of X.

Eh,n

[
〈Lt, µMt〉 exp

{
1

2

∫ t

0
M2
s ds

}]
= 〈Snt h, µn〉

+
1

2

n∑
p,q=1
p 6=q

∫ t

0
EΦp,qSns h,n−1

[
〈Lt−s, µMt−s〉 exp

{
1

2

∫ t−s

0
M2
udu

}]
ds

+
1

2

n∑
p=1

∫ t

0
EΦpSns h,n

[
〈Lt−s, µMt−s〉 exp

{
1

2

∫ t−s

0
M2
udu

}]
ds. (16)

�
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IV.5 Extension to bounded spatially dependent branching

In terms of the relations (13) and (16), flow superprocesses (G, γ, σ) with
γ ∈ B(E) and σ ∈ B(E)+ can be constructed.
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