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Prisoner’s Dilemma game

Two prisoners are in custody.

Defect Cooperation

Defect 1. 6 yrs 1. 3 months
2. 6 yrs > 2. 10 yrs

Cooperation 1. 10 yrs 1. 1 yr
2. 3 months > 2. 1 yr

Defect=Confess. Cooperation=Not Confess
{Nash Equilibruim} = {(Defect, Defect)}
Q : Any way out of the dilemma?
2, n or∞ players. Repeated play.
Local or global interaction.
Strategy updating scheme.

Yunshyong Chow Evolutionary Prisoner’s Dilemma Games



1

Prisoner’s Dilemma Game 2

More generally, payoff paremeters satisfy b > d > a > c

Defect Cooperation

Defect 1. a 1. b
2. a > 2. c

Cooperation 1. c 1. d
2. b > 2. d

Set up: n players sitting around a circle.
Nearest neighborhood structure N(i) = {i − 1, i + 1}
Strategy updating scheme.
Imitation-best-player. Imitation-best-strategy.
Best response.
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Best response with local interaction

Strategy updating from time t to t + 1:
Assume ~s(t) = (s1(t), s2(t), · · · , sn(t)) ∈ {D,C}n

zi(~s(t)) = total payoff that player i will get after playing
once with each of his neighbors.
player i will adopt a strategy that maximum his payoff.
zi(· · ·C,C,C · · · ) = 2d < 2b = zi(· · ·C,D,C · · · )
Let ri(~s(t)) be the rational choice for player i under Q0.

Then ri(~s(t)) = D. Hence, ~r(~s) = ~D under Q0.

No way to get out of ~D even with mutation!
Mutation means si(t + 1) = C with probability ε1 indep.
Sequential updating or parallel updating.
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New strategy updating

For · · ·C C C · · · −−→ · · ·C D C · · · ,
∆ total payoff for these 3 players = 2b + 2c − 4d
change of bond energy
social consciousness or warrantor or family interest.
change of state:
~s(t)‖ti = (s1(t), s2(t), · · · , si−1(t), ti , si+1(t), · · · , sn(t))

pε(~s(t),~s(t)‖ti) ≈ ε(−∆ total payoff)+
= ε(−U(~s(t)‖ti )+U(~s(t)))+

Mutation cost is no longer 1.
Hence, U(~s) = −

∑n
i=1 zi(~s) is a potential function.

Let Pε be the Markov transition probability matrix.
Let ~µε = ~µεPε be the ergodic distribution.
Let ~µ∗ = limε→0 ~µε

Goal: S∗ = support of ~µ∗. Long run Equilibria
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sequential updating without mutation cost = 1

In the potential case, S∗ = {~s : U(~s) = min U}

Theorem 1

(i) If b + c < 2d, then S∗ = {~C}.
(ii) If b + c > 2d, then

S∗ = {~A = CDCD · · ·CD, ~B = DCDC · · ·DC} if n is even,

= {~Ai = CDCD · · ·CD
i

C: 1 ≤ i ≤ n} if n is odd.

(iii) If b + c = 2d, then S∗ = {~s : all di = 1} ∪ {~C}.
Here di means the length of the i-th D-string.

Then the average payoff of each player can be computed.
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parallel updating without mutation cost = 1

pε(~s,~t) ≈ ε
∑

(−∆ total payoff at player i)+ def
= εv(~s,~t).

Here v(~s,~t) means the cost jumping from ~s to~t

Theorem 2

(i) If b + c < 2d, then S∗ = {~C}.
(ii) If b + c > 2d, then

S∗ = {~A = CDCD · · ·CD, ~B = DCDC · · ·DC} if n is even,

= {~Ai = CDCD · · ·CD
i

C: 1 ≤ i ≤ n} if n is odd.

(iii) If b + c = 2d, then S∗ = {C,D}n

Sequential updating and parallel updating could be different.
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updating rule for player i

b+c+2a 2d+b+c
· · ·CDD · · · −→ · · ·CCD · · · 	

4d 2b+2c
� · · ·CCC · · · ←− · · ·CDC · · · if 2d > b + c

� · · ·CCC · · · ←→ · · ·CDC · · · 	 if 2d = b + c

· · ·CCC · · · −→ · · ·CDC · · · 	 if 2d < b + c
4a 2b+2c

� · · ·DDD · · · ←− · · ·DCD · · · if 2a > b + c

� · · ·DDD · · · ←→ · · ·DCD · · · 	 if 2a = b + c

· · ·DDD · · · −→ · · ·DCD · · · 	 if 2a < b + c

Yunshyong Chow Evolutionary Prisoner’s Dilemma Games



1

Freidlin-Wentzel Method

General procedure:
Step 1. Find S0 = {ergodic states} under Q0
Step 2. ∀~s ∈ S0,

find C(~s) = minimum cost of all spanning trees rooted at ~s
Or equivalently, find how states in S0 reach each other.

Step 3. Then S∗ = {~s ∈ S0 : C(~s) = min C}.
Moreover, the order in ε of the waiting time to hit S∗
can be obtained

2(d−a) 2(d−a)

· · ·CDD · · · ← · · ·CDD · · · � · · ·CCD · · ·	
0

Hence, any C-string with length ≥ 2 can hold under Q0
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Case(i) b + c < 2d with 2a > b + c.

Any C-string with length ≥ 2 can can grow to ~C under Q0.
� ∗ CCC ∗←− ∗ CDC∗ Otherwise, cost = 4d − 2b − 2c.
� ∗ DDD ∗←− ∗ DCD∗ Otherwise, cost = 4a− 2b − 2c.
~A = CDCD · · ·CD ←→ DCDC · · ·DC = ~B if n is even.
S0 = {~C, ~D, ~A, ~B} if n is even and S0 = {~C, ~D} if n is odd.
~D 4a−2b−2c−−−−−−−→ · · DDCDD · · → · · DCDCD · · → ~A if n even

→ ~C if n odd
~C

2(4d−2b−2c)−−−−−−−−−→ at least 2 mutations from C to D to get out.
Easy to escape from ~A, ~B by making 1 mutation
from ∗DCD∗ to ∗CCC∗ at cost (4a− 2b − 2c).

S∗ = {~C}
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Case(i) b + c < 2d with 2a ≤ b + c.

Any C-string with length ≥ 2 can can grow to ~C under Q0.
· · DDD · · → · · DCD · ·	 allowed.

Hence, Any C-string can can grow to ~C under Q0.
~D −→ ~C. In fact, any ~S −→ ~C in one step under Q0.
S0 = {~C} and then S∗ = {~C}.
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Case(ii) b + c = 2d > 2a

Any C-string with length ≥ 2 can can grow to ~C under Q0.
� · ·CCC · · ↔ · · CDC · ·	 with equal probability.
Hence, ~C can reach ~S in one step under Q0.
· · ·CDD · · · −→ · · ·CCD · · ·	
· · DDD · ·−→ · ·DCD · ·	
Hence, any ~S can reach ~C in one step under Q0.
S0 = {C,D}n = S∗

Note that S∗ = {~s : all di = 1} in sequential updating.
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Case(iii) b + c > 2d

· · CDD · ·−→ · ·CCD · ·	
· · CCC · ·−→ · ·CDC · ·	
· · DDD · ·−→ · ·DCD · ·	
S0 is complicated.

Any D-string with length ≥ 2 −→ C-string. Hence, ~D ↔ ~C.
~A, ~B ( if n even ) are absorbing states under Q0
~Ai ( if n odd ) are absorbing states under Q0

String CDC remains unchanged under under Q0.
String CDC(C)DC remains unchanged under under Q0.
· · ·DCCCD · · · −→ · · · ∗ CDC ∗ · · ·
Hence, no C-string with length 3 can exist in ~s ∈ S0 .

Yunshyong Chow Evolutionary Prisoner’s Dilemma Games



1

Case(iii) b + c > 2d continued

· · ·C
≥2︷ ︸︸ ︷

D · · ·D
≥4︷ ︸︸ ︷

CC · · ·CC D ∗ · · · → · · CC · · ·CCD · · ·DC ∗ ··

· · (C)C · · will be eliminated unless it is · · CD(C)CDC · ·

· · ·C
≥2︷ ︸︸ ︷

D · · ·D (C)CDD · · · → · · ·CC · · ·C(C)CCC · · ·
→ · · · ∗ D · · ·D(D)DD ∗ · · ·

S0 = Sa ∪ Sf , where
Sa = {~s : ci = 1 or 2, and di = 1}
Sf = {~s ↔~t : all ci 6= 3 and some ci ≥ 4 in ~s on in ~t ,

di−1 = di = 1 in case ci < 3}.
Note both ~D, ~C ∈ Sf as ~D ↔ ~C.
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Step 2. How states in S0 communicate with each other

δ = min(2d − 2a,b + c − 2d) = min. cost to escape.
Any mixed state in Sf can reach ~A or ~B at cost δ.

~s = · ·C
≥2︷ ︸︸ ︷

D · ·DD

≥4︷ ︸︸ ︷
CCC

•
· · ·CC D · · ↔ C

≥2︷ ︸︸ ︷
C · · ·C

≥4︷ ︸︸ ︷
CDD · · ·D ∗

~s 2d−2a−−−−→ C

≥2︷ ︸︸ ︷
C · · ·CD

≥4︷ ︸︸ ︷
CD · · ·DC ∗

~s b+c−2d−−−−−→ C

≥2︷ ︸︸ ︷
C · · ·C

≥4︷ ︸︸ ︷
CDC

•
D · · ·D ∗

~C can reach out at cost b + c − 2d .
~C ↔ ~D b+c−2d−−−−−→ CDCC C

•
· · C =~t ↔ CDCDD · ·D = ~s

~C b+c−2d←−−−−− ~s 2d−2a−−−−→ CDCDC · ·C for n ≥ 5
~t b+c−2d−−−−−→ CDCD C

•
DD · ·D

Yunshyong Chow Evolutionary Prisoner’s Dilemma Games



1

States in Sa \ {~A, ~B} for n even: ci = 2, ci+1 = 1

String CC can be moved to either side at cost δ.

~u = ∗CDCC D
•

CDC∗ b+c−2d−→ ∗CDCC C
•

CDC∗ ↔~t

~t ↔ ∗CDCC C
•

CDC∗ b+c−2d−→ ∗CDC D
∗

CCDC∗

~u 2d−2a−→ ~t = ∗CDC D
•

DCDC∗ 2d−2a−→ ∗CDC D
•

CCDC∗

Hence, all strings CC can be moved together at cost δ.
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States in Sa \ {~A, ~B} for n even: ci = ci+1 = 2

These states can reach each other and {~A, ~B} at cost δ.

~u = ∗CDC C
∗

D
•

CCDC∗ b+c−2d−→ ∗CDCC C
•

CCDC∗ = ~s

∗CDCD D
•

DCDC∗ ↔ ~s b+c−2d−→ ∗CDCD C
•

DCDC∗

b+c−2d−→ · · · b+c−2d−→ · · · −→ ~A

~u 2d−2a−→ ∗CDC D
∗

DCCDC∗ −→ ∗CDC C
∗

CCCDC∗ ↔ ~w

~w = ∗CDC D
•

DDCDC∗ 2d−2a−→ ∗CDC D
•

CCCDC∗

−→ ∗CDC D
•

CDCDC∗
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{~A, ~B} for n even

Min. cost to reach out is b + c − 2a > b + c − 2d ≥ δ.
~A has no CCD or CDD string.
~A b+c−2d−→ ∗CDC C

•
CDC∗ −→ ~A no escape!

~A b+c−2a−→ ∗CDCD D
•

DCDC∗ ↔ ∗CDCC C
•

CCDC∗
a mixed state in Sf .
Hence, S∗ = {~A, ~B}.

The case n that is odd can be dealt with similarly.

S∗ = {~Ai = CDCD · · ·CD
i

C: 1 ≤ i ≤ n}.
The proof is more complicated.

Ellison’s Radius and Co-radius Theorem is useful.
The basin of {~A, ~B} is deeper.
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Parallel updating with mutation cost = 1

Previously, pε(~s,~t) ≈ ε
∑

(−∆ total payoff at player i)+
.

In literature, pε(~s,~t) = (1− ε)n−dist(~s,~t)εdist(~s,~t).
Here dist(~s,~t) = #{1 ≤ i ≤ n : ti 6= ri(~s)}

and ri(~s) is the rational choice for player i at state ~s.

Theorem 3

(i) If b + c < 2d, then S∗ = {~C}.
(ii) If b + c > 2d, then S∗ = Sa ∪ Sf defined in Theorem 2 (ii).
(iii) If b + c = 2d, then S∗ = {C,D}n.

For (i), it takes 2 mutations for ~C to reach out.
For (ii), 1 mutation for any state in S0 to reach each other.
Too cheap to make a mistake.
Confucius says think thrice...
For (iii), all states can reach each other under Q0.
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Sequential updating with mutation cost = 1

Theorem 4

(i) If b + c < 2d, then S∗ = {~C}.
(ii) If b + c > 2d, then S∗ = Sa defined in Theorem 2 (ii).
(iii) If b + c = 2d, then S∗ = {~C} ∪ {~s : all di = 1}.

Sa = {~s : all di = 1, ci = 1 or 2}.
Results in (ii) and (iii) are better than those in Theorem 3.
Theorem 3 (ii). If b + c > 2d , then S∗ = Sa ∪ Sf defined in
Theorem 2 (ii).
Theorem3 (iii). If b + c = 2d , then S∗ = {C,D}n.
Being a potential function in Theorem 1, we get
S∗ = {~s : U(~s) = min U} without doing anything.
Now we have to sweat a little.
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