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» Consider the following diffusion

dX; = b(X;)dt + edW; (1)
Xs=xecHCR?
where W; is a d-dim Brownian motion, d > 1, and

» b(x) = bT(x)if x; > 0and b(x) = b~ (x) if the first
component x; <0,
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» Consider the following diffusion

dXf = b(Xf)dt + edW, (1)
Xs=xecHCR?

where W; is a d-dim Brownian motion, d > 1, and

» b(x) = bT(x)if x; > 0and b(x) = b~ (x) if the first
component x; <0,

> H= {XE Rd,X1 :0},

» and b™(x) and b~ (x) are two smooth and bounded vector
fields on RY.

To study the fluctuation of X¢(-), we need to find a deterministic
function ¢(-) such that X converges to ¢ weakly, i.e.,
lim._,o P(||X“(-) — &(-)|| > 6) = O for every § > 0.
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» We consider the case that ¢(t) € H for every t. For
otherwise the fluctuation of X¢ is the same as Lipschitz
coefficients. Thus,

» we require the stability condition of b(x), i.e., there are two
different non-negative constants ¢y, ¢, and ég > 0 such that

by (x) < —c2, X1 € (60, 0) 2)
by (x) > ¢1,x1 € (—dg,0).
» Under the stability condition, there exists a unique weak
limit ¢ of X¢ such that ¢(t) € Hforall t > 0.

This result follows that of large deviation of X¢ and a quick
review is as follows.
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For the system (1), let u;™ = fo X(0,00)X: (s)dS- We have for
¢ € C[0, T],% € H™(9),

>

POl X(-) = o() lo,n< 8, uF () = ¥() llo,;< 8)  (3)
~ exp(—1(¢,1)/€)

» where

(6, 0) = 1/2 3 1d(t) ~ by )\Zdr+ S
1/2 Jsiem,br (o) <bi ( ¢,)( 1 (61) = b7 (61))20he(1 — ¢hr)clt

is the rate function. Here H*(¢) is the set of all real-valued
absolutely continuous functions on [0,T] starting from 0
satisfying ¢y = 1 if ¢¢(t) >0, ¢y =0 if ¢¢(t) < 0and

'L/}f S [07 1] for ¢f =
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» Here,

by,y(t) = b ()it + b~ () (1 — ).
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» Here, _ _
by (1) = bF (1) + b~ (o) (1 — ¢1).
» It hence follows from the contraction principle that
Pl X(-) = 6(-) lljo,ry< 8) ~ exp(—1(¢)/€?)
where I(¢) = infycp+(g) (6, 7).
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» The stability conditiion (2) implies that

T .
(¢,7) = 1/2/0 6(t) — by (1) |?dlt.
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» The stability conditiion (2) implies that

T .
(¢,7) = 1/2/0 6(t) — by (1) |?dlt.

» Hence _ _ _
I(¢,7) = 0 if and only if ¢ = b*(p¢)ht + b~ (¢¢)(1 — r).
> Since ¢1(t) = 0, we must have
by (¢0) vt + by (¢0)(1 — ) = 0.
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v

The stability conditiion (2) implies that

T .
(¢, ) = 1/2/0 |p(t) — by (t)|2dlt.

» Hence

I(¢,4) =0 if and only if ¢¢ = b* (¢¢)r + b~ (e)(1 — 1))
Since ¢1(t) = 0, we must have

by (¢0) vt + by (¢0)(1 — ) = 0.

Therefore, vy = by (¢1)/(by (6¢) — bY (1)) Let

p(x) = by (x)/(by (x) — b} (x)) and q(x) =1 — p(x).

v

v
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Then the pair (¢, 1) satisfies

vt = p(¢r) and

ot = by (61)/(b7 (¢1) — by (1)) - b (¢1)
—by (¢1)/(by (¢1) — b{ (¢1)) - b (¢1)
= p(¢1)b™ (¢1) + q(61)b™ (¢1).

The large deviation principle then implies that

i
lime—oP(| X()~6() o< 6 || v~ () /0 P(6)0S [[p.ry< 8) = 1.

We shall study the fluctuation of (X¢(-), u¢*(-)) around
fo (¢s)ds).
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» Let Y; be the following Ornstein-Uhlenbeck process :

dY:r = p(¢t)vbT (o) Yedt + q(é1) Vb~ (¢1) Yidt

+(Vp(¢r) - Yi)(bT (6t) — b~ (1))l

(b (1) — b (¢1))/ (b5 (¢1) — by (¢1))dWs (t) + dW;
Yo =0

where V is the gradient operator.
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» Let Y; be the following Ornstein-Uhlenbeck process :

dY: = p(¢1)VbT(¢r)Yidt + q(¢1) Vb~ (é1) Yiat
+(Vp(d1) - Yi)(bT (61) — b~ (¢1))alt

—(bF(¢1) — b~ (1)) /(b7 (61) — by (¢1))dW; (1) + dW;
Yo =0

where V is the gradient operator.

» The main theorem is {(X“(-) — ¢(-))/€e}e>0 converges to an
Ornstein-Uhlenbeck process Y(-) in probability in
C([0, T], RY) and (u*(-) — [, p(¢s)ds)/e converges to a
Gaussian process in probablllty in HY(¢) (the
Cameron-Martin space), hence in distribution as ¢ — 0.
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Fluctuation of uf*
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Let f : R — R be a bounded smooth function and for
x € RY,|x{| < 4, be defined as follows.

F(X) = f(x1,X) = /0X1 1/(b; (s,%) — bl (s, %))ds, |x1] < .
(4)

By Ito’s lemma, we have

df(XE) = VA(XE) - dXE + 220 F(XE)alt
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Let f : R — R be a bounded smooth function and for
x € RY,|x1| < 4, be defined as follows.

F(X) = f(x1,X) = /0X1 1/(b; (s,%) — bl (s, %))ds, |x1] < .
(4)

By Ito’s lemma, we have
df(XE) = VA(XE) - dXE + ¢ /2Af(Xf)dt
= (=b1(XF)/(by (Xf) — (Xf))+Vf(Xe) b(X{)
+52/2Af(Xf))dt+evf(Xf) W,

—b{ (X£)/(by (Xf) — by (XF))xxe (>0t
+(—b1_(XE))/(b_(XE) b+(XF))Xxs(t)<odf
FTAXE) - B(XE)dt + €2 [2AF(XE)dt + eV F(XE) - dW,

= ((1 = (X (D))x(xe (>0t — PIX(1)) x(xe (1) <0) Ot
FIA(XE)at - BOX)at + 2/2AF(XE)dt + eV H(XF) - W,
= dut — p(XE)dt + TH(XE) - B(XE)dt + €2 [2AF(XE)dit
+evF(XE) - dW.
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We conclude with

— [ p(XS)ds = f(X}) = (Xo) fob(X€ TF(XE)ds
—2/2 [LAF(XE)ds — e [LvF(XE) - dWs.
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We conclude with

fo (Xs)ds = 1(X7) — f(Xo) — fo b(X6 V(X5)ds
—62/2 fo AF(XS)d efo VI(XS) - dWs.
Ouir first claim is :

Lemma 2.1 [y VH(XS) - dWs — [51/(bf (6s) — by (65))dW (s)
in probability in C[0, T] as ¢ — 0.

This is true because of the following two observations.

> lim._o || X(-)—¢(:) |>6=0
» Vf=0o0nH.
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The second claim is that | X{(t)| is small compared with .
Lemma 2.2 Xj(-)/e — 0 in probability in C[0, T}, i.e., for any
0>0,

/ime—>0P(5UP0§t§T‘X1€(t)‘/6 > 5) =0

We outline the proof as follows.
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The second claim is that | X{(t)| is small compared with .
Lemma 2.2 Xj(-)/e — 0 in probability in C[0, T}, i.e., for any
0 >0,
lim._,o P(supo<t<7| X (t)|/e > 6) =0
We outline the proof as follows.
> Let y; = X5(€2t)/€2. Then y; satisfies the following.

>

dyr = by(X2,)at + dB,
Yo=0
where B; = W;(¢?t)/e is a 1-dimensional Brownian motion.
» Let 7€ = inf(t: |yt| > d/€). Then

P(supi<T|X;(t)/e| > 6) = P(supi<7lyyee| > 6/€) = P(r° < T/¢?),

» |to’s lemma then implies the result.
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The fluctuation of u;™* is stated as follows.
Theorem 2.3 Let u“*(-) be the occupation time of X¢(-) in H*.
Then

1 e(u / p(XS)ds) / 1/(b; (6s) — bif (65))dWi ()

in probability in C[0, T] as ¢ — 0.
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The fluctuation of u;™* is stated as follows.
Theorem 2.3 Let u“*(-) be the occupation time of X<(-) in H*.
Then

et ()= [ pLxds) > [ /(b5 (05) b (6:))dWi (s)
in probability in C[0, T] as ¢ — 0.
Ouitline of the proof.
1/e(u / p(Xs)ds)
= f(X) 6—1/6/ b(X{) (XE)ds—e/z/ AF(XS)ds

t
—/ VHXS) - dWs = h + b + I + L.
0
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» 1, [, — 0 in probability follows from Lemma (2.2) because
(X < 1X5()], (4).

» I3 — 0 in probability is trivial.
ls = [51/(b7 (¢s) — b (¢s))dW(s) because of Lemma
(2.1).
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Fluctuation of X around ¢-
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Recall: X{ and ¢; satisfy the following equations respectively.

dX; = b (XE)due + b (XF)duE™ + edWh,
Xo=x€ H" and
ot = p(de)b™ (61) + q(de)b™ (91),
o = X

where g(x) =1 — p(x) and uf* + u;~ = t. Let

Yi=(X{ = ¢1)/e




Fluctuation of X¢ 14

dYy =1/e(b™(X;)du;™ + b (X;)du;™ — (p(é1)b™ (¢1)alt
+ q(¢1)b™ (¢1)dt)) + dW;
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dYy =1/e(b™(X;)du;™ + b (X;)du;™ — (p(é1)b™ (¢1)alt

+q(¢e)b™(¢r)dt)) + dW,

=1/e((b™(XF) - b+(¢t))dU§++b+(¢t)(dU§+—p(¢r)dt))
+1/e((b™(X) — b~ (¢r))dus™ + b~ (d¢)(du; ™ — q(¢r)dt)) + dW

=1/e(b7(X{) — b (6e))dus™ +1/e(b™(XF) — b~ (¢1))du;~
+1/e(b*(¢r) — b~ (1)) (dui™ — p(¢r) t)+th

= 1/e(b*(Xf) — b (61))dug™ 4 1/e(b™(Xf) — b~ (o)) dus~
+1/e(b*(¢1) — b~ (1)) (dus™ — p(X)dt)
+1/e(b™(¢1) — b~ (61))(P(XF) — p(er))dt + dW.

\_/vvv
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Let Y; be the solution of the following linear stochastic
differential equation.

dY: = p(¢:)vbT (¢r) Yedt + q(d1) Vb~ (¢1) Yedlt
+(Vp(¢r) - Y1) (BT (1) — b~ (¢r))dlt
— (b* (1) — b~ (1)) /(b7 (¢1) — by (¢1))dWs (1) + dW;
= a;Yidt + o dW,
Yo=0

where (Vb);; = 0b;/0x; is the gradient of b(x).
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The main result of this paper is the following.
Theorem 3.1 The processes Y¢ converges to Y. in probability

in C([0, 1], RY), hence in distribution as ¢ — 0.
Let Rf = Y{ — Y;. Then

Ri = (Xf — ¢1)/e = Yt

= /t 1/e(b™(X5) — b™ (¢s))dus™ — VO™ (6s) Ysp(¢s)ds
0

t

+ /0 1/e(b™(XS) — b (65))0US™ — Vb~ () Yeq(65)ds
t

" /O (b*(65) — b~ ())((QUE™ — p(XE)ds) /e
— dW;(s)/ (b (¢s) — b (¢s)))

t
+/o (b (¢s) — b~ (¢5))(1/e(P(X5) — p(¢s)) — VP(ds) - Ys)dS
= h(t) + b(t) + (1) + la(1).
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We concentrate on /;. First note that
1/e(b™(XF) — b™(41))
1
=1/ [ 9B 60+ 00X — a)(X; — ol

1
— 1/ /0 (V5" (1 + 60X; — 6)) — Vb (60))(X¢ — b1)d
+ ‘I/eVb+(<;51)(Xt€ — &1),
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t
h(t) = /0 1/e(b*(X) — b (6s))dus™ — Vb™ () Yep(5)dis
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t
h(t) = /0 1/e(b*(X) — b (6s))dus™ — Vb™ () Yep(5)dis

_ /0 ’ /0 (9b* (s + O(XE — ds)) — VB (66))d0
((Xs — ¢s)/e — Ys)dug"

t 1
+ [ [ @07 (064 00 = 65)) — vb*(65))d0 Vo'
0 JO
t
b [ ()X — g/ - Voot
0

+ /t Vbt (¢s) Ys(dugt — p(¢s)ds)
0
= h1(t) + h2(t) + hs(t) + ha(t).
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Finally, we have [R¢| =[5 K|RE|(Il X(-) — ¢(-) || +1)ds + R
where R (independent of t Jconverges to 0 in C[0, T] in
probablility. Let

s={weQ:| R <}
Thus, lim._,oP(Q5) = 1 for any § > 0 But on Qf, we have

t
|Rt| < K/ |RS|ds + 9,
0

thus |Rs| < §eX! by Gronwall inequality and this implies that
R¢ — 0 in probability.
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