Fluctuation of Diffusions in Discontinuous Media

Chiang, Tzuu-Shuh and *Sheu, Shuenn-Jyi

Institute of Mathematics, Academia Sinica and *Department of Mathematics, National Central University

2014.8.14-20, Xian, China

Outline for section 1

Introduction and summary

Fluctuation of $u_t^{\epsilon+}$

Fluctuation of X_{\cdot}^{ϵ} around ϕ .

References

Consider the following diffusion

$$dX_t^{\epsilon} = b(X_t^{\epsilon})dt + \epsilon dW_t$$

$$X_0^{\epsilon} = x \in H \subseteq R^d$$
(1)

where W_t is a d-dim Brownian motion, d > 1, and

▶ $b(x) = b^+(x)$ if $x_1 > 0$ and $b(x) = b^-(x)$ if the first component $x_1 \le 0$,

Consider the following diffusion

$$dX_t^{\epsilon} = b(X_t^{\epsilon})dt + \epsilon dW_t$$

$$X_0^{\epsilon} = x \in H \subseteq R^d$$
(1)

where W_t is a d-dim Brownian motion, d > 1, and

- ▶ $b(x) = b^+(x)$ if $x_1 > 0$ and $b(x) = b^-(x)$ if the first component $x_1 \le 0$,
- ► $H = \{x \in R^d, x_1 = 0\},$

Consider the following diffusion

$$dX_t^{\epsilon} = b(X_t^{\epsilon})dt + \epsilon dW_t$$

$$X_0^{\epsilon} = x \in H \subseteq R^d$$
(1)

where W_t is a d-dim Brownian motion, d > 1, and

- ▶ $b(x) = b^+(x)$ if $x_1 > 0$ and $b(x) = b^-(x)$ if the first component $x_1 \le 0$,
- ► $H = \{x \in R^d, x_1 = 0\},$
- ▶ and $b^+(x)$ and $b^-(x)$ are two smooth and bounded vector fields on \mathbb{R}^d .

To study the fluctuation of $X^{\epsilon}(\cdot)$, we need to find a deterministic function $\phi(\cdot)$ such that X^{ϵ} converges to ϕ weakly, i.e., $\lim_{\epsilon \to 0} P(||X^{\epsilon}(\cdot) - \phi(\cdot)|| > \delta) = 0$ for every $\delta > 0$.

- ▶ We consider the case that $\phi(t) \in H$ for every t. For otherwise the fluctuation of X^{ϵ} is the same as Lipschitz coefficients. Thus,
- ▶ we require the stability condition of b(x), i.e., there are two different non-negative constants c_1 , c_2 and $\delta_0 > 0$ such that

$$b_1^+(x) \le -c_2, x_1 \in (\delta_0, 0)$$
 (2)
 $b_1^-(x) \ge c_1, x_1 \in (-\delta_0, 0).$

▶ Under the stability condition, there exists a unique weak limit ϕ of X^{ϵ} such that $\phi(t) \in H$ for all $t \geq 0$.

This result follows that of large deviation of X^{ϵ} and a quick review is as follows.

For the system (1), let $u_t^{\epsilon+} = \int_0^t \chi_{(0,\infty)X_1^{\epsilon}(s)} ds$. We have for $\phi \in C[0,T], \psi \in H^+(\phi)$,

$$P(\parallel X^{\epsilon}(\cdot) - \phi(\cdot) \parallel_{[0,T]} < \delta, \parallel u^{\epsilon+}(\cdot) - \psi(\cdot) \parallel_{[0,T]} < \delta)$$
 (3)
$$\sim exp(-I(\phi,\psi)/\epsilon^2)$$

where

$$I(\phi,\psi) = 1/2 \int_0^1 |\dot{\phi}(t) - b_{\phi,\psi}(t)|^2 dt + 1/2 \int_{\phi_t \in H, b_1^-(\phi_t) < b_1^+(\phi_t)} (b_1^+(\phi_t) - b_1^-(\phi_t))^2 \dot{\psi}_t (1 - \dot{\psi}_t) dt.$$

is the rate function. Here $H^+(\phi)$ is the set of all real-valued absolutely continuous functions on [0,T] starting from 0 satisfying $\dot{\psi}_t=1$ if $\phi_1(t)>0$, $\dot{\psi}_t=0$ if $\phi_1(t)<0$ and $\dot{\psi}_t\in[0,1]$ for $\phi_t=0$.

▶ Here,

$$b_{\phi,\psi}(t) = b^{+}(\phi_t)\dot{\psi}_t + b^{-}(\phi_t)(1-\dot{\psi}_t).$$

► Here,

$$b_{\phi,\psi}(t) = b^+(\phi_t)\dot{\psi}_t + b^-(\phi_t)(1-\dot{\psi}_t).$$

It hence follows from the contraction principle that

$$P(\parallel X^{\epsilon}(\cdot) - \phi(\cdot) \parallel_{[0,T]} < \delta) \sim \exp(-I(\phi)/\epsilon^2)$$
 where $I(\phi) = \inf_{\psi \in H^+(\phi)} I(\phi, \psi)$.

► The stability conditiion (2) implies that

$$I(\phi,\psi) = 1/2 \int_0^T |\dot{\phi}(t) - b_{\phi,\psi}(t)|^2 dt.$$

► The stability conditiion (2) implies that

$$I(\phi,\psi) = 1/2 \int_0^T |\dot{\phi}(t) - b_{\phi,\psi}(t)|^2 dt.$$

► Hence $I(\phi,\psi)=0$ if and only if $\dot{\phi}_t=b^+(\phi_t)\dot{\psi}_t+b^-(\phi_t)(1-\dot{\psi}_t)$.

The stability conditiion (2) implies that

$$I(\phi,\psi) = 1/2 \int_0^T |\dot{\phi}(t) - b_{\phi,\psi}(t)|^2 dt.$$

- ► Hence $I(\phi,\psi)=0$ if and only if $\dot{\phi}_t=b^+(\phi_t)\dot{\psi}_t+b^-(\phi_t)(1-\dot{\psi}_t)$.
- Since $\dot{\phi}_1(t) = 0$, we must have $b_1^+(\phi_t)\dot{\psi}_t + b_1^-(\phi_t)(1 \dot{\psi}_t) = 0$.

The stability conditiion (2) implies that

$$I(\phi,\psi) = 1/2 \int_0^T |\dot{\phi}(t) - b_{\phi,\psi}(t)|^2 dt.$$

- ► Hence $I(\phi,\psi)=0$ if and only if $\dot{\phi}_t=b^+(\phi_t)\dot{\psi}_t+b^-(\phi_t)(1-\dot{\psi}_t)$.
- ► Since $\dot{\phi}_1(t) = 0$, we must have $b_1^+(\phi_t)\dot{\psi}_t + b_1^-(\phi_t)(1 \dot{\psi}_t) = 0$.
- ► Therefore, $\dot{\psi}_t = b_1^-(\phi_t)/(b_1^-(\phi_t) b_1^+(\phi_t))$. Let

$$p(x) = b_1^-(x)/(b_1^-(x) - b_1^+(x))$$
 and $q(x) = 1 - p(x)$.

Then the pair (ϕ, ψ) satisfies

$$\begin{array}{ll} \dot{\psi}_t &= p(\phi_t) \text{ and } \\ \dot{\phi}_t &= b_1^-(\phi_t)/(b_1^-(\phi_t) - b_1^+(\phi_t)) \cdot b^+(\phi_t) \\ &- b_1^+(\phi_t)/(b_1^-(\phi_t) - b_1^+(\phi_t)) \cdot b^-(\phi_t) \\ &= p(\phi_t)b^+(\phi_t) + q(\phi_t)b^-(\phi_t). \end{array}$$

The large deviation principle then implies that

$$\lim_{\epsilon \to 0} P(\parallel X^{\epsilon}(\cdot) - \phi(\cdot) \parallel_{[0,T]} < \delta, \parallel u^{\epsilon+}(\cdot) - \int_0^T p(\phi_s) ds \parallel_{[0,T]} < \delta) = 1.$$

We shall study the fluctuation of $(X^{\epsilon}(\cdot), u^{\epsilon+}(\cdot))$ around $(\phi(\cdot), \int_0^T p(\phi_s) ds)$.

▶ Let *Y_t* be the following Ornstein-Uhlenbeck process :

$$\begin{array}{ll} dY_t &= p(\phi_t) \nabla b^+(\phi_t) Y_t dt + q(\phi_t) \nabla b^-(\phi_t) Y_t dt \\ &+ (\nabla p(\phi_t) \cdot Y_t) (b^+(\phi_t) - b^-(\phi_t)) dt \\ &- (b^+(\phi_t) - b^-(\phi_t)) / (b_1^+(\phi_t) - b_1^-(\phi_t)) dW_1(t) + dW_t \\ Y_0 &= 0 \end{array}$$

where ∇ is the gradient operator.

▶ Let *Y_t* be the following Ornstein-Uhlenbeck process :

$$\begin{array}{ll} dY_t &= p(\phi_t) \nabla b^+(\phi_t) Y_t dt + q(\phi_t) \nabla b^-(\phi_t) Y_t dt \\ &+ (\nabla p(\phi_t) \cdot Y_t) (b^+(\phi_t) - b^-(\phi_t)) dt \\ &- (b^+(\phi_t) - b^-(\phi_t)) / (b_1^+(\phi_t) - b_1^-(\phi_t)) dW_1(t) + dW_t \\ Y_0 &= 0 \end{array}$$

where ∇ is the gradient operator.

► The main theorem is $\{(X^{\epsilon}(\cdot) - \phi(\cdot))/\epsilon\}_{\epsilon>0}$ converges to an Ornstein-Uhlenbeck process $Y(\cdot)$ in probability in $C([0,T],R^d)$ and $(u^{\epsilon+}(\cdot) - \int_0^{\cdot} p(\phi_s)ds)/\epsilon$ converges to a Gaussian process in probability in $H^+(\phi)$ (the Cameron-Martin space), hence in distribution as $\epsilon \to 0$.

Outline for section 2

Introduction and summary

Fluctuation of $u_t^{\epsilon+}$

Fluctuation of X_{\cdot}^{ϵ} around ϕ .

References

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a bounded smooth function and for $x \in \mathbb{R}^d, |x_1| < \delta$, be defined as follows.

$$f(x) = f(x_1, \bar{x}) = \int_0^{x_1} -1/(b_1^-(s, \bar{x}) - b_1^+(s, \bar{x})) ds, |x_1| < \delta_0.$$
(4)

$$df(X_t^{\epsilon}) = \nabla f(X_t^{\epsilon}) \cdot dX_t^{\epsilon} + \epsilon^2/2 \triangle f(X_t^{\epsilon}) dt$$

Let $f: R^d \to R$ be a bounded smooth function and for $x \in R^d, |x_1| < \delta$, be defined as follows.

$$f(x) = f(x_1, \bar{x}) = \int_0^{x_1} -1/(b_1^-(s, \bar{x}) - b_1^+(s, \bar{x})) ds, \quad |x_1| < \delta_0.$$
(4)

$$\begin{array}{ll} df(X_t^{\epsilon}) &= \triangledown f(X_t^{\epsilon}) \cdot dX_t^{\epsilon} + \epsilon^2/2 \triangle f(X_t^{\epsilon}) dt \\ &= (-b_1(X_t^{\epsilon})/(b_1^-(X_t^{\epsilon}) - b_1^+(X_t^{\epsilon})) + \overline{\triangledown} f(X_t^{\epsilon}) \cdot \overline{b}(X_t^{\epsilon}) \\ &+ \epsilon^2/2 \triangle f(X_t^{\epsilon})) dt + \epsilon \nabla f(X_t^{\epsilon}) \cdot dW_t \end{array}$$

Let $f: R^d \to R$ be a bounded smooth function and for $x \in R^d, |x_1| < \delta$, be defined as follows.

$$f(x) = f(x_1, \bar{x}) = \int_0^{x_1} -1/(b_1^-(s, \bar{x}) - b_1^+(s, \bar{x})) ds, \quad |x_1| < \delta_0.$$
(4)

$$\begin{split} df(X_t^{\epsilon}) &= \triangledown f(X_t^{\epsilon}) \cdot dX_t^{\epsilon} + \epsilon^2/2 \triangle f(X_t^{\epsilon}) dt \\ &= (-b_1(X_t^{\epsilon})/(b_1^-(X_t^{\epsilon}) - b_1^+(X_t^{\epsilon})) + \overline{\triangledown} f(X_t^{\epsilon}) \cdot \overline{b}(X_t^{\epsilon}) \\ &+ \epsilon^2/2 \triangle f(X_t^{\epsilon})) dt + \epsilon \nabla f(X_t^{\epsilon}) \cdot dW_t \\ &= -b_1^+(X_t^{\epsilon})/(b_1^-(X_t^{\epsilon}) - b_1^+(X_t^{\epsilon})) \chi_{X_1^{\epsilon}(t) > 0} dt \\ &+ (-b_1^-(X_t^{\epsilon}))/(b_1^-(X_t^{\epsilon}) - b_1^+(X_t^{\epsilon})) \chi_{X_1^{\epsilon}(t) < 0} dt \\ &+ \overline{\triangledown} f(X_t^{\epsilon}) \cdot \overline{b}(X_t^{\epsilon}) dt + \epsilon^2/2 \triangle f(X_t^{\epsilon}) dt + \epsilon \nabla f(X_t^{\epsilon}) \cdot dW_t \end{split}$$

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a bounded smooth function and for $x \in \mathbb{R}^d, |x_1| < \delta$, be defined as follows.

$$f(x) = f(x_1, \bar{x}) = \int_0^{x_1} -1/(b_1^-(s, \bar{x}) - b_1^+(s, \bar{x})) ds, \quad |x_1| < \delta_0.$$
(4)

$$\begin{split} df(X_t^{\epsilon}) &= \triangledown f(X_t^{\epsilon}) \cdot dX_t^{\epsilon} + \epsilon^2/2 \triangle f(X_t^{\epsilon}) dt \\ &= (-b_1(X_t^{\epsilon})/(b_1^-(X_t^{\epsilon}) - b_1^+(X_t^{\epsilon})) + \triangledown f(X_t^{\epsilon}) \cdot \bar{b}(X_t^{\epsilon}) \\ &+ \epsilon^2/2 \triangle f(X_t^{\epsilon})) dt + \epsilon \triangledown f(X_t^{\epsilon}) \cdot dW_t \\ &= -b_1^+(X_t^{\epsilon})/(b_1^-(X_t^{\epsilon}) - b_1^+(X_t^{\epsilon})) \chi_{X_1^{\epsilon}(t) > 0} dt \\ &+ (-b_1^-(X_t^{\epsilon}))/(b_1^-(X_t^{\epsilon}) - b_1^+(X_t^{\epsilon})) \chi_{X_1^{\epsilon}(t) < 0} dt \\ &+ \bar{\triangledown} f(X_t^{\epsilon}) \cdot \bar{b}(X_t^{\epsilon}) dt + \epsilon^2/2 \triangle f(X_t^{\epsilon}) dt + \epsilon \nabla f(X_t^{\epsilon}) \cdot dW_t \\ &= ((1 - p(X_t^{\epsilon}(t))) \chi_{(X_1^{\epsilon}(t) > 0)} dt - p(X_t^{\epsilon}(t)) \chi_{(X_1^{\epsilon}(t) < 0)} dt \\ &+ \bar{\triangledown} f(X_t^{\epsilon}) dt \cdot \bar{b}(X_t^{\epsilon}) dt + \epsilon^2/2 \triangle f(X_t^{\epsilon}) dt + \epsilon \nabla f(X_t^{\epsilon}) \cdot dW_t \\ &= du_t^{\epsilon+} - p(X_t^{\epsilon}) dt + \bar{\triangledown} f(X_t^{\epsilon}) \cdot \bar{b}(X_t^{\epsilon}) dt + \epsilon^2/2 \triangle f(X_t^{\epsilon}) dt \\ &+ \epsilon \nabla f(X_t^{\epsilon}) \cdot dW_t. \end{split}$$

We conclude with

$$\begin{array}{ll} u_t^{\epsilon+} - \int_0^t \rho(X_s^{\epsilon}) ds &= f(X_t^{\epsilon}) - f(X_0) - \int_0^t \bar{b}(X_s^{\epsilon}) \cdot \bar{\nabla} f(X_s^{\epsilon}) ds \\ &- \epsilon^2 / 2 \int_0^t \triangle f(X_s^{\epsilon}) ds - \epsilon \int_0^t \nabla f(X_s^{\epsilon}) \cdot dW_s. \end{array}$$

We conclude with

$$\begin{array}{ll} u_t^{\epsilon+} - \int_0^t \rho(X_s^\epsilon) ds &= f(X_t^\epsilon) - f(X_0) - \int_0^t \bar{b}(X_s^\epsilon) \cdot \bar{\nabla} f(X_s^\epsilon) ds \\ &- \epsilon^2 / 2 \int_0^t \triangle f(X_s^\epsilon) ds - \epsilon \int_0^t \nabla f(X_s^\epsilon) \cdot dW_s. \end{array}$$

Our first claim is:

Lemma 2.1 $\int_0^{\cdot} \nabla f(X_s^{\epsilon}) \cdot dW_s \to \int_0^{\cdot} 1/(b_1^+(\phi_s) - b_1^-(\phi_s))dW_1(s)$ in probability in C[0,T] as $\epsilon \to 0$.

This is true because of the following two observations.

- $Iim_{\epsilon \to 0} \parallel X^{\epsilon}(\cdot) \phi(\cdot) \parallel > \delta = 0$
- ▶ $\bar{\nabla} f = 0$ on H.

The second claim is that $|X_1^\epsilon(t)|$ is small compared with ϵ . Lemma 2.2 $X_1^\epsilon(\cdot)/\epsilon \to 0$ in probability in C[0,T], i.e., for any $\delta>0$,

$$\lim_{\epsilon \to 0} P(\sup_{0 \le t \le T} |X_1^{\epsilon}(t)|/\epsilon \ge \delta) = 0$$

We outline the proof as follows.

The second claim is that $|X_1^\epsilon(t)|$ is small compared with ϵ . Lemma 2.2 $X_1^\epsilon(\cdot)/\epsilon \to 0$ in probability in C[0,T], i.e., for any $\delta>0$,

$$\lim_{\epsilon \to 0} P(\sup_{0 \le t \le T} |X_1^{\epsilon}(t)|/\epsilon \ge \delta) = 0$$

We outline the proof as follows.

▶ Let $y_t = X_1^{\epsilon}(\epsilon^2 t)/\epsilon^2$. Then y_t satisfies the following.

The second claim is that $|X_1^\epsilon(t)|$ is small compared with ϵ . Lemma 2.2 $X_1^\epsilon(\cdot)/\epsilon \to 0$ in probability in C[0,T], i.e., for any $\delta>0$,

$$\lim_{\epsilon \to 0} P(\sup_{0 \le t \le T} |X_1^{\epsilon}(t)|/\epsilon \ge \delta) = 0$$

We outline the proof as follows.

▶ Let $y_t = X_1^{\epsilon}(\epsilon^2 t)/\epsilon^2$. Then y_t satisfies the following.

 $egin{aligned} extit{d} egin{aligned} ext$

where $B_t = W_1(\epsilon^2 t)/\epsilon$ is a 1-dimensional Brownian motion.

The second claim is that $|X_1^\epsilon(t)|$ is small compared with ϵ . Lemma 2.2 $X_1^\epsilon(\cdot)/\epsilon \to 0$ in probability in C[0,T], i.e., for any $\delta>0$,

$$\lim_{\epsilon \to 0} P(\sup_{0 \le t \le T} |X_1^{\epsilon}(t)|/\epsilon \ge \delta) = 0$$

We outline the proof as follows.

▶ Let $y_t = X_1^{\epsilon}(\epsilon^2 t)/\epsilon^2$. Then y_t satisfies the following.

$$egin{aligned} extit{d} egin{aligned} ext$$

where $B_t = W_1(\epsilon^2 t)/\epsilon$ is a 1-dimensional Brownian motion.

▶ Let $\tau^{\epsilon} = \inf(t : |y_t| \ge \delta/\epsilon)$. Then

$$P(\sup_{t \leq T} |X_1^{\epsilon}(t)/\epsilon| \geq \delta) = P(\sup_{t \leq T} |y_{t/\epsilon^2}| \geq \delta/\epsilon) = P(\tau^{\epsilon} \leq T/\epsilon^2).$$

Ito's lemma then implies the result.

The fluctuation of $u_t^{\epsilon+}$ is stated as follows.

Theorem 2.3 Let $u^{\epsilon+}(\cdot)$ be the occupation time of $X^{\epsilon}(\cdot)$ in H^+ . Then

$$1/\epsilon(u^{\epsilon+}(\cdot)-\int_0^{\cdot}p(X_s^{\epsilon})ds)\rightarrow\int_0^{\cdot}1/(b_1^-(\phi_s)-b_1^+(\phi_s))dW_1(s)$$

in probability in C[0, T] as $\epsilon \to 0$.

The fluctuation of $u_t^{\epsilon+}$ is stated as follows.

Theorem 2.3 Let $u^{\epsilon+}(\cdot)$ be the occupation time of $X^{\epsilon}(\cdot)$ in H^+ . Then

$$1/\epsilon(u^{\epsilon+}(\cdot)-\int_0^{\cdot}p(X_s^{\epsilon})ds)\rightarrow\int_0^{\cdot}1/(b_1^-(\phi_s)-b_1^+(\phi_s))dW_1(s)$$

in probability in C[0, T] as $\epsilon \to 0$.

Outline of the proof.

$$\begin{split} &1/\epsilon(u_t^{\epsilon+} - \int_0^t p(X_s^{\epsilon}) ds) \\ &= f(X_t^{\epsilon})/\epsilon - 1/\epsilon \int_0^t \bar{b}(X_s^{\epsilon}) \cdot \bar{\nabla} f(X_s^{\epsilon}) ds - \epsilon/2 \int_0^t \triangle f(X_s^{\epsilon}) ds \\ &- \int_0^t \nabla f(X_s^{\epsilon}) \cdot dW_s = I_1 + I_2 + I_3 + I_4. \end{split}$$

- ▶ $I_1, I_2 \rightarrow 0$ in probability follows from Lemma (2.2) because $|f(X_t^{\epsilon})| \leq |X_1^{\epsilon}(t)|, (4).$
- ▶ $I_3 \rightarrow 0$ in probability is trivial. $I_4 \rightarrow \int_0^{\cdot} 1/(b_1^-(\phi_s) b_1^+(\phi_s))dW_1(s)$ because of Lemma (2.1).

Outline for section 3

Introduction and summary

Fluctuation of $u_t^{\epsilon+}$

Fluctuation of X^{ϵ} around ϕ .

References

Recall: X_t^{ϵ} and ϕ_t satisfy the following equations respectively.

$$egin{aligned} dX^{\epsilon}_t &= b^+(X^{\epsilon}_t)du^{\epsilon+}_t + b^-(X^{\epsilon}_t)du^{\epsilon-}_t + \epsilon dW_t, \ X_0 &= x \in H^+ \ ext{and} \ \dot{\phi}_t &= p(\phi_t)b^+(\phi_t) + q(\phi_t)b^-(\phi_t), \ \phi_0 &= x \end{aligned}$$

where
$$q(x)=1-p(x)$$
 and $u^{\epsilon+}_t+u^{\epsilon-}_t=t$. Let
$$Y^{\epsilon}_t=(X^{\epsilon}_t-\phi_t)/\epsilon.$$

$$dY_t^{\epsilon} = 1/\epsilon (b^+(X_t^{\epsilon})du_t^{\epsilon+} + b^-(X_t^{\epsilon})du_t^{\epsilon-} - (p(\phi_t)b^+(\phi_t)dt + q(\phi_t)b^-(\phi_t)dt)) + dW_t$$

$$dY_{t}^{\epsilon} = 1/\epsilon(b^{+}(X_{t}^{\epsilon})du_{t}^{\epsilon+} + b^{-}(X_{t}^{\epsilon})du_{t}^{\epsilon-} - (p(\phi_{t})b^{+}(\phi_{t})dt + q(\phi_{t})b^{-}(\phi_{t})dt)) + dW_{t}$$

$$= 1/\epsilon((b^{+}(X_{t}^{\epsilon}) - b^{+}(\phi_{t}))du_{t}^{\epsilon+} + b^{+}(\phi_{t})(du_{t}^{\epsilon+} - p(\phi_{t})dt)) + 1/\epsilon((b^{-}(X_{t}^{\epsilon}) - b^{-}(\phi_{t}))du_{t}^{\epsilon-} + b^{-}(\phi_{t})(du_{t}^{\epsilon-} - q(\phi_{t})dt)) + dW_{t}$$

$$= 1/\epsilon(b^{+}(X_{t}^{\epsilon}) - b^{+}(\phi_{t}))du_{t}^{\epsilon+} + 1/\epsilon(b^{-}(X_{t}^{\epsilon}) - b^{-}(\phi_{t}))du_{t}^{\epsilon-} + 1/\epsilon(b^{+}(\phi_{t}) - b^{-}(\phi_{t}))(du_{t}^{\epsilon+} - p(\phi_{t})dt) + dW_{t}$$

$$= 1/\epsilon(b^{+}(X_{t}^{\epsilon}) - b^{+}(\phi_{t}))du_{t}^{\epsilon+} + 1/\epsilon(b^{-}(X_{t}^{\epsilon}) - b^{-}(\phi_{t}))du_{t}^{\epsilon-} + 1/\epsilon(b^{+}(\phi_{t}) - b^{-}(\phi_{t}))(du_{t}^{\epsilon+} - p(X_{t}^{\epsilon})dt) + 1/\epsilon(b^{+}(\phi_{t}) - b^{-}(\phi_{t}))(p(X_{t}^{\epsilon}) - p(\phi_{t}))dt + dW_{t}.$$

Let Y_t be the solution of the following linear stochastic differential equation.

$$dY_{t} = p(\phi_{t}) \nabla b^{+}(\phi_{t}) Y_{t} dt + q(\phi_{t}) \nabla b^{-}(\phi_{t}) Y_{t} dt + (\nabla p(\phi_{t}) \cdot Y_{t}) (b^{+}(\phi_{t}) - b^{-}(\phi_{t})) dt - (b^{+}(\phi_{t}) - b^{-}(\phi_{t})) / (b_{1}^{+}(\phi_{t}) - b_{1}^{-}(\phi_{t})) dW_{1}(t) + dW_{t} = a_{t} Y_{t} dt + \sigma_{t} dW_{t} Y_{0} = 0$$

where $(\nabla b)_{i,j} = \partial b_i/\partial x_j$ is the gradient of b(x).

The main result of this paper is the following.

Theorem 3.1 The processes Y^{ϵ} converges to Y in probability in $C([0,1],R^d)$, hence in distribution as $\epsilon \to 0$.

Let $R_t^{\epsilon} = Y_t^{\epsilon} - Y_t$. Then

$$\begin{split} R_{t}^{\epsilon} &= (X_{t}^{\epsilon} - \phi_{t})/\epsilon - Y_{t} \\ &= \int_{0}^{t} 1/\epsilon (b^{+}(X_{s}^{\epsilon}) - b^{+}(\phi_{s})) du_{s}^{\epsilon+} - \nabla b^{+}(\phi_{s}) Y_{s} p(\phi_{s}) ds \\ &+ \int_{0}^{t} 1/\epsilon (b^{-}(X_{s}^{\epsilon}) - b^{-}(\phi_{s})) du_{s}^{\epsilon-} - \nabla b^{-}(\phi_{s}) Y_{s} q(\phi_{s}) ds \\ &+ \int_{0}^{t} (b^{+}(\phi_{s}) - b^{-}(\phi_{s})) ((du_{s}^{\epsilon+} - p(X_{s}^{\epsilon}) ds)/\epsilon \\ &- dW_{1}(s)/(b_{1}^{-}(\phi_{s}) - b_{1}^{+}(\phi_{s}))) \\ &+ \int_{0}^{t} (b^{+}(\phi_{s}) - b^{-}(\phi_{s})) (1/\epsilon (p(X_{s}^{\epsilon}) - p(\phi_{s})) - \nabla p(\phi_{s}) \cdot Y_{s}) ds \\ &= I_{1}(t) + I_{2}(t) + I_{3}(t) + I_{4}(t). \end{split}$$

We concentrate on I_1 . First note that

$$\begin{aligned} &1/\epsilon(b^{+}(X_{t}^{\epsilon}) - b^{+}(\phi_{t})) \\ &= 1/\epsilon \int_{0}^{1} \nabla b^{+}(\phi_{t} + \theta(X_{t}^{\epsilon} - \phi_{t}))(X_{t}^{\epsilon} - \phi_{t})d\theta \\ &= 1/\epsilon \int_{0}^{1} (\nabla b^{+}(\phi_{t} + \theta(X_{t}^{\epsilon} - \phi_{t})) - \nabla b^{+}(\phi_{t}))(X_{t}^{\epsilon} - \phi_{t})d\theta \\ &+ 1/\epsilon \nabla b^{+}(\phi_{t})(X_{t}^{\epsilon} - \phi_{t}), \end{aligned}$$

$$I_1(t) = \int_0^t 1/\epsilon (b^+(X_s^\epsilon) - b^+(\phi_s)) du_s^{\epsilon+} - \nabla b^+(\phi_s) Y_s p(\phi_s) ds$$

$$\begin{split} I_{1}(t) &= \int_{0}^{t} 1/\epsilon (b^{+}(X_{s}^{\epsilon}) - b^{+}(\phi_{s})) du_{s}^{\epsilon+} - \nabla b^{+}(\phi_{s}) Y_{s} p(\phi_{s}) ds \\ &= \int_{0}^{t} \int_{0}^{1} (\nabla b^{+}(\phi_{s} + \theta(X_{s}^{\epsilon} - \phi_{s})) - \nabla b^{+}(\phi_{s})) d\theta \\ &\qquad ((X_{s}^{\epsilon} - \phi_{s})/\epsilon - Y_{s}) du_{s}^{\epsilon+} \\ &\qquad + \int_{0}^{t} \int_{0}^{1} (\nabla b^{+}(\phi_{s} + \theta(X_{s}^{\epsilon} - \phi_{s})) - \nabla b^{+}(\phi_{s})) d\theta Y_{s} du_{s}^{\epsilon+} \\ &\qquad + \int_{0}^{t} \nabla b^{+}(\phi_{s}) (X_{s}^{\epsilon} - \phi_{s}/\epsilon - Y_{s}) du_{s}^{\epsilon+} \\ &\qquad + \int_{0}^{t} \nabla b^{+}(\phi_{s}) Y_{s} (du_{s}^{\epsilon+} - p(\phi_{s}) ds) \\ &= I_{1.1}(t) + I_{1.2}(t) + I_{1.3}(t) + I_{1.4}(t). \end{split}$$

Finally, we have $|R_t^\epsilon| = \int_0^t K|R_s^\epsilon|(\parallel X^\epsilon(\cdot) - \phi(\cdot) \parallel +1)ds + \bar{R}^\epsilon$ where \bar{R}^ϵ (independent of t)converges to 0 in C[0,T] in probablility. Let

$$\Omega_{\delta}^{\epsilon} = \{ \omega \in \Omega : || \bar{R}^{\epsilon} || \leq \delta \}.$$

Thus, $\lim_{\epsilon\to 0}P(\Omega^\epsilon_\delta)=1$ for any $\delta>0$ But on Ω^ϵ_δ , we have

$$|R_t^\epsilon| \leq K \int_0^t |R_s^\epsilon| ds + \delta,$$

thus $|R_t^\epsilon| \le \delta e^{Kt}$ by Gronwall inequality and this implies that $R_\cdot^\epsilon \to 0$ in probability.

Outline for section 4

Introduction and summary

Fluctuation of $u_t^{\epsilon+}$

Fluctuation of X_{\cdot}^{ϵ} around ϕ .

References

References I

[1]Chiang, T.S. and Sheu, S.J.
Large deviations for Markov process with discontinuous drift and their occupation times,

Ann. Prob. 28,140-165,2000.

[1]Chiang,T.S. and Sheu, S.J.
Large deviations of small perturbation of some unstable systrems,

Stochastic Anal. Appl., 15, (1997), 31-50.

