Some Questions Concerning Random Walks on Trees in a Random Environment

Dayue Chen

Peking University

The Tenth Workshop on Markov Processes and Related Topics Aug 15, 2014, Xi'an

 Ω

- 1. The model
- 2. Primary results
- 3. A new result
- 4. Proof
- 5. Remarks & Observations

イロメ イ母メ イヨメ イヨメー

 299

重

A Galton-Watson process $\{p_k\}$.

A realization can be identified as a rooted tree.

G-W measure: G-W process \longleftrightarrow measure on the set of rooted trees.

 $p_0 = 0$, a supercritical G-W process, or a G-W measure on the set of infinite rooted trees.

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

 η q α

- $T = a$ rooted tree
- $o =$ the special vertex called the root

 $|x|$ = distance from vertex x to the root o.

 x_* , the parent of $x \neq o$, unique vertex which is next to x and is closer to the root, $|x_*| = |x| - 1$. (Note there is no $o_*,$ but can be added later on.)

 x_i , the i-th child of x . There are several vertices which are next to x and are further away from the root.

御 ▶ イヨ ▶ イヨ ▶ │ ヨ

 Ω

The Model

The λ -biased random walk on a rooted tree $=$

a Markov chain on the set of vertices with the following transition probabilities:

assuming $x \neq o$ has k cildren,

$$
p(x, x_*) = \frac{\lambda}{\lambda + k}, \quad p(x, x_i) = \frac{1}{\lambda + k}.
$$

If root o has k children, $p(o, o_i) = 1/k$, $i = 1, 2, \dots, k$.

The λ -biased random walk on Glaton-Watson trees is a RWRE.

A rooted tree is chosen according to the Galton-Watson measure, and a λ -biased random walk is defined on the rooted tree.

Random environment: Galton-Watson trees, $\{p_k, k \ge 0\}$, $p_0 = 0$.

random walk: λ -biased random walk, with parameter λ

何→ (ヨ→ (ヨ→) ヨーのQ (V)

Primary Results

The λ-biased random walk on Glaton-Watson trees is transient iff $\lambda < m = \sum k p_k$.

The speed(λ) = $\lim_{n\to\infty} |X_n|/n$ exists a.s. in this case ($p_0 = 0$ is not required).

$$
speed(1) = \sum_{k=0}^{\infty} p_k \frac{k-1}{k+1} \times \frac{1-\rho^{k+1}}{1-\rho^2} \qquad = \sum_{k=0}^{\infty} p_k \frac{k-1}{k+1} \text{ if } p_0 = 0.
$$

where $\rho = \sum_k p_k \rho^k$ is the extinction probability.

$$
speed(\lambda) = E\left(\frac{(k-\lambda)\beta_0}{\lambda-1+\sum_{i=0}^k\beta_i}\right)/E\left(\frac{(k+\lambda)\beta_0}{\lambda-1+\sum_{i=0}^k\beta_i}\right)
$$

for $\lambda \in (\lambda_c, m)$, where $\beta_x = P_x(\tau(x_*) = \infty)$, due to Elie Aidekon. speed $(\lambda)=0$ for $\lambda<\lambda_{\boldsymbol{\mathsf{c}}}=\sum\mathit{kq}^{k-1}p_k.$ \rightarrow \rightarrow \equiv \rightarrow \rightarrow \sim \sim

Question A: Is speed(λ) monotone in λ ?

True when λ is very small, $\lambda \leq 1/717$. G. Ben Arous, A. Fribergh & V. Sidoravicius: A proof of the Lyons-Pementle-Peres monotonicity conjecture for high biases.

True when λ is very closed to m, $\lambda = me^{-\alpha}$.

$$
\lim_{\alpha \searrow 0} \frac{\text{speed}(me^{-\alpha})}{\alpha} = \frac{D}{2} = \frac{m^2(m-1)}{\sum k^2 p_k - m}.
$$

G. Ben Arous, Y. Hu, S. Olla & O. Zeitouni: Einstein relation for biased random walk on Galton-Watson tress, Ann. de Inst. Henri Poincare -Probab. & Stat, Vol 49, 698-721, 2013

スタンスミンスミン ミ

 η a

Question B Is speed(λ) differentiable in λ ?

Question C. Is speed(λ) < $(m - \lambda)/(m + \lambda)$? Yes!

D. Chen, Average properties of random walks on Galton-Watson trees, Ann. Inst. H. Poincare, Vol.33, No.3, (1997), 359-369.

If m is an integer and $p_m = 1$, then the G-W measure is concentrated on the m-nary tree. The speed of the λ -biased random walk on *m*-nary tree is $(m - \lambda)/(m + \lambda)$.

i.e. randomness slows down the speed.

∢ 伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

 Ω

Question D. Is speed monotone in the spread-out-ness of $\{p_k\}$?

Specifically, $p_1 = p_3 = \delta \leq 1/2$ and $p_2 = 1 - 2\delta$. Is speed decreasing in δ ?

 $\{p_k\}$ is more spread-out than $\{q_k\}$ if $\{p_k\}$ can be derived from $\{p_k\}$ by a finite number of operations of

$$
q_k \longrightarrow q_k - 2\delta, \quad q_{k-l} \longrightarrow q_{k-l} + \delta, \quad q_{k+l} \longrightarrow q_{k+l} + \delta,
$$

for some $k > l > 1$ and $\delta < q_k/2$. (Note that $\sum_{k} k p_k = \sum_{k} k q_k$, $\sum_{k} k^2 p_k \ge \sum_{k} k^2 q_k$. more spread-out \implies larger variance.)

KHT → KHT → KHT → HT → YOU →

Define $\rho_x = P_x(\tau(x_*) < \infty)$. Recall $\beta_x = P_x(\tau(x_*) = \infty)$, so $\rho_x + \beta_x = 1$.

Proposition 1. $E\rho_x$ is monotone in the spread-out-ness of $\{p_k\}$.

As a function of the G-W tree rooted at x , the distribution of random variable ρ_x is independent of $x \neq o$.

The degree of root o is stochastically less. Add o_* to G-W tree, $o \sim o_*, o_*$ is the parent of o . Then the degree of o is the same distributed as all other vertices. Take o as a typical choice.

同→ イヨ→ イヨ→ ニヨー のなべ

A New Result

A New Result

A New Result

Let
$$
\tau_n = \min\{m, |X_m| = n\}
$$
, and
\n $\rho_n = P_o(\tau(o_*) < \tau_n) = P_o(X(s_n) = o_*)$.
\nNote $\lim_n \rho_n = \rho_o$.

Proposition 2. E_{ρ_n} is monotonely increasing in the spread-out-ness of $\{p_k\}$.

Compare two families of G-W trees generated by $\{p_k\}$ and $\{q_k\}$. E and E are expectations with different G-W measures. ρ_n = returning probability of the λ -biased random walk on G-W trees generated by $\{p_k\},\$ r_n the counterpart pf the λ -biased random walk on G-W trees generated by $\{q_k\}$ Assume that $\{p_k\}$ is more spread-out than $\{q_k\}$, then $E\rho_n \geq E r_n$.

Proposition 3. $E(\rho_n)^m \geq E(r_n)^m$ for integer $m \geq 1$.

KERKER E MAG

 $\rho_i = P_o(\tau_k \leq \tau_i)$
= $\frac{\lambda}{\lambda+k}$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

$$
E\rho_1^m = \sum_k p_k \left(\frac{\lambda}{\lambda + k}\right)^m \ge \sum_k q_k \left(\frac{\lambda}{\lambda + k}\right)^m = \mathbb{E}r_1^m.
$$

Assume $E(\rho_t)^m \geq \mathbb{E}(r_t)^m$ for all $t \leq n$ and for all $m \geq 1$. Suppose there are k children of root o. $\rho_{n,i} = P(\tau(o) < \tau_{n+1} | X_0 = o_i)$. Then

$$
\rho_{n+1} = \frac{\lambda}{\lambda + k} + \sum_{i=1}^{k} \frac{\rho_{n,i}}{\lambda + k} \frac{\lambda}{\lambda + k} + \dots + \left(\sum_{i=1}^{k} \frac{\rho_{n,i}}{\lambda + k}\right)^{j} \frac{\lambda}{\lambda + k} + \dots
$$

$$
= \frac{\lambda}{\lambda + k} + \sum_{i=1}^{\infty} \left(\sum_{i=1}^{k} \frac{\rho_{n,i}}{\lambda + k}\right)^{j} = \frac{\lambda}{\lambda + k}.
$$

$$
= \frac{\lambda}{\lambda + k} \sum_{j=0}^{\infty} \left(\sum_{i=1}^{k} \frac{\rho_{n,i}}{\lambda + k} \right)^j = \frac{\lambda}{\lambda + k - \sum_{i=1}^{k} \rho_{n,i}}.
$$

 $\mathcal{A}(\overline{\mathcal{P}}) \rightarrow \mathcal{A}(\overline{\mathcal{P}}) \rightarrow \mathcal{A}(\overline{\mathcal{P}}) \rightarrow \mathcal{A}(\mathcal{P}) \rightarrow \mathcal{A}(\mathcal{P})$

$$
\rho_{n+1}^m = \left(\frac{\lambda}{\lambda + k - \sum_{i=1}^k \rho_{n,i}}\right)^m = \left(\frac{\lambda}{\lambda + k} \sum_{j=0}^\infty \left(\sum_{i=1}^k \frac{\rho_{n,i}}{\lambda + k}\right)^j\right)^m =
$$

$$
\frac{\lambda^m}{(\lambda+k)^m}\sum_{j=0}^{\infty}C_{m,j}(\sum_{i=1}^k\frac{\rho_{n,i}}{\lambda+k})^j=\frac{\lambda^m}{(\lambda+k)^m}\sum_{j=0}^{\infty}\frac{C_{m,j}}{(\lambda+k)^j}\sum \prod_{i=1}^k(\rho_{n,i})^{m_i}
$$

where $m_1 + m_2 + \cdots + m_k = j$.

$$
E\rho_{n+1} = \sum_{k} p_k E \frac{\lambda}{\lambda + k - \sum \rho_{n,i}} = \sum_{k} \frac{p_k \lambda}{\lambda + k} \sum_{j=0}^{\infty} \frac{1}{(\lambda + k)^j} E[\sum_{i=1}^k \rho_{n,i}]^j
$$

=
$$
\sum_{k} p_k \frac{\lambda}{\lambda + k} \sum_{j=0}^{\infty} \frac{1}{(\lambda + k)^j} \Pi_{i=1}^k E[\rho_{n,i}]^{m_i}.
$$

Dayue Chen Some Questions Concerning Random Walks on Trees in a Random

 $E\rho_{n+1}=\sum$ k $p_k \frac{\lambda}{\sqrt{1-\lambda}}$ $\lambda + k$ \sum^{∞} j=0 1 $\frac{1}{(\lambda + k)^j} \prod_{i=1}^k E_T[\rho_{n,i}]^{m_i}$ \geq \sum k $p_k \frac{\lambda}{\sqrt{2\pi}}$ $\lambda + k$ \sum^{∞} j=0 1 $\frac{1}{(\lambda + k)^j}\prod_{i=1}^k [r_{n,i}]^{m_i}$ $=$ \sum k $p_k \mathbb{E} \frac{\lambda}{\lambda}$ $\lambda + k - \sum_{i=1}^k r_{n,i}$ \geq k $q_k \mathbb{E} \frac{\lambda}{\lambda}$ $\lambda + k - \sum_{i=1}^k r_{n,i}$ $=\mathbb{E}r_{n+1}$

→ 何 ▶ → ヨ ▶ → ヨ ▶ │ ヨ │ つくへ

Likewise

$$
E(\rho_{n+1})^m = \sum_k p_k E\left(\frac{\lambda}{\lambda + k - \sum_{i=1}^k \rho_{n,i}}\right)^m
$$

\n
$$
\geq \sum_k p_k \mathbb{E}\left(\frac{\lambda}{\lambda + k - \sum_{i=1}^k r_{n,i}}\right)^m
$$

\n
$$
\geq \sum_k q_k \mathbb{E}\left(\frac{\lambda}{\lambda + k - \sum_{i=1}^k r_{n,i}}\right)^m = \mathbb{E}(r_{n+1})^m
$$

By the assumption of spread-out-ness, the last inequality boils down to that for i.i.d positive random variables,

$$
\mathbb{E} \frac{1}{(\lambda + \sum_{i=1}^{k-l} \eta_i)^m} + \mathbb{E} \frac{1}{(\lambda + \sum_{i=1}^{k+l} \eta_i)^m} \geq 2 \mathbb{E} \frac{1}{(\lambda + \sum_{i=1}^{k} \eta_i)^m}.
$$

伊 ト イヨ ト イヨ ト

 QQ

э

Since the difference $1/A^m-1/(A+B)^m \searrow$ as $A \nearrow$,

$$
\frac{1}{(\lambda + \sum_{i=1}^{k-l} \eta_i)^m} - \frac{1}{(\lambda + \sum_{i=1}^{k} \eta_i)^m}
$$

\n
$$
\geq \frac{1}{(\lambda + \sum_{i=1}^{k-l} \eta_i + \sum_{i=k+1}^{k+l} \eta_i)^m} - \frac{1}{(\lambda + \sum_{i=1}^{k+l} \eta_i)^m}.
$$

\n
$$
\stackrel{d}{=} \frac{1}{(\lambda + \sum_{i=1}^{k} \eta_i)^m} - \frac{1}{(\lambda + \sum_{i=1}^{k+l} \eta_i)^m}.
$$

Taking expectation we get the desired conclusion.

イロト イ母 トイヨ トイヨ トーヨー つなべ

Remarks

1. $E \rho$ is monotone in λ .

2. more spread-out \leftrightarrow slower speed $\leftrightarrow \rho$ is larger. Recall $\tau_n = \min\{m, |X_m| = n\}.$

$$
\lim_{n} \frac{\tau_n}{n} = \frac{1}{speed} \quad a.s.
$$

More comfortable to study $E_0 \tau_n$.

$$
E_o \tau_{n+1} = (1 + E_o s_n) \sum_k p_k E \sum_{m=0}^{\infty} \left(\frac{\sum_{i=1}^k \rho_{n,i}}{k} \right)^m.
$$

where $s_n = \tau(o_*) \wedge \tau_n = \min\{m, X_m = o_* \text{ or } |X_m| = n\}$. Then $E_0s_1 \equiv 1$.

$$
E_o s_{n+1} = \sum_k p_k (\lambda + k + k E_o s_n) E \frac{1}{\lambda + k - \sum_{i=1}^k \rho_{n,i}}.
$$

3. A related problem.

Consider the Bernoulli bond percolation of a regular tree with retaining prob. p.

Take an infinite open cluster and run the SRW on the cluster. The speed is monotone in p.

Take an infinite G-W tree with the offspring distribution $\{p_k\}$. $f(s) = \sum_{k} p_{k} s^{k}$ the generating function. $m = \sum_{k} k p_{k}$. If $(1 - s) f'(s)$

$$
\frac{1-3\pi}{1-f(s)}
$$
 is increasing in s for $s \in (1/m, 1)$, (1)

Then the speed of the SRW on an infinite cluster of a G-W tree is \nearrow in p, continuous and differentiable for $p \in (1/m, 1)$.

C. & F. Zhang, On the Monotonicity of the Speed of Random Walks on a Percolation Cluster of Trees, Acta Mathematica Sinica, English Series, 2007, Vol.23(11), 1949-1954.

KED KAP KED KED E LAGA

Geometric, Poisson, Binomial distributions satisfy (1).

The conclusion could fail if the initial graph is not a G-W tree.

Question E: Is the speed of the SRW on an infinite cluster of a transitive graph increasing in p ?

Question F: Is the anchored expansion constant of an infinite cluster of a transitive graph increasing in p ? Is it continuous in p ?

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

 η an

4. Dimension Drop

A random walk is slow down in a random environment the random walk is confined in a smaller tree.

Recall that the speed is $(d-1)/(d+1)$ for the *d*-regular tree. $log d$ is the dimension of the d-regular tree. For a G-W tree, the dimension $=$ log m where $m = \sum_{k} k p_{k}$. But the speed $\leq (m-1)/(m+1)$.

Because random walk is confined in a smaller subtree.

伊 ▶ ◀ 草 ▶ ◀ 草 ▶ │ 車│ │ ◆ ♀ ♀ ♀

the boundary ∂T of tree $T=$ the collection of rays.

 μ is a measure on ∂T .

Dim $\mu = \min\{dim(E), E \subset \partial T, E$ is a support of $\mu\}$.

 $dim(E)$ is the Hausdorff dimension.

Hölder exponent of μ

$$
H_{\mu}(\xi) = \lim_{n} \frac{1}{n} \log \frac{1}{\mu(\xi_n)}.
$$

Lemma: If the Hölder exponent of μ exists a.s. and is constant, then the constant is the Hausdorff dimension of μ .

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

 Ω

For the d regular tree, μ is the uniform measure, then

$$
\mu(\xi_n)=1/d^n, \qquad \text{and} \qquad \text{Dim}(\mu)=\log d.
$$

For the uniform measure of a Galton-Watson tree,

$$
\mu(\xi_n) = \frac{1}{d_1 d_2 \cdots d_n}, \quad \text{and} \quad \text{Dim}(\mu) = \log m
$$
\nwhere $m = \sum_k k p_k$.

A General Statement:

Let θ be the exiting distribution of a random walk on the G-W tree. Then $\text{Dim}(\theta) < \log m$.

御 ト イヨ ト イヨ トー

 $2Q$

On the d-regular tree, $w(e)$ is assigned *i.i.d* to every edge e.

Consider a random walk on the d-regular tree.

$$
p(x, x_i) = \frac{w(e_i)}{w(e_*) + \sum_i w(e_i)}, \qquad p(x, x_*) = \frac{w(e_*)}{w(e_*) + \sum_i w(e_i)}.
$$

Dimension drops!

Analogue phenomena: Critical G-W process $\{\xi_n\}$, lim $_{n\to\infty}\xi_n=0$ a.s. Yet $E\xi_n = 1$.

御 ▶ イヨ ▶ イヨ ▶ │ ヨ

 η q α

5. RWRE does NOT always slow down!

Consider a random walk on the d-regular tree.

$$
p(x, x_i) = \frac{1}{d + \lambda(x)}, \qquad p(x, x_*) = \frac{\lambda(x)}{d + \lambda(x)}.
$$

Let $\{\lambda(x)\}\$ be *i.i.d.* Then

the speed
$$
=\frac{d - E\lambda}{d + E\lambda}
$$
? $\leq \frac{d - E\lambda}{d + E\lambda}$?

何 ▶ マミ ▶ マミ ▶

 QQ

重

5. RWRE does NOT always slow down!

Consider a random walk on the d-regular tree.

$$
p(x, x_i) = \frac{1}{d + \lambda(x)}, \qquad p(x, x_i) = \frac{\lambda(x)}{d + \lambda(x)}.
$$

Let $\{\lambda(x)\}\$ be *i.i.d.* Then

the speed
$$
\geq \frac{d - E\lambda}{d + E\lambda}
$$
.

何 ▶ マミ ▶ マミ ▶

 QQ

重

Thank You!

K 御 と K 君 と K 君 と

B