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Introduction

Why Default Contagion?

@ Recent crisis shows that contagion effects originated from
systemically important financial institutions have strong
impact on prices of credit derivatives

e Most of the literature focused on markets consisting of
default-free securities.

o Defaultable security recently incorporated into portfolio
optimization frameworks (Korn and Kraft (2003), Kraft and
Steffensen (2005), Bo et al. (2010), Capponi and Lopez
(2013), Jiao and Pham (2011))

o Contagion effects ignored in above frameworks, as they only
deal with one credit sensitive instrument.



Introduction

Portfolio Allocation with Defaultable Securities

e Kraft and Steffensen (2008) consider investor allocating
wealth across multiple defaultable bonds: constant default
intensity prevents contagion

@ Jeanblanc and Runggaldier (2010) consider several defaultable
assets with discrete dynamics

@ Jiao and Pham (2013) analyze portfolio framework under
multiple jumps and default events using BSDE methods



Introduction

Direct Default Contagion

@ Direct and Causal Relationships between obligors' defaults

e Shown to be empirically relevant for sectors such as
commercial banks, where default likelihood of an entity
increases if some of its major borrowers default. See South
Korea Banking Crisis.

o Natural model is the interacting intensity framework (Jarrow
and Yu (2001)): default state of the system evolves as a
continuous time Markov chain with transition rates depending
on current default configuration (see also Davis and Lo
(2001)).

e Optimal CDS Portfolio strategies based on the interacting
intensity framework fully characterized in Bo and Capponi
(2013) using HJB method.



Introduction

Information Driven Default Contagion

@ Default of firm or news of distress lead investors to update
their valuations of related securities.

@ Such informational effects arise when investors have
incomplete information about actual creditworthiness of other
obligors in the portfolio.

@ Default risk depends on a number of correlated market
variables which none of the market participants can directly
observe.



The Model
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Regime Switching Model

Regime Switching Market Model

@ The states of the economy are modeled by a continuous-time
hidden Markov chain {X;}

@ The process {X:} has finite state space {1,2,..., K} and
generator A(t) = [AIJ(t)]iJ:I,...,N:

o1
Aij(t) = ,ll[l‘og {P(X¢rh =ej| Xe =€) — 0}
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Regime Switching Model

Default Time Specification

@ The default time 7; is defined as

t
T :=inf< t>0; / hi(u,X(v)) du>0;
0 N—

regime driven intensity

where (©;; i =1,...,N) are independent unit mean
exponentials.
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Regime Switching Model

The Market Securities

e Money Market Account: dB(t) = rB(t)dt, By =1.
@ Consider N defaultable stocks. Predefault stock price process
of name i evolves according to diffusion given by

P.
dPit) - _ (i(,X(6) + hi(t X(D)) )dt +0,aWi(2)
P,'(t—) d#/_/
efault compensator
of i
W1X

o Price of i-th defaultable stock given by P;(t) = 1,.~:Pi(t),
with dynamics

dIND,-(t) o ' : =
Bt) bi(t, X(t))dt + 9;dW;(t) — d=i(t)

e Model of similar type used by Linetsky (2006) and calibrated
to CDS and equity prices by Carr and Madan (2010).
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Regime Switching Model

The Filtrations

o Fr =o(W;(u); u <t): flow of information of the whole
market, excluding default

@ H;: flow of information generated by all default processes
H: = \/,N:1 Hi.

° g{ = F+ V H;:: investor filtration

° Gi=FX VG

@ P: objective probability measure

X = (X(t); t > 0) is G-adapted, but is not G'-adapted.
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Regime Switching Model

The Stochastic Control Problem

@ Investor needs to choose an admissible trading strategy m(t),
which must be G! adapted, so to maximize his expected utility
from terminal wealth

P v?
Jr(v, ) =E[U(VT)],  Ulv) = L
where v € (0,1) is a fixed constant, v > 0 is the initial
wealth, and VT the controlled wealth process.

@ It is a partially observed stochastic control problem: economic
factors X = (X(t); t > 0) are not directly observable, and the
strategies can only be based on past information of
defaultable stock prices.



The Model
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Regime Switching Model

Summary of Contributions |

@ Building on Nagai and Runggaldier (2008), develop two
changes of measure technique to reduce partially observed
problem to an equivalent fully observed risk-sensitive control
problem

e Established the recursive Hamilton-Jacobi-Bellman (HJB)

Equations for the value functions of the problem, based on
different default states.
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Regime Switching Model

Summary of Contributions Il

@ Prove that each value function may be recovered as the weak
solution for which we establish existence and uniqueness in
suitably chosen Sobolev space

@ Prove a verification theorem showing that weak solution of
PDE corresponds to the value function of risk sensitive control
problem.



Full Observation Control

The Wealth Dynamics

o Let 7(t) = (mg(t), m(t)), w(t) = (m1(t),...,7n(t))". Here
m;(t) is fraction invested in defaultable stock i at t.

@ Dynamics of wealth process given by

)

dP,'(t)
B P,'(l'—

~—

N
dVv7(t) :wB(t)dB((tt)) 3 ()
i=1

@ When j-th stock has defaulted, i.e. for t > 7;, P;(t) = 0 and
7T,'(t) =0.



Full Observation Control

The Filter Probabilities

o Filter probabilities of Markov chain X(t) denoted by by
pu(t) =P (X(t) =edldl), ke {l... K}

e Consider pre-default log-price process Y;(t) := log(P;(t)).
Then Y(t) = (Yi(t),..., Yn(t))" satisfies SDE:
dY(t) = p(t, X(t))dt + XdW(t)
= = (=7 p(t, X(t))dt + dW(t))
= XdW(t)



Full Observation Control

The Filter dynamics

Proposition (Proposition 3.6 in Frey and Schmidt (2012))
The vector p(t) of filter probabilities satisfies

K
dpe(t) = > wer(t)p(t)dt
=1
ok ()i (8)(EE )T (Y () — At p(t))dt)
N hi(ta ek) =
+Pk(t_)§ </A7,(t,l)(t—)) - 1) d=;(t).

with
pi(t) = (p(t, ex) — (t, p(1)))




Full Observation Control

Partially Observed = Fully Observed

@ Define the 1st change of measure:

Ll —

@ Gt N
where W(t) is a density process satisfying the SDE:

- / CW(s—) (S Lu(s, X(s)))TAW(s)

V(t) =
f 1 — hi(s, X(s-)) (_x
+/0 \U(S_)’Z:; hi(S,X(S—)) d—i (S)
@ Then
dAW(t) = (=7 u(t, X(t))dt + dW(t))

tAT;
, H,-(t)—/ du =1 N
0

are respective a G/ Brownian motion and-a Gf~martingale

A

(1) =



Full Observation Control

Fully Observed Problem |

@ Define the conditional estimates g : D1 x P x Do— R by

K

é(y7PaU) = Zg(yae/ﬁv)pka
k=1

@ Consider the process

() = & ([ aspls) (o) Ba(s)
N N
<& (; /0 (hi(s,p(s—)) — 1)d:,-(s)>

<oxp (= [ i(s.pa. ()



Full Observation Control

Fully Observed Problem Il

The objective functional is given by
Jr(v,m) = ET[U(VT(T))]
partially observed
T 5 7aA
v N———~———"fully observed |




Full Observation Control

The Risk Sensitive Control Problem

Define the 2nd change of measure:

Blo = &[] atsp(e)mie) T maws) )
N : ~ A
<& (Z | (hts.pts-)) - 1)dz,-(s)>

The objective functional is given by

Jr(v,m) = E[UV™(T))]

~ L5 len(— [ e B(5). w(s))ds )|

>
risk sensitive control

g




Full Observation Control

Filter Process and Admissible Strategies

@ Under the new probability measure ]13’, there exist ° Brownian
motion W(t) and [P default martingales =;(t) so that the
filter process becomes

dpi(t) = (Zwu pe(t) + yuk(t)m ())df
+pk (1) k(1) S AW(1)

N ~
JFPk(t*)Z hi (t ek)( h(( ( _))déi(t)
i=1

where
pi(t) = (p(t, ex) — p(t, p(1)))



Dynamic Programming Principle

@ For a generic 0 < t < T such that p(t) = X € Ak_1, and
H(t) = z, define

G(t, Az, ) = EF [e7 Ao m(Nds 51 — A H(¢) = 2],
@ Define the value function:

w(t,\,z) .= sup log(G(t, A, z,7)).
weli(t,T)



The HJB Equation

@ Under mild integrability assumption, we obtain the HJB
equation
ow

1
E(t’ Az)+ ETr |:0'0'TD2W(I', )\,z)}

+% (Vw)oeT (V)] (£ 1,2) + 7

N Ah ()
~ Wt,««’ 7'—Wt,A,
+Z(1 _ Z;)h;(t, )\) [e ( hi(t,X) Z) ( z) . 1]
i=1
+ sup & (w;t,\,z,w)=0

wel(t, T,\z)

with terminal condition w(T,A,z) =0



The Optimal Strategy

@ The optimal strategy 7 is

T = (i_? [(zfz)*l (Za(t,)\)T(Vw)T(t, A z) - I(t, A))]

where T is the difference between risk-free rate and the vector
of drifts of defaultable stocks

. . T
T(t,\) = (1—2)- [ = Bt A) — Bt A), .. .)]



Master HJB Equation

@ Using the optimal strategy, we obtain the final form of the
HJB equation: on (t,A\,z) € [0, T) x Ax_1 x{0,1}V
N——
K—1 simplex

ot (t,A,2) + 1Tr [0'0' D? ] (t, X, 2) +% [(VW)O’O’T(VW)T] (t,A,2)

quadratic gradient

a— [(VW)O’ZGZ (Vw) ](t,)\,z)Jr(VW)(t,)\,z)G(t,)\,z)

2(1—7)
quadratic gradient
w (t, ): hi(t),zi) -w(t, A, z)
N h,'(t, )\) —
+ Z(l _ Zi)ili(t, )\)e contagion + P(t )\7 Z) =0
i=1

with terminal condition w(T,\,z) =0.
@ HJB equation is a nonlinear PDE with quadratic growth of
gradient.



HJB-PDE

PDE Analysis

@ Recursive system of PDE's: solution associated to portfolio
state z, z; = 0, depends on solutions to the HJB equations
associated to portfolio states 2/ = (z1,...,1 — z;, zi11,...)
where name i defaults

e Optimal investment strategy 7 depends on gradient of
solution w(t, A, z) leading to information driven contagion
effects.

o Use wj, . (t,A) := w(t, A, 0/In) to denote solution of
HJB equation associated with the default state z = @/,

@ Separately consider the following cases: (1) n= N, (2)
n=N-1and (3)2<n<N-1



HJB-PDE

Case |: All names are defaulted

0 z=0""9 =1:=(1,...,1)7. Investor cannot invest in any
stock, hence optimal strategy is w* =0, 715 = 1.

@ Value function wy(t, A) associated to this default state
satisfies HJB equation

%V?(t, A) + %Tr |:0’0'TD2W1}(I', A)

1
+5 (Vun)oo T (V)T (£,2)
+(Vw)(t,A\)Bo(t,A\) +~vr=0
with (t,A) € [0, T) x Ak_1 and terminal condition
wi(T,A)=0

@ Solution is
wa(t, A) =yr(T —t)



HJB-PDE

150+ 1
— = (t, A) ETT [O'O'TD2WJI’ v 1} (t,A)

%[(VVVJI T UT(VVVJ'l,waJ'N—I)T:| (t,A)

ﬁ [(V Wir,...jn_1)0z (VWJ1 aJN—l)T:| (t,A)

+(VWJ'17---JN—1)(t7 )‘)0117---JN—1(t? )‘)
+§j1,---u'lv—1(tv A WJ'1,---JN—1(tv A)=0
where
(t,A) €0, T) x Ax_1
and

oo (A V) 1= pjy iy (6, A) + BjN(t7 A) ‘eW(T_t) eV

contagion



HJB-PDE

Thecase 2 #n < N

@ The value function wj, ;. (t, A) corresponding to names

J1,-..,Jjn alive satisfies
avv_/la ,_In ]-
T(t >\)+2Tr[0'a' DWJ1 }(t A)
1
+§ [(Vle,--.,jn)U'O'T(Vle,...,jn)T] (t,A)
7 .
+2(1f7) [(VWJh o207 (VW) }(tvk)

+(VWJ'1,...,J'n)(ta A)01'1,...,,/"(ta )‘)
+§jl;~~~7jn(t7 A, Wj1,~~~,jn(t’ )‘)) =0

where (t,A) € [0, T) x Ak_1 and nonlinear term is given by

- Wy.n t“‘())
é‘jl,,..,j,,(t;)\, V) = Z h,‘(t, A) € e ( hit:2) e’ +pj17,,,7jn(t, A)

i€{n 10N} default contagion




HJB-PDE

The generalized solution

@ Reverse flow of time, t— T — t, and rewrite PDE as

gZ(t, A)= %Tr [a&TD%—J] (t, ) + % [(vu)&aT(va)T (£, A)
+2(17_ - (VD)3,5, (VT)T] (£, A)
—I—(Vfl)(t, }‘) _jl,...,jn(tv A) + gjl,...,jn(t’ )‘a D(t’ )‘))
=0

with (t,A) € (0, T] x Ak_1 and initial condition z(0,A) =0



HJB-PDE

Sobolev Space

o Let D C RX~1. Then Hy(D) denotes the Sobolev space
consisting of all functions f € L1(D) such that

1, = ( /| ‘Df(xﬂde){

@ The Sobolev space W,l,’z(QT) with Qr = [0, T] X Ak_1, is
the set of all functions f(t,A) : Qr— R belonging to
LP(Qt) which admit first-order weak derivative O;f w.r.t.
time t and k-order weak derivative DXf w.r.t. \, for
1< k<2

o The norm of f € Wy?(Qr) is defined as
1

1 llwi2or) = (/(L@tf(t, A)[P + |DF(t, A)|P + | D?F(t, )\)|Pd}\dt> ’
T



HJB-PDE

The Generalized Solution

A function @ : [0, T]— H*(Ak_1) is a generalized solution if

() e L2([0, T]; HY(Ak_1)), and 9:0 € L2([0, T|; HY(Ak_1)).
Here H™!(Ak_1) denotes the dual space of HY(Ax_1).

(11) For every test function ¢ € Hi(Ak_1), the following
variational representation holds

/0 T(@JJ,qb)dt—i—% /Q (V)N [557 (V)] (£, A)arde

1

- 5/0 [(Va)&&T(Vu)T} (t, \)é(t, \)dAdt

gl .
+m o [(VU)UZUZ (Vo) } (£, A)p(A)dAdt

+ / [(V3)(£, M8, (£ A) + G (£, 0, Tt A))] S(A)AAE
QT

—% div(56 T)(t, \)(V) T (£, A)é(A)dAdt
QT

(1) @(0,A) =0 for all A € Ax_y



HJB-PDE

Sketch of Proof

@ Consider an approximation problem to the variational
representation.

@ Prove uniform L°° bounds of the solutions to the
approximation problem.

@ Develop a priori estimates for solutions of the approximation
problem in Sobolev space, and show that sequence of
approximating solutions converges to the generalized solution
of HJB PDE.

@ Apply a one to one solution transformation technique to
establish the uniqueness of the generalized solution to the
HJB PDE.



HJB-PDE

The Uniform Boundedness of Approximating Solution |

@ Challenge: The nonlinear term & cannot be guaranteed to be
bounded from above. Need to develop analysis establishing
both a lower bound and an upper bound for the approximate

solution.
@ Define
. - inf 3 ji ta >\7 4
¢ (tvk,V)EQTlegll’“'a/n( )

(t,A)eQr

@ Introduce sequence of truncated solutions corresponding to u.
More precisely, define

uru(t,A) = max{Ls(t),min{a(t,X), Ue(t)}}, (t,A) € Qr.



HJB-PDE

The Uniform Boundedness of Approximating Solution |l

@ Define approximating problem

o™

1 m
5 —(t,A) = ETr[o'O'TD2 1 (£, )

(Vimes (Vv &";g )T (£ 2)

+1 bounded approx
2 14+ L [(vomaaT(Vim)T](t,A)

(V™6 (V oy )| ()
~—~
Y bounded approx

21 —-7) 1+ 5[(Vam)a.a; (Vim)T](t, )
HVE")(, A)8j,,... (8 A)
+£_J'1 ,,,,, 'n(t7>‘7 Dm(t’ A))

+




HJB-PDE

Boundedness property of the Approximating Solutions

@ Existence and uniqueness of truncated generalized solution
™ € L2([0, T]; H2(Ak_1)) NHY([0, T]; L>(Ak_1))
guaranteed by Schauder’s fixed point theorem.

@ Uniform boundedness established by

Lemma (Bo and Capponi (2014))

Foreach 0 < t < T, it holds that Ak_1-a.s.,

Le(t) < a™(t) < Ug(t), VmelN




HJB-PDE

Convergence to Generalized Solution

@ Solutions of approximation problem are uniformly bounded in
Sobolev space.

Lemma (Bo and Capponi (2014))

Let u™ be the solution of approximating equation. Then there
exists a constant C > 0 independent of m € IN such that

||L_’m”L2([O,T];H1(AK71)) < C

@ Use this result to show that sequence of approximating
solutions converges to generalized solution of original HJB
PDE.

Theorem (Bo and Capponi (2014))

The HJB-PDE admits a generalized solution
o c L2([0, T]; HY(Ak_1)) N L®(QT). Moreover, the generalized
solution is unique.




HJB-PDE

Verification Theorem

Theorem

Let (t,A) € Qr, and z = 0tdn forn=1,...,N. Let
w(t,\,z) = u(T — t,\) with U being the unique generalized
solution to HJB equation. Then, w(t,\,z) coincides with the
value function, i.e.

w(t,\,z) .= sup log(G(t, A, z,)).
weld(t,T)

where

G(t, A\, z,m): — gF [e 7S ils B(s).m(s)) ds}p )\,H(t):z}

Moreover, there is a unique admissible optimal Markov feedback
strategy m(t) given by

w*(1)=4=2) {(sz)fl (Za(t, A)T(Vw) (8, A, 2) — I(t, A))}
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