Derivative for the intersection local time of fractional Brownian Motions

Litan Yan Donghua University, PRC, E-mail: litanyan@dhu.edu.cn

Abstract: Let $B^{H_i} = \{B_t^{H_i}, t \ge 0\}$, i = 1, 2 be two independent fractional Brownian motions on \mathbb{R} with respective indices $H_i \in (0, 1)$ and $H_1 \le H_2$. In this paper, we consider their intersection local time $\{\ell_t(a), t \ge 0, a \in \mathbb{R}\}$. We show that $\ell_t(a)$ is differentiable in the spatial variable a and we introduce the so-called *hybrid quadratic covariation* $[f(B^{H_1} - B^{H_2}), B^{H_1}]^{(HC)}$. When $H_1 < \frac{1}{2}$, we construct a Banach space \mathscr{H} of measurable functions such that the quadratic covariation exists in $L^2(\Omega)$ for all $f \in \mathscr{H}$, and the Bouleau-Yor type identity

$$[f(B^{H_1} - B^{H_2}), B^{H_1}]_t^{(HC)} = -\int_{\mathbb{R}} f(a)\ell_t(da)$$

holds. When $H_1 \ge \frac{1}{2}$, we show that the quadratic covariation exists also in $L^2(\Omega)$ for some Hölder functions f and the above Bouleau-Yor type identity holds.