Central Limit Theorem of Diffusion Processes with a Small Parameter in Discontinuous Media

Tzuu-Shuh CHIANG Institute of Mathematics, Academia Sinica, Taipei, Taiwan, E-mail:matsch@math.sinica.edu.tw Shuenn-Jyi Sheu Department of Mathematics, National Central University

Abstract: For the system of d-dimensional stochastic differential equation, $d \ge 2$,

$$dX_t^{\epsilon} = b(X_t^{\epsilon})dt + \epsilon dW_t, \quad t \in [0, T]$$

$$X_0^{\epsilon} = x \in H \subseteq R^d,$$

where $b(x) = (b_1(x), ..., b_d(x))$ is a bounded smooth vector field except along the hyperplane $H = \{x \in \mathbb{R}^d, x_1 = 0\}$ but satisfies the stability condition in the sense that there exist positive constants δ and c such that $b_1(x) \leq -c$ if $x_1 \in (0, \delta)$ and $b_1(x) \geq c$ if $x_1 \in (-\delta, 0)$, we shall prove that the central limit theorem holds for $X^{\epsilon}(t)$. To be precise, we shall show that there exists a deterministic function $\phi(\cdot) \in C([0, T], \mathbb{R}^d)$ such that the process $\frac{1}{\epsilon}(X^{\epsilon}(\cdot) - \phi(\cdot))$ converges to an Ornstein-Uhlenbeck process in probability thus in distribution in $C([0, T], \mathbb{R}^d)$ as $\epsilon \to 0$.