Heat kernels and analyticity of non-symmetric Lévy diffusion semigroups

Xicheng Zhang

Wuhan University

July 7, 2013

Consider the following second order elliptic differential operator in \mathbb{R}^d :

$$\mathscr{L}_{2}^{a}f(x)=\sum_{i,j=1}^{d}a^{ij}(x)\partial_{i}\partial_{j}f(x),$$

where $a^{ij}(x) \in C_b^{\infty}(\mathbb{R}^d)$ is uniformly positive.

Consider the following second order elliptic differential operator in \mathbb{R}^d :

$$\mathscr{L}_{2}^{a}f(x)=\sum_{i,j=1}^{d}a^{ij}(x)\partial_{i}\partial_{j}f(x),$$

where $a^{ij}(x) \in C_b^\infty(\mathbb{R}^d)$ is uniformly positive. It is well-known that the C_0 -semigroup associated with \mathcal{L}_2^a is analytic in L^p -spaces provided $p \in (1,\infty)$ (cf. Pazy's book). The proof of this fact is based upon the following deep apriori estimate:

$$\|\partial_i\partial_j f\|_{\rho} \leqslant C(\|\mathscr{L}_2^a f\|_{\rho} + \|f\|_{\rho}), \ f \in \mathbb{W}^{2,p}(\mathbb{R}^d),$$

which is a consequence of singular integral operator theory.

Now, consider the following non-local Lévy operator: for $\alpha \in (0,2)$,

$$\mathscr{L}_{\alpha}^{\kappa}f(x) := \text{P.V.} \int_{\mathbb{R}^d} (f(x+z) - f(x)) \kappa(x,z) |z|^{-d-\alpha} dz, \tag{1.1}$$

where P.V. stands for the Cauchy principle value, and $\kappa(x, z)$ is a measurable function on $\mathbb{R}^d \times \mathbb{R}^d$ and satisfies

$$\kappa(\mathbf{X}, \mathbf{Z}) = \kappa(\mathbf{X}, -\mathbf{Z}), \quad 0 < \kappa_0 \leqslant \kappa(\mathbf{X}, \mathbf{Z}) \leqslant \kappa_1,$$
 (1.2)

and for some $\beta \in (0, 1)$

$$|\kappa(\mathbf{x}, \mathbf{z}) - \kappa(\mathbf{y}, \mathbf{z})| \leqslant \kappa_2 |\mathbf{x} - \mathbf{y}|^{\beta}. \tag{1.3}$$

Due to the symmetricity of κ in z, we may write

$$\mathscr{L}_{\alpha}^{\kappa}f(x)=\frac{1}{2}\int_{\mathbb{R}^{d}}(f(x+z)+f(x-z)-2f(x))\kappa(x,z)|z|^{-d-\alpha}\mathrm{d}z.$$

Due to the symmetricity of κ in z, we may write

$$\mathscr{L}_{\alpha}^{\kappa}f(x)=\frac{1}{2}\int_{\mathbb{R}^{d}}(f(x+z)+f(x-z)-2f(x))\kappa(x,z)|z|^{-d-\alpha}dz.$$

Let $\Delta^{\frac{\alpha}{2}}:=-(-\Delta)^{\frac{\alpha}{2}}$ be the usual fractional Laplacian. By Fourier's transform, it is easy to see that for some constant $c_{d,\alpha}>0$,

$$\mathscr{L}_{\alpha}^{1} = c_{d,\alpha} \Delta^{\frac{\alpha}{2}}.$$

Due to the symmetricity of κ in z, we may write

$$\mathscr{L}_{\alpha}^{\kappa}f(x)=\frac{1}{2}\int_{\mathbb{R}^{d}}(f(x+z)+f(x-z)-2f(x))\kappa(x,z)|z|^{-d-\alpha}dz.$$

Let $\Delta^{\frac{\alpha}{2}}:=-(-\Delta)^{\frac{\alpha}{2}}$ be the usual fractional Laplacian. By Fourier's transform, it is easy to see that for some constant $c_{d,\alpha}>0$,

$$\mathscr{L}_{\alpha}^{1} = c_{d,\alpha} \Delta^{\frac{\alpha}{2}}.$$

Hence, $\mathscr{L}^{\kappa}_{\alpha}$ can be considered as a generalization of $\Delta^{\frac{\alpha}{2}}$ as \mathscr{L}^{a}_{2} generalises Laplacian Δ .

• Existence of heat kernel associated with $\mathcal{L}_{\alpha}^{\kappa}$, i.e.,

$$\partial_t p(t,x,y) = \mathscr{L}_{\alpha}^{\kappa} p(t,\cdot,y)(x), \quad p(0,x,y) = \delta_0(x-y)?$$

• Existence of heat kernel associated with $\mathcal{L}_{\alpha}^{\kappa}$, i.e.,

$$\partial_t p(t,x,y) = \mathscr{L}_{\alpha}^{\kappa} p(t,\cdot,y)(x), \quad p(0,x,y) = \delta_0(x-y)?$$

 If yes, heat kernel estimate, gradient and fractional derivative estimate?

• Existence of heat kernel associated with $\mathcal{L}_{\alpha}^{\kappa}$, i.e.,

$$\partial_t p(t,x,y) = \mathscr{L}_{\alpha}^{\kappa} p(t,\cdot,y)(x), \quad p(0,x,y) = \delta_0(x-y)?$$

- If yes, heat kernel estimate, gradient and fractional derivative estimate?
- Analyticity of the semigroup associated with $\mathscr{L}^{\kappa}_{\alpha}$ in L^{p} -space?

When

$$\kappa(\mathbf{X},\mathbf{Z}-\mathbf{X})=\kappa(\mathbf{Z},\mathbf{X}-\mathbf{Z}),$$

the operator $\mathscr{L}^\kappa_\alpha$ is symmetric in the sense that

$$\int_{\mathbb{R}^d} g(x) \mathscr{L}_{\alpha}^{\kappa} f(x) \mathrm{d}x = \int_{\mathbb{R}^d} f(x) \mathscr{L}_{\alpha}^{\kappa} g(x) \mathrm{d}x, \quad f, g \in C_0^{\infty}(\mathbb{R}^d).$$

When

$$\kappa(\mathbf{X},\mathbf{Z}-\mathbf{X})=\kappa(\mathbf{Z},\mathbf{X}-\mathbf{Z}),$$

the operator $\mathscr{L}^\kappa_\alpha$ is symmetric in the sense that

$$\int_{\mathbb{R}^d} g(x) \mathscr{L}_{\alpha}^{\kappa} f(x) \mathrm{d}x = \int_{\mathbb{R}^d} f(x) \mathscr{L}_{\alpha}^{\kappa} g(x) \mathrm{d}x, \quad f, g \in C_0^{\infty}(\mathbb{R}^d).$$

In this case, without Hölder's assumption, the following two-sided sharp estimates of the heat kernel $p_{\alpha}^{\kappa}(t,x,y)$ of $\mathcal{L}_{\alpha}^{\kappa}$ was obtained by Chen and Kumagai (SPA 2003) by using the probabilistic approach:

$$c_0t(t^{\frac{1}{\alpha}}+|x-y|)^{-d-\alpha}\leqslant p_\alpha^\kappa(t,x,y)\leqslant c_0^{-1}t(t^{\frac{1}{\alpha}}+|x-y|)^{-d-\alpha}.$$

• Bogdan-Jakubowski (CMP 2007): $\Delta^{\frac{\alpha}{2}} + b(x) \cdot \nabla$, where $\alpha \in (1,2)$. (See also Jakubowski-Szczypkowski(JEE 2010), Jakubowski (Studia Math. 2011), Wang-Zhang(Forum Math. to appear)) (Duhamel's method)

- Bogdan-Jakubowski (CMP 2007): $\Delta^{\frac{\alpha}{2}} + b(x) \cdot \nabla$, where $\alpha \in (1,2)$. (See also Jakubowski-Szczypkowski(JEE 2010), Jakubowski (Studia Math. 2011), Wang-Zhang(Forum Math. to appear)) (Duhamel's method)
- Chen-Kim-Song (JEMS2010): Dirichlet heat kernel estimate for $\Delta^{\frac{\alpha}{2}}$. (See also Chen-Kim-Song(AOP 2012)(2011) for various perturbation. A survey paper is Chen(Sci. China 2009)). (Probabilistic method)

- Bogdan-Jakubowski (CMP 2007): $\Delta^{\frac{\alpha}{2}} + b(x) \cdot \nabla$, where $\alpha \in (1,2)$. (See also Jakubowski-Szczypkowski(JEE 2010), Jakubowski (Studia Math. 2011), Wang-Zhang(Forum Math. to appear)) (Duhamel's method)
- Chen-Kim-Song (JEMS2010): Dirichlet heat kernel estimate for $\Delta^{\frac{\alpha}{2}}$. (See also Chen-Kim-Song(AOP 2012)(2011) for various perturbation. A survey paper is Chen(Sci. China 2009)). (Probabilistic method)
- Kochubei(Math. USSR 1988) proved the existence for $\mathcal{L}_{\alpha}^{\kappa}$ with smooth κ in y and $\alpha \in [1,2)$; Xie-Zhang(2012): $a_t(x)\Delta^{\frac{1}{2}} + b_t(x)\cdot\nabla$ (Levi's method).

Write

$$\mathscr{L}_{\alpha}^{\kappa(x)}f(x)=\mathscr{L}_{\alpha}^{\kappa}f(x)=\tfrac{1}{2}\int_{\mathbb{R}^{d}}\delta_{f}(x;z)\kappa(x,z)|z|^{-d-\alpha}\mathrm{d}z,$$

where

$$\delta_f(x;z):=f(x+z)+f(x-z)-2f(x).$$

Write

$$\mathscr{L}_{\alpha}^{\kappa(x)}f(x)=\mathscr{L}_{\alpha}^{\kappa}f(x)=\tfrac{1}{2}\int_{\mathbb{R}^{d}}\delta_{f}(x;z)\kappa(x,z)|z|^{-d-\alpha}\mathrm{d}z,$$

where

$$\delta_f(x;z) := f(x+z) + f(x-z) - 2f(x).$$

For fixed $y \in \mathbb{R}^d$, let $\mathscr{L}_{\alpha}^{\kappa(y)}$ be the freezing operator

$$\mathscr{L}_{\alpha}^{\kappa(y)}f(x) = \frac{1}{2} \int_{\mathbb{R}^d} \delta_f(x;z) \kappa(y,z) |z|^{-d-\alpha} dz.$$

Write

$$\mathscr{L}_{\alpha}^{\kappa(x)}f(x)=\mathscr{L}_{\alpha}^{\kappa}f(x)=\frac{1}{2}\int_{\mathbb{R}^{d}}\delta_{f}(x;z)\kappa(x,z)|z|^{-d-\alpha}dz,$$

where

$$\delta_f(x;z) := f(x+z) + f(x-z) - 2f(x).$$

For fixed $y \in \mathbb{R}^d$, let $\mathscr{L}^{\kappa(y)}_{\alpha}$ be the freezing operator

$$\mathscr{L}_{\alpha}^{\kappa(y)}f(x) = \frac{1}{2} \int_{\mathbb{R}^d} \delta_f(x; z) \kappa(y, z) |z|^{-d-\alpha} dz.$$

Let $p_y(t,x) := p_{\alpha}^{\kappa(y)}(t,x)$ be the heat kernel of operator $\mathscr{L}_{\alpha}^{\kappa(y)}$, i.e.,

$$\partial_t p_y(t,x) = \mathscr{L}_{\alpha}^{\kappa(y)} p_y(t,x), \quad \lim_{t \downarrow 0} p_y(t,x) = \delta_0(x). \tag{1.4}$$

Now, we want to seek the heat kernel $p_{\alpha}^{\kappa}(t, x, y)$ of $\mathcal{L}_{\alpha}^{\kappa}$ with the following form:

$$p_{\alpha}^{\kappa}(t,x,y) = p_{y}(t,x-y) + \int_{0}^{t} \int_{\mathbb{R}^{d}} p_{z}(t-s,x-z)q(s,z,y)dzds. \quad (1.5)$$

Now, we want to seek the heat kernel $p_{\alpha}^{\kappa}(t, x, y)$ of $\mathcal{L}_{\alpha}^{\kappa}$ with the following form:

$$\rho_{\alpha}^{\kappa}(t,x,y) = \rho_{y}(t,x-y) + \int_{0}^{t} \int_{\mathbb{R}^{d}} \rho_{z}(t-s,x-z)q(s,z,y)dzds. \quad (1.5)$$

The classical Levi's continuity argument suggests that q(t, x, y) solves the following integral equation:

$$q(t,x,y) = q_0(t,x,y) + \int_0^t \int_{\mathbb{R}^d} q_0(t-s,x,z) q(s,z,y) dz ds,$$
 (1.6)

where

$$q_0(t,x,y) := (\mathcal{L}_{\alpha}^{\kappa(x)} - \mathcal{L}_{\alpha}^{\kappa(y)}) p_y(t,x-y)$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} \delta_{p_y}(t,x-y;z) (\kappa(x,z) - \kappa(y,z)) |z|^{-d-\alpha} dz.$$

In fact, we formally have

$$\begin{split} \partial_t p_\alpha^\kappa(t,x,y) &= \mathscr{L}_\alpha^{\kappa(y)} p_y(t,x-y) + q(t,x,y) \\ &+ \int_0^t \!\! \int_{\mathbb{R}^d} \partial_t p_z(t-s,x-z) q(s,z,y) \mathrm{d}z \mathrm{d}s \\ &= \mathscr{L}_\alpha^{\kappa(x)} p_y(t,x-y) \\ &+ \int_0^t \!\! \int_{\mathbb{R}^d} \mathscr{L}_\alpha^{\kappa(x)} p_z(t-s,x-z) q(s,z,y) \mathrm{d}z \mathrm{d}s \\ &= \mathscr{L}_\alpha^{\kappa(x)} p_\alpha^\kappa(t,x,y). \end{split}$$

Let p_{α}^{κ} be the heat kernel of $\mathcal{L}_{\alpha}^{\kappa}$. Write

$$\delta_{\boldsymbol{p}_{\alpha}^{\kappa}}(t,\boldsymbol{x};\boldsymbol{z}) := \boldsymbol{p}_{\alpha}^{\kappa}(t,\boldsymbol{x}+\boldsymbol{z}) + \boldsymbol{p}_{\alpha}^{\kappa}(t,\boldsymbol{x}-\boldsymbol{z}) - 2\boldsymbol{p}_{\alpha}^{\kappa}(t,\boldsymbol{x})$$

and

$$\varrho_{\gamma}^{\beta}(t,x):=t^{\frac{\gamma}{\alpha}}(|x|^{\beta}\wedge 1)(t^{\frac{1}{\alpha}}+|x|)^{-d-\alpha}.$$

Let p_{α}^{κ} be the heat kernel of $\mathcal{L}_{\alpha}^{\kappa}$. Write

$$\delta_{\boldsymbol{p}_{\alpha}^{\kappa}}(t,\boldsymbol{x};\boldsymbol{z}) := \boldsymbol{p}_{\alpha}^{\kappa}(t,\boldsymbol{x}+\boldsymbol{z}) + \boldsymbol{p}_{\alpha}^{\kappa}(t,\boldsymbol{x}-\boldsymbol{z}) - 2\boldsymbol{p}_{\alpha}^{\kappa}(t,\boldsymbol{x})$$

and

$$\varrho_{\gamma}^{\beta}(t,x):=t^{\frac{\gamma}{\alpha}}(|x|^{\beta}\wedge 1)(t^{\frac{1}{\alpha}}+|x|)^{-d-\alpha}.$$

We have

Lemma 1 (Fractional derivative estimate)

•

$$\int_{\mathbb{R}^d} |\delta_{\mathcal{P}^{\kappa}_{\alpha}}(t,x;z)| \cdot |z|^{-d-\alpha} dz \leqslant C \varrho_0^0(t,x).$$

Let p_{α}^{κ} be the heat kernel of $\mathscr{L}_{\alpha}^{\kappa}$. Write

$$\delta_{\boldsymbol{\rho}_{\alpha}^{\kappa}}(t,\boldsymbol{x};\boldsymbol{z}) := \boldsymbol{\rho}_{\alpha}^{\kappa}(t,\boldsymbol{x}+\boldsymbol{z}) + \boldsymbol{\rho}_{\alpha}^{\kappa}(t,\boldsymbol{x}-\boldsymbol{z}) - 2\boldsymbol{\rho}_{\alpha}^{\kappa}(t,\boldsymbol{x})$$

and

$$\varrho_{\gamma}^{\beta}(t,x):=t^{\frac{\gamma}{\alpha}}(|x|^{\beta}\wedge 1)(t^{\frac{1}{\alpha}}+|x|)^{-d-\alpha}.$$

We have

Lemma 1 (Fractional derivative estimate)

•

$$\int_{\mathbb{R}^d} |\delta_{p_\alpha^\kappa}(t,x;z)| \cdot |z|^{-d-\alpha} \mathrm{d}z \leqslant C \varrho_0^0(t,x).$$

•

$$\int_{\mathbb{R}^d} |\delta_{\rho_{\alpha}^{\kappa}}(t,x;z) - \delta_{\rho_{\alpha}^{\kappa}}(t,x';z)| \cdot |z|^{-d-\alpha} dz$$

$$\leq C((t^{-\frac{1}{\alpha}}|x-x'|) \wedge 1) \varrho_0^0(t,x).$$

Lemma 2 (Continuous dependence of heat kernel)

Let κ and $\hat{\kappa}$ be two kernel functions. For any $\gamma \in (0, \alpha \wedge 1)$, there exists a constant $C = C(d, \alpha, \kappa_0, \kappa_1, \gamma) > 0$ such that

0

$$|p_{\alpha}^{\kappa}(t,x)-p_{\alpha}^{\hat{\kappa}}(t,x)|\leqslant C\|\kappa-\hat{\kappa}\|_{\infty}(\varrho_{\alpha}^{0}+\varrho_{\alpha-\gamma}^{\gamma})(t,x).$$

Lemma 2 (Continuous dependence of heat kernel)

Let κ and $\hat{\kappa}$ be two kernel functions. For any $\gamma \in (0, \alpha \wedge 1)$, there exists a constant $C = C(d, \alpha, \kappa_0, \kappa_1, \gamma) > 0$ such that

$$p^{\kappa}$$

$$|p_{\alpha}^{\kappa}(t,x)-p_{\alpha}^{\hat{\kappa}}(t,x)|\leqslant C\|\kappa-\hat{\kappa}\|_{\infty}(\varrho_{\alpha}^{0}+\varrho_{\alpha-\gamma}^{\gamma})(t,x).$$

•

$$|\nabla p_{\alpha}^{\kappa}(t,x) - \nabla p_{\alpha}^{\hat{\kappa}}(t,x)| \leqslant C \|\kappa - \hat{\kappa}\|_{\infty} t^{-\frac{1}{\alpha}} (\varrho_{\alpha}^{0} + \varrho_{\alpha-\gamma}^{\gamma})(t,x).$$

Lemma 2 (Continuous dependence of heat kernel)

Let κ and $\hat{\kappa}$ be two kernel functions. For any $\gamma \in (0, \alpha \wedge 1)$, there exists a constant $C = C(d, \alpha, \kappa_0, \kappa_1, \gamma) > 0$ such that

$$|p_{\alpha}^{\kappa}(t,x)-p_{\alpha}^{\hat{\kappa}}(t,x)|\leqslant C\|\kappa-\hat{\kappa}\|_{\infty}(\varrho_{\alpha}^{0}+\varrho_{\alpha-\gamma}^{\gamma})(t,x).$$

•

$$|\nabla p_{\alpha}^{\kappa}(t,x) - \nabla p_{\alpha}^{\hat{\kappa}}(t,x)| \leqslant C \|\kappa - \hat{\kappa}\|_{\infty} t^{-\frac{1}{\alpha}} (\varrho_{\alpha}^{0} + \varrho_{\alpha-\gamma}^{\gamma})(t,x).$$

0

$$\int_{\mathbb{R}^d} \frac{|\delta_{\mathcal{P}^\kappa_\alpha}(t,x;z) - \delta_{\mathcal{P}^{\hat\kappa}_\alpha}(t,x;z)| \mathrm{d}z}{|z|^{d+\alpha}} \leqslant C \|\kappa - \hat\kappa\|_\infty (\varrho_0^0 + \varrho_{-\gamma}^\gamma)(t,x).$$

Idea of the proof

If we set

$$\hat{\kappa}(z) := \kappa(z) - \frac{\kappa_0}{2},$$

then by convolution technique, one can write

$$p_{\alpha}^{\kappa}(t,x) = \int_{\mathbb{R}^d} p_{\alpha}^{\kappa_0/2}(t,x-y) p_{\alpha}^{\hat{\kappa}}(t,y) \mathrm{d}y.$$

Idea of the proof

If we set

$$\hat{\kappa}(z) := \kappa(z) - \frac{\kappa_0}{2},$$

then by convolution technique, one can write

$$p_{\alpha}^{\kappa}(t,x) = \int_{\mathbb{R}^d} p_{\alpha}^{\kappa_0/2}(t,x-y)p_{\alpha}^{\hat{\kappa}}(t,y)\mathrm{d}y.$$

On the other hand, by Duhamel's formula,

$$\begin{split} p_{\alpha}^{\kappa}(t,x) - p_{\alpha}^{\hat{\kappa}}(t,x) &= \int_{0}^{t} \int_{\mathbb{R}^{d}} p_{\alpha}^{\kappa}(t-s,x-y) (\mathscr{L}_{\alpha}^{\kappa} - \mathscr{L}_{\alpha}^{\hat{\kappa}}) p_{\alpha}^{\hat{\kappa}}(s,y) \mathrm{d}y \mathrm{d}s \\ &= \int_{0}^{t} \int_{\mathbb{R}^{d}} (\mathscr{L}_{\alpha}^{\kappa} - \mathscr{L}_{\alpha}^{\hat{\kappa}}) p_{\alpha}^{\kappa}(t-s,x-y) p_{\alpha}^{\hat{\kappa}}(s,y) \mathrm{d}y \mathrm{d}s. \end{split}$$

Under (1.2) and (1.3), there exists a unique nonnegative continuous function $p_{\alpha}^{\kappa}(t,x,y)$ on $(0,1)\times\mathbb{R}^{d}\times\mathbb{R}^{d}$ solving

$$\partial_t p_{\alpha}^{\kappa}(t,x,y) = \mathscr{L}_{\alpha}^{\kappa} p_{\alpha}^{\kappa}(t,\cdot,y)(x), \quad t>0,$$

and satisfying that

Under (1.2) and (1.3), there exists a unique nonnegative continuous function $p_{\alpha}^{\kappa}(t,x,y)$ on $(0,1)\times\mathbb{R}^{d}\times\mathbb{R}^{d}$ solving

$$\partial_t p_\alpha^\kappa(t,x,y) = \mathscr{L}_\alpha^\kappa p_\alpha^\kappa(t,\cdot,y)(x), \quad t>0,$$

and satisfying that

• (Upper bound) For all $t \in (0,1)$ and $x, y \in \mathbb{R}^d$,

$$p_{\alpha}^{\kappa}(t,x,y) \leqslant c_1 t \varrho_0^0(t,x-y).$$

Under (1.2) and (1.3), there exists a unique nonnegative continuous function $p_{\alpha}^{\kappa}(t,x,y)$ on $(0,1)\times\mathbb{R}^{d}\times\mathbb{R}^{d}$ solving

$$\partial_t p_\alpha^\kappa(t,x,y) = \mathscr{L}_\alpha^\kappa p_\alpha^\kappa(t,\cdot,y)(x), \quad t>0,$$

and satisfying that

• (Upper bound) For all $t \in (0,1)$ and $x, y \in \mathbb{R}^d$,

$$p_{\alpha}^{\kappa}(t,x,y) \leqslant c_1 t \varrho_0^0(t,x-y).$$

• (Hölder's estimate) For all $\gamma \in (0, \alpha \land 1)$, $t \in (0, 1)$ and $x, x', y \in \mathbb{R}^d$,

$$|p_{\alpha}^{\kappa}(t,x,y) - p_{\alpha}^{\kappa}(t,x',y)| \le c_{2}|x - x'|^{\gamma}t^{1 - \frac{\gamma}{\alpha}} \Big\{ \varrho_{0}^{0}(t,x-y) + \varrho_{0}^{0}(t,x'-y) \Big\}.$$

• (Fractional derivative estimate) For all $x, y \in \mathbb{R}^d$, the mapping $t \mapsto \mathcal{L}_{\alpha}^{\kappa} p_{\alpha}^{\kappa}(t,\cdot,y)(x)$ is continuous on (0,1), and

$$|\mathscr{L}^{\kappa}_{\alpha}p^{\kappa}_{\alpha}(t,\cdot,y)(x)|\leqslant c_{3}\varrho_{0}^{0}(t,x-y).$$

• (Fractional derivative estimate) For all $x, y \in \mathbb{R}^d$, the mapping $t \mapsto \mathcal{L}_{\alpha}^{\kappa} p_{\alpha}^{\kappa}(t,\cdot,y)(x)$ is continuous on (0,1), and

$$|\mathscr{L}^{\kappa}_{\alpha}p^{\kappa}_{\alpha}(t,\cdot,y)(x)|\leqslant c_{3}\varrho_{0}^{0}(t,x-y).$$

• (Continuity) For any bounded and uniformly continuous function $f: \mathbb{R}^d \to \mathbb{R}$,

$$\lim_{t\downarrow 0}\sup_{x\in\mathbb{R}^d}\left|\int_{\mathbb{R}^d}p_\alpha^\kappa(t,x,y)f(y)\mathrm{d}y-f(x)\right|=0.$$

• (Conservativity) For all $(t, x) \in (0, 1) \times \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} p_\alpha^\kappa(t,x,y) \mathrm{d}y = 1.$$

• (Conservativity) For all $(t, x) \in (0, 1) \times \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} p_{\alpha}^{\kappa}(t,x,y) \mathrm{d}y = 1.$$

• (C-K equation) For all $s, t \in (0,1)$ and $x, y \in \mathbb{R}^d$, the following Chapman-Kolmogorov's equation holds:

$$\int_{\mathbb{R}^d} p_{lpha}^{\kappa}(t,x,z) p_{lpha}^{\kappa}(s,z,y) \mathrm{d}z = p_{lpha}^{\kappa}(t+s,x,y).$$

Statement of Main Theorem

Moreover, if $\alpha \in [1, 2)$, then

• (Gradient estimate) for all $x, y \in \mathbb{R}^d$ and $t \in (0, 1)$,

$$|\nabla p_{\alpha}^{\kappa}(t,\cdot,y)(x)| \leqslant c_4 t^{1-\frac{1}{\alpha}} \varrho_0^0(t,x-y);$$

Statement of Main Theorem

Moreover, if $\alpha \in [1, 2)$, then

• (Gradient estimate) for all $x, y \in \mathbb{R}^d$ and $t \in (0, 1)$,

$$|\nabla p_{\alpha}^{\kappa}(t,\cdot,y)(x)| \leqslant c_4 t^{1-\frac{1}{\alpha}} \varrho_0^0(t,x-y);$$

and if $\nabla_x \kappa(x,z)$ and $\nabla_x^2 \kappa(x,z)$ are bounded, then we also have the following conclusions:

ullet (Generator) For all $f,g\in C_0^\infty(\mathbb{R}^d)$,

$$\lim_{t\downarrow 0}\frac{1}{t}\int_{\mathbb{R}^d}g(x)\Big(\mathscr{P}_t^{\kappa}f(x)-f(x)\Big)\mathrm{d}x=\int_{\mathbb{R}^d}g(x)\mathscr{L}_{\alpha}^{\kappa}f(x)\mathrm{d}x,$$

where

$$\mathscr{P}^{\kappa}_t f(x) := \int_{\mathbb{R}^d} p^{\kappa}_{\alpha}(t,x,y) f(y) \mathrm{d}y.$$

Statement of Main Theorem

Moreover, if $\alpha \in [1, 2)$, then

• (Gradient estimate) for all $x, y \in \mathbb{R}^d$ and $t \in (0, 1)$,

$$|\nabla p_{\alpha}^{\kappa}(t,\cdot,y)(x)| \leqslant c_4 t^{1-\frac{1}{\alpha}} \varrho_0^0(t,x-y);$$

and if $\nabla_x \kappa(x,z)$ and $\nabla_x^2 \kappa(x,z)$ are bounded, then we also have the following conclusions:

ullet (Generator) For all $f,g\in C_0^\infty(\mathbb{R}^d)$,

$$\lim_{t\downarrow 0}\frac{1}{t}\int_{\mathbb{R}^d}g(x)\Big(\mathscr{P}_t^{\kappa}f(x)-f(x)\Big)\mathrm{d}x=\int_{\mathbb{R}^d}g(x)\mathscr{L}_{\alpha}^{\kappa}f(x)\mathrm{d}x,$$

where

$$\mathscr{P}^{\kappa}_t f(x) := \int_{\mathbb{R}^d} p^{\kappa}_{\alpha}(t,x,y) f(y) \mathrm{d}y.$$

• (Analyticity) The C_0 -semigroup $(\mathscr{P}_t^{\kappa})_{t\geqslant 0}$ is analytic in $L^p(\mathbb{R}^d)$ provided $p\in [1,\infty)$.

A key lemma (Kochubei)

If
$$\beta \in [0, \alpha)$$
, then

$$\int_{\mathbb{R}^d} \varrho_{\gamma}^{\beta}(t,x) \mathrm{d}x \leq t^{\frac{\gamma+\beta-\alpha}{\alpha}}.$$

A key lemma (Kochubei)

If $\beta \in [0, \alpha)$, then

$$\int_{\mathbb{R}^d} \varrho_{\gamma}^{\beta}(t,x) \mathrm{d}x \leq t^{\frac{\gamma+\beta-\alpha}{\alpha}}.$$

If $\beta_1, \beta_2 \in [0, \alpha)$ and $\gamma_1 + \beta_1 > 0$, $\gamma_2 + \beta_2 > 0$, then

$$\int_{0}^{t} \int_{\mathbb{R}^{d}} \varrho_{\gamma_{1}}^{\beta_{1}}(t-s,x-z)\varrho_{\gamma_{2}}^{\beta_{2}}(s,z)dzds
\leq \mathcal{B}\left(\frac{\gamma_{1}+\beta_{1}}{\alpha},\frac{\gamma_{2}+\beta_{2}}{\alpha}\right) \left\{ \varrho_{\gamma_{1}+\gamma_{2}+\beta_{1}+\beta_{2}}^{0} + \varrho_{\gamma_{1}+\gamma_{2}+\beta_{2}}^{\beta_{1}} + \varrho_{\gamma_{1}+\gamma_{2}+\beta_{1}}^{\beta_{2}} \right\}(t,x),$$

where $\mathcal{B}(\gamma,\beta)$ is the usual Beta function defined by

$$\mathcal{B}(\gamma,eta):=\int_0^1 (1-s)^{\gamma-1} s^{eta-1} \mathrm{d} s, \ \ \gamma,eta>0.$$

Let
$$u(t,x)\in C_b([0,1]\times\mathbb{R}^d)$$
 with
$$\lim_{t\downarrow 0}\sup_{x\in\mathbb{R}^d}|u(t,x)-u(0,x)|=0.$$

Let
$$u(t,x) \in C_b([0,1] \times \mathbb{R}^d)$$
 with
$$\lim_{t \downarrow 0} \sup_{x \in \mathbb{R}^d} |u(t,x) - u(0,x)| = 0.$$

Suppose that for each $x \in \mathbb{R}^d$,

$$t \mapsto \mathscr{L}^{\kappa}_{\alpha} u(t,x)$$
 is continuous on $(0,1]$,

and for any
$$\varepsilon \in$$
 (0,1) and some $\gamma_{\varepsilon} \in$ ((α – 1) \vee 0,1),

$$\sup_{t\in(\varepsilon,1)}|u(t,x)-u(t,x')|\leqslant C_{\varepsilon}|x-x'|^{\gamma_{\varepsilon}}.$$

Let
$$u(t,x)\in C_b([0,1] imes\mathbb{R}^d)$$
 with
$$\lim_{t\downarrow 0}\sup_{x\in\mathbb{R}^d}|u(t,x)-u(0,x)|=0.$$

Suppose that for each $x \in \mathbb{R}^d$,

$$t\mapsto \mathscr{L}^\kappa_\alpha u(t,x)$$
 is continuous on $(0,1],$

and for any $\varepsilon \in (0,1)$ and some $\gamma_{\varepsilon} \in ((\alpha-1) \vee 0,1)$,

$$\sup_{t\in(\varepsilon,1)}|u(t,x)-u(t,x')|\leqslant C_{\varepsilon}|x-x'|^{\gamma_{\varepsilon}}.$$

If u(t,x) satisfies the following equation: for all $(t,x) \in (0,1) \times \mathbb{R}^d$,

$$\partial_t u(t,x) = \mathscr{L}_{\alpha}^{\kappa} u(t,x),$$

Let
$$u(t,x)\in C_b([0,1] imes\mathbb{R}^d)$$
 with
$$\lim_{t\downarrow 0}\sup_{x\in\mathbb{R}^d}|u(t,x)-u(0,x)|=0.$$

Suppose that for each $x \in \mathbb{R}^d$,

$$t\mapsto \mathscr{L}^{\kappa}_{\alpha}u(t,x)$$
 is continuous on $(0,1]$,

and for any $\varepsilon \in (0,1)$ and some $\gamma_{\varepsilon} \in ((\alpha-1) \vee 0,1)$,

$$\sup_{t\in(\varepsilon,1)}|u(t,x)-u(t,x')|\leqslant C_{\varepsilon}|x-x'|^{\gamma_{\varepsilon}}.$$

If u(t,x) satisfies the following equation: for all $(t,x) \in (0,1) \times \mathbb{R}^d$,

$$\partial_t u(t,x) = \mathscr{L}^{\kappa}_{\alpha} u(t,x),$$

then for all $t \in (0, 1)$,

$$\sup_{x\in\mathbb{R}^d}u(t,x)\leqslant \sup_{x\in\mathbb{R}^d}u(0,x).$$

Proof of analyticity

Below, we write

$$\mathscr{P}_t^{\kappa}f(x) := \int_{\mathbb{R}^d} p_{\alpha}^{\kappa}(t,x,y)f(y)\mathrm{d}y.$$

Lemma 3

For any $p \in [1, \infty)$ and $f \in L^p(\mathbb{R}^d)$, $(0, 1) \ni t \mapsto \mathcal{L}^\kappa_\alpha \mathcal{P}^\kappa_t f \in L^p(\mathbb{R}^d)$ is continuous. In the case of $p = \infty$, i.e., if f is a bounded measurable function on \mathbb{R}^d , then for each $x \in \mathbb{R}^d$, $t \mapsto \mathcal{L}^\kappa_\alpha \mathcal{P}^\kappa_t f(x)$ is a continuous function on (0, 1). Moreover, for any $p \in [1, \infty]$, there exists a constant $C = C(p, d, \alpha, \kappa_0, \kappa_1) > 0$ such that for all $f \in L^p(\mathbb{R}^d)$ and $t \in (0, 1)$,

$$\| \mathscr{L}_{\alpha}^{\kappa} \mathscr{P}_{t}^{\kappa} f \|_{\rho} \leqslant C t^{-1} \| f \|_{\rho} .$$

Open questions

• Lower bound estimate of heat kernel of $\mathscr{L}^{\kappa}_{\alpha}$?

Open questions

- Lower bound estimate of heat kernel of $\mathscr{L}^{\kappa}_{\alpha}$?
- Existence of Markov process associated with $\mathscr{L}^{\kappa}_{\alpha}$?

Open questions

- Lower bound estimate of heat kernel of $\mathcal{L}_{\alpha}^{\kappa}$?
- Existence of Markov process associated with $\mathcal{L}_{\alpha}^{\kappa}$?
- Can we do the estimates for more general operators like

$$\mathscr{L}^{\kappa}_{\alpha}f(x) := \int_{\mathbb{R}^d} \delta_f(x; y) \kappa(x, y) \nu(\mathrm{d}y)?$$

Thank you very much for your kind attention!