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Abstract

In this paper, we obtained the strong convergence of Wong-Zakai
approximations of reflected SDEs in a general multidimensional
domain giving an affirmative answer to the question posed in [ES]
by Evans and Stroock.
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Introduction

Let D be a bounded domain in Rd . Consider the reflected
stochastic differential equation (SDE):

dX (t) = σ(X (t)) ◦ dW (t) + b(X (t))dt + dL(t),
X (0) = x0, X (t) ∈ D̄, t ≥ 0,

|L|(t) =
∫ t
0 I∂D(X (s))d |L|(s),

(1)

where W (t), t ≥ 0 is a m-dimensional Brownian motion, |L|(t)
stands for the total variation of L on the interval [0, t], ◦ indicates
a Stratonovich integral. There is a big amount of literature
devoted to the study of reflected SDEs. Let us mention a few of
them. Reflected SDEs in a convex domain was first studied by H.
Tanaka in [T]. Existence and uniqueness of solutions of reflected
SDEs in general domains were established by Lions and Sznitman
in [LS] and Saisho in [S]. Existence and uniqueness of solutions of
reflected SDEs under more general coefficients than the usual
Lipschitz conditions were considered in [MR].
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Introduction

The purpose of this paper is to study Wong-Zakai type
approximations of above reflected SDEs. Let W n be the n−dyadic
piecewise linear interpolation of W and X n the solution of the
following reflected random ordinary differential equation:

Ẋ n(t) = σ(X n(t))Ẇ n(t) + b(X n(t))dt + L̇n(t),
X n(0) = x0, X n(t) ∈ D̄, t ≥ 0,

|Ln|(t) =
∫ t
0 I∂D(X

n(s))d |Ln|(s).
(2)

We are concerned with the strong convergence of X n to the
solution X . Strong convergence of Wong-Zakai approximations to
stochastic differential equations is well known, see e.g. [IW].
However, the convergence of Wong-Zakai approximations to
stochastic differential equations with reflection (especially in higher
dimensions) is not a trivial matter because of the constraints on
the solution and the appearance of the boundary local time.
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Introduction

There are two main papers related to this question. In [P],
Petterson established a Wong-Zakai approximations for SDEs with
reflection for convex domains. The convexity is too rigid
sometimes for applications. In [ES], Evans and Stroock considered
Wong-Zakai approximations for reflected SDEs in general domains
(as in [LS]) and proved that X n converges weakly (in law ) to the
solution X . In the same paper, the authors also posed the question
of whether the strong convergence holds. For some of the
interesting applications, we refer the reader to [ES]. The purpose
of this paper is to establish the strong convergence ( the Lp

convergence in C ([0,T ], D̄) of the Wong-Zakai approximations for
reflected SDEs in multidimensional general domains, hence giving
an affirmative answer to the question in [ES].
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The Main result

Let D ⊂ Rd be a bounded domain with boundary ∂D. For
x ∈ ∂D, let ν(x) ⊂ Sd−1 denote a nonempty collection of
reflecting directions. Throughout this paper, as in [LS], [ES], we
impose the following conditions on the domain.

D.1 ν(x) ̸= ∅ for every x ∈ ∂D and there exist a constant C0 ≥ 0
such that

(x ′−x)·ν+C0|x−x ′|2 ≥ 0 for all x ′ ∈ D, x ∈ ∂D and ν ∈ ν(x).

D.2 There exists a function ϕ ∈ C 2(Rd ;R) and α > 0 such that

∇ϕ(x) · ν ≥ α for all x ∈ ∂D , ν ∈ ν(x).

D.3 There exist n ≥ 1, λ > 0, K > 0, a1, a2, ..., an ∈ Sd−1, and
x1, x2, ..., xn ∈ ∂D such that ∂D ⊂ ∪n

i=1B(xi ,K ) and
x ∈ ∂D ∩ B(xi , 2K ) =⇒ ν · ai ≥ λ for all ν ∈ ν(x).

Convention; Throughout this paper, any function G defined on
the positive half line [0,∞) automatically extends to a function on
the whole line by setting G (s) = G (s ∨ 0) when necessary.
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The main result

Let W (t) = (W1(t),W2(t), ...,Wm(t)), t ≥ 0 be a m-dimensional
Brownian motion on a completed filtered probability space
(Ω,F ,Ft ,P). Suppose σ = (σi ,j) ∈ C 1(D̄;Rd ⊗ Rm) such that
the derivative σ′ is Lipschitz continuous and that b : D̄ → Rd is
Lipschitz continuous.

For n ∈ N and s ∈ [ k2n ,
k+1
2n ), set s−n = (k−1

2n ) ∨ 0 and sn = k
2n . Let

W n be the linear interpolation of W defined by

W n(t) = W (
k − 1

2n
) + 2n(t − k

2n
)(W (

k

2n
)−W (

k − 1

2n
)) (3)

for t ∈ [ k2n ,
k+1
2n ), k = 0, 1, 2, ... Note that the above convention

applies here. Let σσ′ : D̄ → Rd be defined as

(σσ′(y))i =
m∑
j=1

d∑
k=1

∂σi ,j(y)

∂yk
σk,j(y). (4)
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The main result

With this notation, equation (1) becomes

X (t) = x0+

∫ t

0
σ(X (s))dW (s)+

1

2

∫ t

0
σσ′(X (s))ds+

∫ t

0
b(X (s))ds+L(t)

(5)
Definition
We say that (X , L) is a solution to the reflected SDE (5) if (X , L)
is a D̄ × Rd -valued, adapted continuous process such that
(i) L(t), t ≥ 0 is of bounded variation on any finite sub-interval of
[0,∞),
(ii) for t ≥ 0,

X (t) = x0+

∫ t

0
σ(X (s))dW (s)+

1

2

∫ t

0
σσ′(X (s))ds+

∫ t

0
b(X (s))ds+L(t)

almost surely,
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The main result

(iii)

|L|(t) =
∫ t

0
I∂D(X (s))d |L|(s), L(t) =

∫ t

0
ν(X (s))d |L|(s),

where |L|(t) stands for the total variation of L on the interval

[0, t], the last equality means that dL(t)
d |L|(t) ∈ ν(X (t)).

The solution (X n, Ln) to the reflected random ordinary differential
equation (2) is defined accordingly.
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The main result

Under the above assumptions, the existence and uniqueness of
X n,X are well known now, see, for example, [LS]. Here is the main
result.
Theorem[The main result]
Let X n,X be the solutions to reflected stochastic equations (1)
and (2). It holds that for any p > 0 and T > 0,

lim
n→∞

E [ sup
0≤t≤T

|X n(t)− X (t)|p] = 0. (6)

The rest of the paper (27 pages) is entirely devoted to the proof of
this theorem. Before sketching the proof I like to make a remark.
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A remark

Remark. After the submission of this paper to the Annals of
Probability, I was made aware of the existence of the following
online preprint by the referee:
[1]. S. Aida and K. Sasaki: Wong-Zakai approximation of solutions
for reflecting stochastic differential equations on domains in
Euclidean spaces.

The work in these two papers was carried out completely
independently. The approaches are different. I hope that the
method I present to you could also be used for some other
reflected stochastic equations.
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Sketch of the proof

First of all we recall the following estimates from [ES].
lemma[1] Let p ≥ 2, T > 0. Then there exists a constant
C1(T , p) independent of n such that

E [|X n(t)− X n(s)|p] ≤ C1(T , p)|t − s|
p
2 , (7)

for 0 ≤ s, t ≤ T .

lemma[2] Let p ≥ 2, T > 0. Then there exists a constant
C2(T , p) such that

E [|X (t)− X (s)|p] ≤ C2(T , p)|t − s|
p
2 , (8)

for 0 ≤ s, t ≤ T .
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Sketch of the proof

Due to (7), (8) above, to prove the main result, it can be shown
that one only needs to prove that for any fixed t > 0

lim
n→∞

E [|X n(t)− X (t)|2] = 0. (9)

To prove (9). again because of (7), (8) we may assume that t is a
dyadic number, i.e., t = k0

2n0 for some positive integers k0, n0 and
we may also assume n ≥ n0.
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Sketch of the proof

Let f (y1, y2, y3) = exp(r(y1 + y2))y3. Recall ϕ is the function
specified in (D.2). To simplify the exposure, we introduce the
following notation:

y1(t) := ϕ(X (t)), yn2 (t) := ϕ(X n(t)), yn3 (t) := |X n(t)− X (t)|2.

fn(t) := f (y1(t), y
n
2 (t), y

n
3 (t)), gn(t) := exp(ry1(t) + ryn2 (t)).

Since X n,X take values in the bounded domain D̄, we have

c1|X n(t)− X (t)|2 ≤ fn(t) ≤ c2|X n(t)− X (t)|2, (10)

where c1, c2 are positive constants independent of n. Thus the
proof of (9) reduces to show

lim
n→∞

E [fn(t)] = 0. (11)
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Sketch of the proof

By Ito’s formula, we have

fn(t)

= r

∫ t

0
fn(s) < ∇ϕ(X (s)), σ(X (s))dW (s) >

+r

∫ t

0
fn(s) < ∇ϕ(X (s)), b(X (s) > ds

+
1

2
r

∫ t

0
fn(s)tr(ϕ

′′(σσ∗)(X (s)))ds

+
1

2
r

∫ t

0
fn(s) < ∇ϕ(X (s), σσ′(X (s)) > ds

+ r

∫ t

0
fn(s) < ∇ϕ(X (s)), ν(X (s)) > d |L|(s)

+r

∫ t

0
fn(s) < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >
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Sketch of the proof

+ r

∫ t

0
fn(s) < ∇ϕ(X n(s)), b(X n(s)) > ds

+r

∫ t

0
fn(s) < ∇ϕ(X n(s)), ν(X n(s)) > d |Ln|(s)

+ 2

∫ t

0
gn(s) < X n(s)− X (s), σ(X n(s))dW n(s) >

− 2

∫ t

0
gn(s) < X n(s)− X (s), σ(X (s))dW (s) >

+ 2

∫ t

0
gn(s) < X n(s)− X (s), b(X n(s))− b(X (s)) > ds
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Sketch of the proof

−
∫ t

0
gn(s) < X n(s)− X (s), σσ′(X (s)) > ds

+ 2

∫ t

0
gn(s) < X n(s)− X (s), ν(X n(s))d |Ln|(s)− ν(X (s))d |L|(s) >

+

∫ t

0
gn(s)tr(σσ

∗(X (s)))ds

+
1

2
r2

∫ t

0
fn(s)|σ∗∇ϕ|2(X (s))ds

− 2r

∫ t

0
gn(s) < σ∗(X (s))(X n(s)− X (s)), σ∗∇ϕ(X (s)) > ds. (12)

Tusheng Zhang Strong Convergence of Wong-Zakai Approximations of Reflected SDEs in A Multidimensional General Domain



Sketch of the proof

gn(t)

= exp(2rϕ(x0)) + r

∫ t

0
gn(s) < ∇ϕ(X (s)), σ(X (s))dW (s) >

+ r

∫ t

0
gn(s) < ∇ϕ(X (s)), b(X (s)) > ds

+
1

2
r

∫ t

0
gn(s)tr(ϕ

′′(σσ∗)(X (s)))ds

+
1

2
r

∫ t

0
gn(s) < ∇ϕ(X (s), σσ′(X (s)) > ds
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Sketch of the proof

+ r

∫ t

0
gn(s) < ∇ϕ(X (s)), ν(X (s)) > d |L|(s)

+ r

∫ t

0
gn(s) < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >

+ r

∫ t

0
gn(s) < ∇ϕ(X n(s)), b(X n(s)) > ds

+r

∫ t

0
gn(s) < ∇ϕ(X n(s)), ν(X n(s)) > d |Ln|(s)

+
1

2
r2

∫ t

0
gn(s)|σ∗∇ϕ|2(X (s))ds (13)
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Sketch of the proof

To bound E [fn(t)], the crucial step is to get proper estimates for
the terms

rE [

∫ t

0
fn(s) < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >],

and

rE [

∫ t

0
gn(s) < X n(s)− X (s), σ(X n(s))dW n(s) >].

This will be done in the following two lemmas.

Tusheng Zhang Strong Convergence of Wong-Zakai Approximations of Reflected SDEs in A Multidimensional General Domain



Sketch of proof

lemma[3]
It holds that

rE [

∫ t

0
fn(s) < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >]

≤ C (
1

2n
)
1
2 + r2E [

∫ t

0
fn(s) < σ∗∇ϕ(X (s)), σ∗∇ϕ(X n(s)) > ds]

+
1

2
r2E [

∫ t

0
fn(s)|σ∗∇ϕ|2(X n(s))ds]

+r

∫ t

0
< gn(s)σ

∗(X n(s))(X n(s)− X (s)), σ∗∇ϕ(X n(s)) > ds

+
1

2
r

∫ t

0
fn(s)

m∑
i=1

(σ∗(∇(σ∗∇ϕ)i ))i (X
n(s))ds

−2r

∫ t

0
< gn(s)σ

∗(X (s))(X n(s)− X (s)), σ∗∇ϕ(X n(s)) > ds.(14)
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Main steps of the proof of Lemma 3

Set

A = r

∫ t

0
fn(s) < ∇ϕ(X n(s)), σ(X n(s))dW n(s) > .

Write

A = r

∫ t

0
fn(s

−
n ) < ∇ϕ(X n(s−n )), σ(X n(s−n ))dW n(s) >

+ r

∫ t

0
(fn(s)− fn(s

−
n )) < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >

+ r

∫ t

0
fn(s

−
n ) < σ∗∇ϕ(X n(s))− σ∗∇ϕ(X n(s−n )), dW n(s) >

:= A1 + A2 + A3. (15)

As a stochastic integral, it is easy to see that E [A1] = 0.
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Main steps of the proof of Lemma 3

In view of (12), we further write A2 as

A2

= r2
∫ t

0
(

∫ s

s−n

fn(u)

× < ∇ϕ(X (u)), σ(X (u))dW (u) >) < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >

+ r2
∫ t

0
(

∫ s

s−n

fn(u) < ∇ϕ(X (u)), b(X (u))du >)

× < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >

+
1

2
r2

∫ t

0
(

∫ s

s−n

fn(u)tr(ϕ
′′(σσ∗)(X (u))du)

× < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >
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Main steps of the proof of Lemma 3

+
1

2
r2

∫ t

0
(

∫ s

s−n

fn(u) < ∇ϕ(X (u)), (σσ′)(X (u)) > du)

× < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >

+ r2
∫ t

0
(

∫ s

s−n

fn(u) < ∇ϕ(X (u)), ν(X (u)) > d |L|(u))

× < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >

+ · · ·

:=
17∑
i=1

A2i (16)
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Main steps of the proof of Lemma 3

We will bound each of the terms. Since ∇ϕ, b, σ are bounded on
D̄, we have

E [|A22|] ≤ C

∫ t

0
(s − s−n )E [|Ẇ n(s)|]ds

≤ C
1

2n

∫ t

0
(2n)

1
2 ds ≤ C (

1

2n
)
1
2 . (17)

Similarly, it holds that

E [|A2i |] ≤ C (
1

2n
)
1
2 , i = 3, 4, 7, 11, 12, 15, 16, 17. (18)
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Main steps of the proof of Lemma 3

To bound A21, we write it as

A21

= r2
∫ t

0
(

∫ s

s−n

[fn(u) < ∇ϕ(X (u)), σ(X (u)dW (u) > −fn(s
−
n )×

< ∇ϕ(X (s−n )), σ(X (s−n ))dW (u) >]) < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >

+ r2
∫ t

0
(

∫ s

s−n

fn(s
−
n ) < ∇ϕ(X (s−n )), σ(X (s−n ))dW (u) >)

× [< ∇ϕ(X n(s)), σ(X n(s))dW n(s) >

− < ∇ϕ(X n(s−n )), σ(X n(s−n ))dW n(s) >]

+ r2
∫ t

0
fn(s

−
n ) < ∇ϕ(X (s−n )), σ(X (s−n ))(W (s)−W (s−n )) >

× < ∇ϕ(X n(s−n )), σ(X n(s−n ))dW n(s) >

:= A21,1 + A21,2 + A21,3. (19)
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Main steps of the proof of Lemma 3

By Ito isometry and Hölder’s inequality,

E [A21,1]

≤ C

∫ t

0
(E [

∫ s

s−n

|fn(u)σ∗∇ϕ(X (u))− fn(s
−
n )σ∗∇ϕ(X (s−n ))|2

×du])
1
2 (E [|Ẇ n|2(s)])

1
2 ds

≤ C

∫ t

0
(2n)

1
2 (E [

∫ s

s−n

|fn(u)σ∗∇ϕ(X (u))− fn(s
−
n )

×σ∗∇ϕ(X (s−n ))|2du])
1
2 ds

≤ C

∫ t

0
(2n)

1
2 (

1

2n
)
1
2 (

1

2n
)
1
2 ds ≤ C (

1

2n
)
1
2 , (20)

where (7), (8) have been used.
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Main steps of the proof of Lemma 3

For the term A21,2, we have

E [A21,2]

≤ C

∫ t

0
(E [|W (s)−W (s−n )|3])

1
3

×(E [|σ∗∇ϕ(X n(s))− σ∗∇ϕ(X n(s−n ))|3])
1
3 (E [|Ẇ n|3(s)])

1
3 ds

≤ C

∫ t

0
(2n)

1
2 (

1

2n
)
1
2 (

1

2n
)
1
2ds ≤ C (

1

2n
)
1
2 . (21)

where (7) has been used.
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Main steps of the proof of Lemma 3

Now,

A21,3

= r2
∑
k

∫ k+1
2n

k
2n

fn(
k − 1

2n
) < ∇ϕ(X (

k − 1

2n
)), σ(X (

k − 1

2n
)(W (s)−

W (
k

2n
)) >< ∇ϕ(X n(

k − 1

2n
)), σ(X n(

k − 1

2n
))(W (

k

2n
)−W (

k − 1

2n
)) > ds

+ r2
∑
k

∫ k+1
2n

k
2n

fn(
k − 1

2n
) < σ∗∇ϕ(X (

k − 1

2n
)),W (

k

2n
)−W (

k − 1

2n
)

> × < σ∗∇ϕ(X n(
k − 1

2n
)),W (

k

2n
)−W (

k − 1

2n
) > ds

:= A21,31 + A21,32. (22)

Conditioning on F k
2n
, it is easy to see that E [A21,31] = 0.
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The main steps of proof of Lemma 3

Moreover,

A21,32

= r2
∑
k

fn(
k − 1

2n
)

m∑
i=1

(σ∗∇ϕ)i (X (
k − 1

2n
))(σ∗∇ϕ)i (X

n(
k − 1

2n
))

×(|Wi (
k

2n
)−Wi (

k − 1

2n
)|2 − 1

2n
)

+ r2
∑
k

fn(
k − 1

2n
)
∑
i ̸=j

(σ∗∇ϕ)i (X (
k − 1

2n
))(σ∗∇ϕ)j(X

n(
k − 1

2n
))

×(Wi (
k

2n
)−Wi (

k − 1

2n
))(Wj(

k

2n
)−Wj(

k − 1

2n
))

+ r2
∑
k

fn(
k − 1

2n
)

m∑
i=1

(σ∗∇ϕ)i (X (
k − 1

2n
))(σ∗∇ϕ)i (X

n(
k − 1

2n
))(

1

2n
)

:= A21,321 + A21,322 + A21,323. (23)
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The main steps of proof of Lemma 3

Conditioning on F k−1
2n

and using the independence of Wi ,Wj for

i ̸= j , we find that E [A21,321] = 0 and E [A21,322] = 0.
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The main steps of proof of Lemma 3

On the other hand,

E [A21,323]

= r2E [

∫ t

0
fn(s) < σ∗∇ϕ(X (s)), σ∗∇ϕ(X n(s)) > ds]

+ r2E [

∫ t

0
{fn(s−n ) < σ∗∇ϕ(X (s−n )), σ∗∇ϕ(X n(s−n )) >

−fn(s) < σ∗∇ϕ(X (s)), σ∗∇ϕ(X n(s)) >}ds]

≤ r2E [

∫ t

0
fn(s) < σ∗∇ϕ(X (s)), σ∗∇ϕ(X n(s)) > ds]

+C (
1

2n
)
1
2 , (24)

where (7), (8) again have been used. Putting together (19)—(24)
we arrive at

E [A21] ≤ CE [

∫ t

0
fn(s)ds] + C (

1

2n
)
1
2 . (25)
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The main steps of proof of Lemma 3

The term A25 can be bounded as follows.

E [A25]

≤ CE [
∑
k

∫ k+1
2n

k
2n

(

∫ s

k−1
2n

d |L|(u))2n|W (
k

2n
)−W (

k − 1

2n
)|ds]

≤ CE [
∑
k

(|L|( k
2n

)− |L|(k − 1

2n
))|W (

k

2n
)−W (

k − 1

2n
)|]

≤ 2CE [|L|(t) sup
|u−v |≤ 1

2n

(|W (u)−W (v)|)]

≤ 2C (E [|L|2(t)])
1
2 (

1

2n
)
1
2 ≤ C (

1

2n
)
1
2 . (26)
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Collecting the estimates for all the remaining terms we arrive at

E [A2]

≤ C (
1

2n
)
1
2 + r2E [

∫ t

0
fn(s) < σ∗∇ϕ(X n(s)), σ∗∇ϕ(X (s)) > ds]

+
1

2
r2E [

∫ t

0
fn(s)|σ∗∇ϕ|2(X n(s))ds

+r

∫ t

0
< gn(s)σ

∗(X n(s))(X n(s)− X (s)), σ∗∇ϕ(X n(s)) > ds

−2r

∫ t

0
< gn(s)σ

∗(X (s))(X n(s)− X (s)), σ∗∇ϕ(X n(s)) > ds.

(27)
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The main steps of the proof of Lemma3

Now we turn to A3. By the chain rule, we have

A3

= r

∫ t

0
fn(s

−
n )

m∑
i=1

[(σ∗∇ϕ)i (X
n(s))− (σ∗∇ϕ)i (X

n(s−n ))]dW n
i (s)

= r

∫ t

0
fn(s

−
n )

m∑
i=1

∫ s

s−n

[< ∇(σ∗∇ϕ)i (X
n(u))−∇(σ∗∇ϕ)i (X

n(s−n )),

σ(X n(u))dW n(u) >]dW n
i (s)

+ r

∫ t

0
fn(s

−
n )

m∑
i=1

∫ s

s−n

< ∇(σ∗∇ϕ)i (X
n(s−n )), (σ(X n(u))

−σ(X n(s−n )))dW n(u) > dW n
i (s)
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The main steps of the proof of Lemma3

+r

∫ t

0
fn(s

−
n )

m∑
i=1

∫ s

s−n

< ∇(σ∗∇ϕ)i (X
n(s−n )), σ(X n(s−n ))dW n(u) > dW n

i (s)

+r

∫ t

0
fn(s

−
n )

m∑
i=1

∫ s

s−n

< ∇(σ∗∇ϕ)i (X
n(u)), ν(X n(u))d |Ln|(u) > dW n

i (s)

+r

∫ t

0
fn(s

−
n )

m∑
i=1

∫ s

s−n

< ∇(σ∗∇ϕ)i (X
n(u)), b(X n(u))du > dW n

i (s)

:= A31 + A32 + A33 + A34 + A35 (28)
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The main steps of the proof of Lemma3

Similar to the estimates for A214, A22 and the term A21,2, it can be
shown that

E [A3i ] ≤ C (
1

2n
)
1
2 , i = 1, 2, 4, 5. (29)

Now,

A33

= r
∑
k

(2n)2
∫ k+1

2n

k
2n

∫ k
2n

k−1
2n

fn(
k − 1

2n
)

m∑
i=1

m∑
j=1

(σ∗(∇(σ∗∇ϕ)i ))j(X
n(
k − 1

2n
))

×(Wi (
k

2n
)−Wi (

k − 1

2n
))(Wj(

k − 1

2n
−Wj(

k − 2

2n
))dsdu

+ r
∑
k

(2n)2
∫ k+1

2n

k
2n

∫ s

k
2n

fn(
k − 1

2n
)

m∑
i=1

m∑
j=1

(σ∗(∇(σ∗∇ϕ)i ))j(X
n(
k − 1

2n
))

×(Wi (
k

2n
)−Wi (

k − 1

2n
))(Wj(

k

2n
)−Wj(

k − 1

2n
))dsdu
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= r
∑
k

fn(
k − 1

2n
)

m∑
i=1

m∑
j=1

(σ∗(∇(σ∗∇ϕ)i ))j(X
n(
k − 1

2n
))

×(Wi (
k

2n
)−Wi (

k − 1

2n
))(Wj(

k − 1

2n
)−Wj(

k − 2

2n
))

+
1

2
r
∑
k

fn(
k − 1

2n
)

m∑
i=1

m∑
j=1

(σ∗(∇(σ∗∇ϕ)i ))j(X
n(
k − 1

2n
))

×(Wi (
k

2n
)−Wi (

k − 1

2n
))(Wj(

k

2n
)−Wj(

k − 1

2n
))

:= A331 + A332 (30)
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The main steps of the proof of Lemma 3

Conditioning on F k−1
2n

, it is easy to see E [A331] = 0. For the

second term we have

A332

=
1

2
r
∑
k

fn(
k − 1

2n
)

m∑
i ̸=j

(σ∗(∇(σ∗∇ϕ)i ))j(X
n(
k − 1

2n
))

×(Wi (
k

2n
)−Wi (

k − 1

2n
))(Wj(

k

2n
)−Wj(

k − 1

2n
))

+
1

2
r
∑
k

fn(
k − 1

2n
)

m∑
i=1

(σ∗(∇(σ∗∇ϕ)i ))i (X
n(
k − 1

2n
))

×{|Wi (
k

2n
)−Wi (

k − 1

2n
)|2 − 1

2n
}
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+
1

2
r

∫ t

0
{fn(s−n )

m∑
i=1

(σ∗(∇(σ∗∇ϕ)i ))i (X
n(s−n ))

−fn(s)
m∑
i=1

(σ∗(∇(σ∗∇ϕ)i ))i (X
n(s))}ds

+
1

2
r

∫ t

0
fn(s)

m∑
i=1

(σ∗(∇(σ∗∇ϕ)i ))i (X
n(s))ds

:= A3321 + A3322 + A3323 + A3324 (31)

Tusheng Zhang Strong Convergence of Wong-Zakai Approximations of Reflected SDEs in A Multidimensional General Domain



The main steps of the proof of Lemma 3

Using the martingale property and the independence of Wi ,Wj for
i ̸= j , we find that E [A3321] = 0 and E [A3322] = 0. In view of (7)

and (8), we have E [A3323] ≤ C ( 1
2n )

1
2 . Thus, we deduce from (30),

(31) that

E [A33]

≤ C (
1

2n
)
1
2 +

1

2
r

∫ t

0
fn(s)

m∑
i=1

(σ∗(∇(σ∗∇ϕ)i ))i (X
n(s))ds.(32)

Finally it follows from (28), (29), (29) that

E [A3]

≤ C (
1

2n
)
1
2 +

1

2
r

∫ t

0
fn(s)

m∑
i=1

(σ∗(∇(σ∗∇ϕ)i ))i (X
n(s))ds.(33)

Combining (27) with (33), we complete the proof of Lemma.

Tusheng Zhang Strong Convergence of Wong-Zakai Approximations of Reflected SDEs in A Multidimensional General Domain



The sketch of the proof

lemma[4].We have

rE [

∫ t

0
gn(s) < X n(s)− X (s), σ(X n(s))dW n(s) >]

≤ rE [

∫ t

0
gn(s) < σ∗∇ϕ(X n(s)), σ∗(X n(s))(X n(s)− X (s)) > ds]

+ 2rE [

∫ t

0
gn(s) < σ∗∇ϕ(X (s)), σ∗(X n(s))(X n(s)− X (s)) > ds]

+ E [

∫ t

0
gn(s)

d∑
i=1

m∑
j=1

σ2
ij(X

n(s))ds]

+ E [

∫ t

0
gn(s)

d∑
i=1

(X n
i (s)− Xi (s))

m∑
j=1

(σ∗∇σij)j(X
n(s))ds]

− 2E [

∫ t

0
gn(s)

d∑
i=1

m∑
j=1

σij(X (s))σij(X
n(s))ds] + C (

1

2n
)
1
2 . (34)
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The sketch of the proof

Proof of the main result: (Continued). Choose r < −2C0
α ,

where α, C0 are the constants appeared in the assumptions (D.1)
and (D.2). By the Lipschitz continuity of the coefficients and
boundedness of ϕ, ϕ′′, ∇ϕ, σσ′ on the domain D̄, it follows from
(12) that

E [fn(t)]

≤ CrE [

∫ t

0
fn(s)ds]

+ E [

∫ t

0
{< rfn(s)∇ϕ(X (s))− 2gn(s)(X

n(s)− X (s)), ν(X (s)) >}d |L|(s)]

+ rE [

∫ t

0
fn(s) < ∇ϕ(X n(s)), σ(X n(s))dW n(s) >]

+ E [

∫ t

0
{< rfn(s)∇ϕ(X n(s)) + 2gn(s)(X

n(s)− X (s)),

ν(X n(s)) >}d |Ln|(s)]
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The sketch of the proof

+ 2E [

∫ t

0
gn(s) < X n(s)− X (s), σ(X n(s))dW n(s) >]

− E [

∫ t

0
gn(s) < X n(s)− X (s), σσ′(X (s)) > ds]

+ E [

∫ t

0
gn(s)tr(σσ

∗(X (s)))ds]

− 2rE [

∫ t

0
gn(s) < σ∗(X (s))(X n(s)− X (s)), σ∗∇ϕ(X (s)) > ds].

(35)
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The sketch of the proof

In view of r < 0 and the assumptions (D.1) and (D.2), we deduce
that

< rfn(s)∇ϕ(X (s))− 2gn(s)(X
n(s)− X (s)), ν(X (s)) >

= gn(s)[r < ∇ϕ(X (s)), ν(X (s)) > |xn(s)− X (s)|2

−2 < X n(s)− X (s), ν(X (s)) >]

≤ gn(s)[rα|xn(s)− X (s)|2 + 2C0|X n(s)− X (s)|2] ≤ 0, (36)

and similarly

< rfn(s)∇ϕ(X n(s)) + 2gn(s)(X
n(s)− X (s)), ν(X n(s)) >

≤ 0. (37)

Thus, using Lemma 3 and Lemma 4, taking into account (36) and
(37) we obtain from (35) that

Tusheng Zhang Strong Convergence of Wong-Zakai Approximations of Reflected SDEs in A Multidimensional General Domain



Sketch of the proof

E [fn(t)]

≤ CrE [

∫ t

0
fn(s)ds] + C (

1

2n
)
1
2

− E [

∫ t

0
gn(s) < X n(s)− X (s), σσ′(X (s)) > ds]

+ E [

∫ t

0
gn(s)

d∑
i=1

m∑
j=1

σ2
ij(X (s))ds]

− 2rE [

∫ t

0
gn(s) < σ∗(X (s))(X n(s)− X (s)), σ∗∇ϕ(X (s)) > ds]

+ 2r

∫ t

0
< gn(s)σ

∗(X n(s))(X n(s)− X (s)), σ∗∇ϕ(X n(s)) > ds

− 2r

∫ t

0
< gn(s)σ

∗(X (s))(X n(s)− X (s)), σ∗∇ϕ(X n(s)) > ds
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Sketch of the proof

+ 2rE [

∫ t

0
gn(s) < σ∗∇ϕ(X (s)), σ∗(X n(s))(X n(s)− X (s)) > ds]

+ E [

∫ t

0
gn(s)

d∑
i=1

m∑
j=1

σ2
ij(X

n(s))ds]

+ E [

∫ t

0
gn(s) < X n(s)− X (s), σσ′(X n(s)) > ds]

−2 E [

∫ t

0
gn(s)

d∑
i=1

m∑
j=1

σij(X (s))σij(X
n(s))ds]
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Sketch of the proof

≤ CrE [

∫ t

0
fn(s)ds] + C (

1

2n
)
1
2

+ E [

∫ t

0
gn(s)

d∑
i=1

m∑
j=1

(σij(X (s))− σij(X
n(s)))2ds]

+ 2r

∫ t

0
< gn(s)(σ

∗(X n(s))− σ∗(X (s)))(X n(s)− X (s)),

σ∗∇ϕ(X n(s)) > ds

+ 2rE [

∫ t

0
gn(s) < σ∗∇ϕ(X (s)),

(σ∗(X n(s))− σ∗(X (s)))(X n(s)− X (s)) > ds]

+ E [

∫ t

0
gn(s) < X n(s)− X (s), σσ′(X n(s))− σσ′(X (s)) > ds]

≤ CE [

∫ t

0
fn(s)ds] + C (

1

2n
)
1
2 , (38)
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Sketch of the proof

where the Lipschitz continuity of the coefficients and the fact that
fn(s) = gn(s)|X n(s)− X (s)|2 have been used. Finally by the
Gronwall’s inequality, we obtain

E [fn(t)] ≤ C (
1

2n
)
1
2 → 0 (39)

as n → ∞, completing the proof of (11), hence the theorem.
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