Strong Convergence of Wong-Zakai Approximations of Reflected SDEs in A Multidimensional General Domain

Tusheng Zhang

University of Manchester and University of Science and Technology of China

July 7, Ermei Campus 2013

In this paper, we obtained the strong convergence of Wong-Zakai approximations of reflected SDEs in a general multidimensional domain giving an affirmative answer to the question posed in [ES] by Evans and Stroock.

Introduction

Let D be a bounded domain in R^d . Consider the reflected stochastic differential equation (SDE):

$$
\begin{cases}\n dX(t) = \sigma(X(t)) \circ dW(t) + b(X(t))dt + dL(t), \\
 X(0) = x_0, \quad X(t) \in \overline{D}, t \ge 0, \\
 |L|(t) = \int_0^t I_{\partial D}(X(s))d|L|(s),\n\end{cases}
$$
\n(1)

where $W(t)$, $t \geq 0$ is a *m*-dimensional Brownian motion, $|L|(t)$ stands for the total variation of *L* on the interval [0*,t*], *◦* indicates a Stratonovich integral. There is a big amount of literature devoted to the study of reflected SDEs. Let us mention a few of them. Reflected SDEs in a convex domain was first studied by H. Tanaka in [T]. Existence and uniqueness of solutions of reflected SDEs in general domains were established by Lions and Sznitman in [LS] and Saisho in [S]. Existence and uniqueness of solutions of reflected SDEs under more general coefficients than the usual Lipschitz conditions were considered in [MR].

The purpose of this paper is to study Wong-Zakai type approximations of above reflected SDEs. Let $Wⁿ$ be the *n*−dyadic piecewise linear interpolation of *W* and *X n* the solution of the following reflected random ordinary differential equation:

$$
\begin{cases}\n\dot{X}^n(t) = \sigma(X^n(t))\dot{W}^n(t) + b(X^n(t))dt + \dot{L}^n(t), \\
X^n(0) = x_0, \quad X^n(t) \in \bar{D}, t \ge 0, \\
|L^n|(t) = \int_0^t I_{\partial D}(X^n(s))d|L^n|(s).\n\end{cases}
$$
\n(2)

We are concerned with the strong convergence of X^n to the solution *X*. Strong convergence of Wong-Zakai approximations to stochastic differential equations is well known, see e.g. [IW]. However, the convergence of Wong-Zakai approximations to stochastic differential equations with reflection (especially in higher dimensions) is not a trivial matter because of the constraints on the solution and the appearance of the boundary local time.

There are two main papers related to this question. In [P], Petterson established a Wong-Zakai approximations for SDEs with reflection for convex domains. The convexity is too rigid sometimes for applications. In [ES], Evans and Stroock considered Wong-Zakai approximations for reflected SDEs in general domains (as in $[LS]$) and proved that X^n converges weakly (in law) to the solution *X*. In the same paper, the authors also posed the question of whether the strong convergence holds. For some of the interesting applications, we refer the reader to [ES]. The purpose of this paper is to establish the strong convergence (the *L p* convergence in $C([0, T], \bar{D})$ of the Wong-Zakai approximations for reflected SDEs in multidimensional general domains, hence giving an affirmative answer to the question in [ES].

The Main result

Let *D ⊂ R ^d* be a bounded domain with boundary *∂D*. For *x ∈ ∂D*, let *ν*(*x*) *⊂ S ^d−*¹ denote a nonempty collection of reflecting directions. Throughout this paper, as in [LS], [ES], we impose the following conditions on the domain.

D.1 $\nu(x) \neq \emptyset$ for every $x \in \partial D$ and there exist a constant $C_0 \geq 0$ such that

$$
(x'-x)\cdot \nu + C_0|x-x'|^2 \ge 0
$$
 for all $x' \in D, x \in \partial D$ and $\nu \in \nu$

 $\mathsf{D.2}\;$ There exists a function $\phi\in\mathsf{C}^2(\mathsf{R}^d;\mathsf{R})$ and $\alpha>0$ such that

 $\nabla \phi(x) \cdot \nu \ge \alpha$ for all $x \in \partial D$, $\nu \in \nu(x)$.

D.3 There exist *n* ≥ 1, λ > 0, K > 0, $a_1, a_2, ..., a_n$ ∈ S^{d-1} , and $x_1, x_2, ..., x_n \in \partial D$ such that $\partial D \subset \cup_{i=1}^n B(x_i, K)$ and $x \in \partial D \cap B(x_i, 2K) \Longrightarrow \nu \cdot a_i \geq \lambda \text{ for all } \nu \in \nu(x).$

Convention; Throughout this paper, any function *G* defined on the positive half line $[0, \infty)$ automatically extends to a function on the whole line by setting $G(s) = G(s \vee 0)$ when necessary.

The main result

Let $W(t) = (W_1(t), W_2(t), ..., W_m(t)), t \ge 0$ be a *m*-dimensional Brownian motion on a completed filtered probability space $(\Omega,\mathcal{F},\mathcal{F}_t,P).$ Suppose $\sigma=(\sigma_{i,j})\in \mathcal{C}^1(\bar D; R^d\otimes R^m)$ such that the derivative σ' is Lipschitz continuous and that $b:\bar{D}\to R^d$ is Lipschitz continuous.

For $n \in N$ and $s \in [\frac{k}{2^n}]$ $\frac{k}{2^n}, \frac{k+1}{2^n}$ $\frac{n+1}{2^n}$), set $s_n^- = (\frac{k-1}{2^n}) \vee 0$ and $s_n = \frac{k}{2^n}$ $\frac{\kappa}{2^n}$. Let *W ⁿ* be the linear interpolation of *W* defined by

$$
W^{n}(t) = W(\frac{k-1}{2^{n}}) + 2^{n}(t - \frac{k}{2^{n}})(W(\frac{k}{2^{n}}) - W(\frac{k-1}{2^{n}}))
$$
 (3)

for $t \in [\frac{k}{2^n}]$ $\frac{k}{2^n}, \frac{k+1}{2^n}$ $\mathcal{L}^{\frac{m+1}{2^n}}$), $k = 0, 1, 2, ...$ Note that the above convention applies here. Let $\sigma\sigma'$: $\bar{D} \rightarrow R^d$ be defined as

$$
(\sigma\sigma'(y))_i = \sum_{j=1}^m \sum_{k=1}^d \frac{\partial \sigma_{i,j}(y)}{\partial y_k} \sigma_{k,j}(y).
$$
 (4)

With this notation, equation (1) becomes

$$
X(t) = x_0 + \int_0^t \sigma(X(s))dW(s) + \frac{1}{2}\int_0^t \sigma \sigma'(X(s))ds + \int_0^t b(X(s))ds + L(t)
$$
\n(5)

Definition

We say that (X, L) is a solution to the reflected SDE (5) if (X, L) is a $\bar{D}\times R^d$ -valued, adapted continuous process such that (i) $L(t)$, $t > 0$ is of bounded variation on any finite sub-interval of $[0, \infty)$, (ii) for $t \geq 0$,

$$
X(t) = x_0 + \int_0^t \sigma(X(s))dW(s) + \frac{1}{2}\int_0^t \sigma \sigma'(X(s))ds + \int_0^t b(X(s))ds + L(t)
$$

almost surely,

(iii)

$$
|L|(t)=\int_0^t I_{\partial D}(X(s))d|L|(s), \qquad L(t)=\int_0^t \nu(X(s))d|L|(s),
$$

where $|L|(t)$ stands for the total variation of L on the interval $[0, t]$, the last equality means that $\frac{dL(t)}{d|L|(t)} \in \nu(X(t)).$

The solution (X^n, L^n) to the reflected random ordinary differential equation (2) is defined accordingly.

Under the above assumptions, the existence and uniqueness of $Xⁿ, X$ are well known now, see, for example, [LS]. Here is the main result.

Theorem[The main result]

Let X^n , X be the solutions to reflected stochastic equations (1) and (2). It holds that for any $p > 0$ and $T > 0$,

$$
\lim_{n\to\infty} E\left[\sup_{0\leq t\leq T} |X^n(t) - X(t)|^p\right] = 0. \tag{6}
$$

The rest of the paper (27 pages) is entirely devoted to the proof of this theorem. Before sketching the proof I like to make a remark.

Remark. After the submission of this paper to the Annals of Probability, I was made aware of the existence of the following online preprint by the referee:

[1]. S. Aida and K. Sasaki: Wong-Zakai approximation of solutions for reflecting stochastic differential equations on domains in Euclidean spaces.

The work in these two papers was carried out completely independently. The approaches are different. I hope that the method I present to you could also be used for some other reflected stochastic equations.

First of all we recall the following estimates from [ES]. **lemma**[1] Let $p > 2$, $T > 0$. Then there exists a constant *C*1(*T, p*) independent of *n* such that

$$
E[|X^n(t) - X^n(s)|^p] \leq C_1(T,p)|t-s|^{\frac{p}{2}}, \qquad (7)
$$

for $0 \leq s, t \leq T$.

lemma^[2] Let $p \ge 2$, $T > 0$. Then there exists a constant $C_2(T, p)$ such that

$$
E[|X(t) - X(s)|^{p}] \leq C_{2}(\tau, p)|t - s|^{\frac{p}{2}}, \qquad (8)
$$

for $0 \leq s, t \leq T$.

Due to (7), (8) above, to prove the main result, it can be shown that one only needs to prove that for any fixed *t >* 0

$$
\lim_{n\to\infty}E[|X^n(t)-X(t)|^2]=0.
$$
\n(9)

To prove (9). again because of (7), (8) we may assume that *t* is a dyadic number, i.e., $t=\frac{k_0}{2^{n_0}}$ for some positive integers k_0 , n_0 and we may also assume $n > n_0$.

Let $f(y_1, y_2, y_3) = exp(r(y_1 + y_2))y_3$. Recall ϕ is the function specified in (D.2). To simplify the exposure, we introduce the following notation:

$$
y_1(t) := \phi(X(t)), y_2^n(t) := \phi(X^n(t)), y_3^n(t) := |X^n(t) - X(t)|^2.
$$

$$
f_n(t) := f(y_1(t), y_2^n(t), y_3^n(t)), g_n(t) := \exp(ry_1(t) + ry_2^n(t)).
$$

Since X^n, X take values in the bounded domain \bar{D} , we have

$$
c_1|X^n(t)-X(t)|^2\leq f_n(t)\leq c_2|X^n(t)-X(t)|^2,\qquad(10)
$$

where *c*1*, c*² are positive constants independent of *n*. Thus the proof of (9) reduces to show

$$
\lim_{n\to\infty} E[f_n(t)] = 0. \tag{11}
$$

By Ito's formula, we have

$$
f_n(t)
$$
\n
$$
= r \int_0^t f_n(s) < \nabla \phi(X(s)), \sigma(X(s))dW(s) > \\
\quad + r \int_0^t f_n(s) < \nabla \phi(X(s)), b(X(s) > ds \\
\quad + \frac{1}{2}r \int_0^t f_n(s)tr(\phi''(\sigma \sigma^*)(X(s)))ds \\
\quad + \frac{1}{2}r \int_0^t f_n(s) < \nabla \phi(X(s), \sigma \sigma'(X(s)) > ds \\
\quad + r \int_0^t f_n(s) < \nabla \phi(X(s)), \nu(X(s)) > d|L|(s) \\
\quad + r \int_0^t f_n(s) < \nabla \phi(X^n(s)), \sigma(X^n(s))dW^n(s) > \\
$$

$$
+ r \int_0^t f_n(s) < \nabla \phi(X^n(s)), b(X^n(s)) > ds + r \int_0^t f_n(s) < \nabla \phi(X^n(s)), \nu(X^n(s)) > d|L^n|(s) + 2 \int_0^t g_n(s) < X^n(s) - X(s), \sigma(X^n(s)) dW^n(s) > - 2 \int_0^t g_n(s) < X^n(s) - X(s), \sigma(X(s)) dW(s) > + 2 \int_0^t g_n(s) < X^n(s) - X(s), b(X^n(s)) - b(X(s)) > ds
$$

$$
-\int_{0}^{t} g_{n}(s) < X^{n}(s) - X(s), \sigma\sigma'(X(s)) > ds + 2\int_{0}^{t} g_{n}(s) < X^{n}(s) - X(s), \nu(X^{n}(s))d|L^{n}|(s) - \nu(X(s))d|L|(s) > + \int_{0}^{t} g_{n}(s)tr(\sigma\sigma^{*}(X(s)))ds + \frac{1}{2}r^{2}\int_{0}^{t} f_{n}(s)|\sigma^{*}\nabla\phi|^{2}(X(s))ds - 2r\int_{0}^{t} g_{n}(s) < \sigma^{*}(X(s))(X^{n}(s) - X(s)), \sigma^{*}\nabla\phi(X(s)) > ds.
$$
 (12)

$$
g_n(t) \n= exp(2r\phi(x_0)) + r \int_0^t g_n(s) < \nabla \phi(X(s)), \sigma(X(s))dW(s) >\n+ r \int_0^t g_n(s) < \nabla \phi(X(s)), b(X(s)) > ds \n+ \frac{1}{2}r \int_0^t g_n(s) tr(\phi''(\sigma \sigma^*)(X(s))) ds \n+ \frac{1}{2}r \int_0^t g_n(s) < \nabla \phi(X(s), \sigma \sigma'(X(s)) > ds
$$

$$
+ r \int_0^t g_n(s) < \nabla \phi(X(s)), \nu(X(s)) > d|L|(s)
$$
\n
$$
+ r \int_0^t g_n(s) < \nabla \phi(X^n(s)), \sigma(X^n(s))dW^n(s) > \\
+ r \int_0^t g_n(s) < \nabla \phi(X^n(s)), b(X^n(s)) > ds
$$
\n
$$
+ r \int_0^t g_n(s) < \nabla \phi(X^n(s)), \nu(X^n(s)) > d|L^n|(s)
$$
\n
$$
+ \frac{1}{2}r^2 \int_0^t g_n(s) |\sigma^* \nabla \phi|^2(X(s)) ds \tag{13}
$$

To bound $E[f_n(t)]$, the crucial step is to get proper estimates for the terms

$$
r\mathsf{E}[\int_0^t f_n(s) < \nabla \phi(X^n(s)), \sigma(X^n(s))dW^n(s) >],
$$

and

$$
r\mathcal{E}[\int_0^t g_n(s) < X^n(s) - X(s), \sigma(X^n(s))dW^n(s) >].
$$

This will be done in the following two lemmas.

Sketch of proof

lemma[3] It holds that

$$
rE\left[\int_0^t f_n(s) < \nabla\phi(X^n(s)), \sigma(X^n(s))dW^n(s) > \right]
$$
\n
$$
\leq C\left(\frac{1}{2^n}\right)^{\frac{1}{2}} + r^2 E\left[\int_0^t f_n(s) < \sigma^* \nabla \phi(X(s)), \sigma^* \nabla \phi(X^n(s)) > ds\right]
$$
\n
$$
+ \frac{1}{2}r^2 E\left[\int_0^t f_n(s)|\sigma^* \nabla \phi|^2(X^n(s))ds\right]
$$
\n
$$
+ r \int_0^t < g_n(s)\sigma^*(X^n(s))(X^n(s) - X(s)), \sigma^* \nabla \phi(X^n(s)) > ds
$$
\n
$$
+ \frac{1}{2}r \int_0^t f_n(s) \sum_{i=1}^m (\sigma^*(\nabla(\sigma^* \nabla \phi)_i))_i(X^n(s))ds
$$
\n
$$
- 2r \int_0^t < g_n(s)\sigma^*(X(s))(X^n(s) - X(s)), \sigma^* \nabla \phi(X^n(s)) > (H\!)
$$

Set

$$
A = r \int_0^t f_n(s) < \nabla \phi(X^n(s)), \sigma(X^n(s)) dW^n(s) > .
$$

Write

$$
A = r \int_0^t f_n(s_n^-) < \nabla \phi(X^n(s_n^-)), \sigma(X^n(s_n^-)) dW^n(s) >+ r \int_0^t (f_n(s) - f_n(s_n^-)) < \nabla \phi(X^n(s)), \sigma(X^n(s)) dW^n(s) >+ r \int_0^t f_n(s_n^-) < \sigma^* \nabla \phi(X^n(s)) - \sigma^* \nabla \phi(X^n(s_n^-)), dW^n(s) >:= A_1 + A_2 + A_3.
$$
 (15)

As a stochastic integral, it is easy to see that $E[A_1] = 0$.

In view of (12) , we further write A_2 as

$$
\begin{array}{lcl} A_2 \\ &=& r^2\displaystyle\int_0^t(\int_{s_n^-}^sf_n(u) \\ & \times <\nabla \phi(X(u)), \sigma(X(u))dW(u)>) <\nabla \phi(X^n(s)), \sigma(X^n(s))dW^n(s \\ & +& r^2\displaystyle\int_0^t(\int_{s_n^-}^sf_n(u) <\nabla \phi(X(u)), b(X(u))du>) \\ & \times <\nabla \phi(X^n(s)), \sigma(X^n(s))dW^n(s) > \\ & +& \displaystyle\frac{1}{2}r^2\displaystyle\int_0^t(\int_{s_n^-}^sf_n(u)tr(\phi''(\sigma\sigma^*)(X(u))du) \\ & \times <\nabla \phi(X^n(s)), \sigma(X^n(s))dW^n(s) > \end{array}
$$

+
$$
\frac{1}{2}r^2 \int_0^t \left(\int_{s_n}^s f_n(u) < \nabla \phi(X(u)), (\sigma \sigma')(X(u)) > du \right)
$$

\n $\times \langle \nabla \phi(X^n(s)), \sigma(X^n(s))dW^n(s) \rangle$
\n+ $r^2 \int_0^t \left(\int_{s_n}^s f_n(u) < \nabla \phi(X(u)), \nu(X(u)) > d|L|(u) \right)$
\n $\times \langle \nabla \phi(X^n(s)), \sigma(X^n(s))dW^n(s) \rangle$
\n+ ...
\n+ ... (16)

We will bound each of the terms. Since *∇ϕ*, *b*, *σ* are bounded on \overline{D} , we have

$$
E[|A_{22}|] \leq C \int_0^t (s - s_n^{-}) E[|\dot{W}^n(s)|] ds
$$

$$
\leq C \frac{1}{2^n} \int_0^t (2^n)^{\frac{1}{2}} ds \leq C(\frac{1}{2^n})^{\frac{1}{2}}.
$$
 (17)

Similarly, it holds that

$$
E[|A_{2i}|] \leq C(\frac{1}{2^n})^{\frac{1}{2}}, \quad i = 3, 4, 7, 11, 12, 15, 16, 17. \quad (18)
$$

To bound A_{21} , we write it as

$$
A_{21} = r^{2} \int_{0}^{t} (\int_{s_{n}}^{s} [f_{n}(u) < \nabla \phi(X(u)), \sigma(X(u)dW(u) > -f_{n}(s_{n}^{-}) \times \n< \nabla \phi(X(s_{n}^{-})), \sigma(X(s_{n}^{-}))dW(u) >]) < \nabla \phi(X^{n}(s)), \sigma(X^{n}(s))dW^{n}(s) \n+ r^{2} \int_{0}^{t} (\int_{s_{n}}^{s} f_{n}(s_{n}^{-}) < \nabla \phi(X(s_{n}^{-})), \sigma(X(s_{n}^{-}))dW(u) >) \n\times [< \nabla \phi(X^{n}(s)), \sigma(X^{n}(s))dW^{n}(s) > \n- < \nabla \phi(X^{n}(s_{n}^{-})), \sigma(X^{n}(s_{n}^{-}))dW^{n}(s) >]\n+ r^{2} \int_{0}^{t} f_{n}(s_{n}^{-}) < \nabla \phi(X(s_{n}^{-})), \sigma(X(s_{n}^{-})) (W(s) - W(s_{n}^{-})) > \n\times < \nabla \phi(X^{n}(s_{n}^{-})), \sigma(X^{n}(s_{n}^{-}))dW^{n}(s) >\n:= A_{21,1} + A_{21,2} + A_{21,3}. (
$$

By Ito isometry and Hölder's inequality,

$$
E[A_{21,1}]
$$
\n
$$
\leq C \int_0^t (E[\int_{s_n}^s |f_n(u)\sigma^*\nabla\phi(X(u)) - f_n(s_n^-\sigma^*\nabla\phi(X(s_n^-))]^2
$$
\n
$$
\times du] \frac{1}{2} (E[|\dot{W}^n|^2(s)])^{\frac{1}{2}} ds
$$
\n
$$
\leq C \int_0^t (2^n)^{\frac{1}{2}} (E[\int_{s_n}^s |f_n(u)\sigma^*\nabla\phi(X(u)) - f_n(s_n^-) \times \sigma^*\nabla\phi(X(s_n^-))]^2 du]\frac{1}{2} ds
$$
\n
$$
\leq C \int_0^t (2^n)^{\frac{1}{2}} (\frac{1}{2^n})^{\frac{1}{2}} (\frac{1}{2^n})^{\frac{1}{2}} ds \leq C(\frac{1}{2^n})^{\frac{1}{2}}, \qquad (20)
$$

where (7), (8) have been used.

For the term $A_{21,2}$, we have

$$
E[A_{21,2}]
$$

\n
$$
\leq C \int_0^t (E[|W(s) - W(s_n^-)|^3])^{\frac{1}{3}}
$$

\n
$$
\times (E[|\sigma^* \nabla \phi(X^n(s)) - \sigma^* \nabla \phi(X^n(s_n^-))|^3])^{\frac{1}{3}} (E[|\dot{W}^n|^3(s)])^{\frac{1}{3}} ds
$$

\n
$$
\leq C \int_0^t (2^n)^{\frac{1}{2}} (\frac{1}{2^n})^{\frac{1}{2}} (\frac{1}{2^n})^{\frac{1}{2}} ds \leq C(\frac{1}{2^n})^{\frac{1}{2}}.
$$
 (21)

where (7) has been used.

Now,

$$
A_{21,3} = r^2 \sum_{k} \int_{\frac{k}{2^n}}^{\frac{k+1}{2^n}} f_n(\frac{k-1}{2^n}) < \nabla \phi(X(\frac{k-1}{2^n})), \sigma(X(\frac{k-1}{2^n})(W(s) - W(\frac{k}{2^n}))) > \nabla \phi(X^n(\frac{k-1}{2^n})), \sigma(X^n(\frac{k-1}{2^n})) (W(\frac{k}{2^n}) - W(\frac{k-1}{2^n}) \\
+ r^2 \sum_{k} \int_{\frac{k}{2^n}}^{\frac{k+1}{2^n}} f_n(\frac{k-1}{2^n}) < \sigma^* \nabla \phi(X(\frac{k-1}{2^n})), W(\frac{k}{2^n}) - W(\frac{k-1}{2^n}) \\
> \times < \sigma^* \nabla \phi(X^n(\frac{k-1}{2^n})), W(\frac{k}{2^n}) - W(\frac{k-1}{2^n}) > ds \\
:= A_{21,31} + A_{21,32}.
$$

Conditioning on $\mathcal{F}_{\frac{k}{2^n}}$, it is easy to see that $E[A_{21,31}] = 0$.

Moreover,

$$
A_{21,32} = r^{2} \sum_{k} f_{n} \left(\frac{k-1}{2^{n}} \right) \sum_{i=1}^{m} (\sigma^{*} \nabla \phi)_{i} (X(\frac{k-1}{2^{n}})) (\sigma^{*} \nabla \phi)_{i} (X^{n}(\frac{k-1}{2^{n}}))
$$

\n
$$
\times (|W_{i}(\frac{k}{2^{n}}) - W_{i}(\frac{k-1}{2^{n}})|^{2} - \frac{1}{2^{n}})
$$

\n+ $r^{2} \sum_{k} f_{n} \left(\frac{k-1}{2^{n}} \right) \sum_{i \neq j} (\sigma^{*} \nabla \phi)_{i} (X(\frac{k-1}{2^{n}})) (\sigma^{*} \nabla \phi)_{j} (X^{n}(\frac{k-1}{2^{n}}))$
\n
$$
\times (W_{i}(\frac{k}{2^{n}}) - W_{i}(\frac{k-1}{2^{n}})) (W_{j}(\frac{k}{2^{n}}) - W_{j}(\frac{k-1}{2^{n}}))
$$

\n+ $r^{2} \sum_{k} f_{n} \left(\frac{k-1}{2^{n}} \right) \sum_{i=1}^{m} (\sigma^{*} \nabla \phi)_{i} (X(\frac{k-1}{2^{n}})) (\sigma^{*} \nabla \phi)_{i} (X^{n}(\frac{k-1}{2^{n}})) (\frac{1}{2^{n}})$
\n:= $A_{21,321} + A_{21,322} + A_{21,323}.$ (23)

 $\mathcal{L}_{\text{cond}}$ Conditioning on $\mathcal{F}_{\frac{k-1}{2^n}}$ and using the independence of $\mathcal{W}_i, \mathcal{W}_j$ for $i \neq j$, we find that $\overline{E}[A_{21,321}] = 0$ and $E[A_{21,322}] = 0$.

On the other hand,

$$
E[A_{21,323}]
$$
\n
$$
= r^2 E[\int_0^t f_n(s) < \sigma^* \nabla \phi(X(s)), \sigma^* \nabla \phi(X^n(s)) > ds]
$$
\n
$$
+ r^2 E[\int_0^t \{f_n(s_n^-) < \sigma^* \nabla \phi(X(s_n^-)), \sigma^* \nabla \phi(X^n(s_n^-)) > -f_n(s) < \sigma^* \nabla \phi(X(s)), \sigma^* \nabla \phi(X^n(s)) > ds]
$$
\n
$$
\leq r^2 E[\int_0^t f_n(s) < \sigma^* \nabla \phi(X(s)), \sigma^* \nabla \phi(X^n(s)) > ds]
$$
\n
$$
+ C(\frac{1}{2^n})^{\frac{1}{2}}, \tag{24}
$$

where (7), (8) again have been used. Putting together (19)—(24) we arrive at

$$
E[A_{21}] \leq CE[\int_0^t f_n(s)ds] + C(\frac{1}{2^n})^{\frac{1}{2}}.
$$
 (25)

The term A_{25} can be bounded as follows.

$$
E[A_{25}]
$$
\n
$$
\leq CE[\sum_{k} \int_{\frac{k}{2^n}}^{\frac{k+1}{2^n}} (\int_{\frac{k-1}{2^n}}^s d|L|(u))2^n|W(\frac{k}{2^n}) - W(\frac{k-1}{2^n})|ds]
$$
\n
$$
\leq CE[\sum_{k} (|L|(\frac{k}{2^n}) - |L|(\frac{k-1}{2^n}))|W(\frac{k}{2^n}) - W(\frac{k-1}{2^n})|]
$$
\n
$$
\leq 2CE[|L|(t) \sup_{|u-v| \leq \frac{1}{2^n}} (|W(u) - W(v)|)]
$$
\n
$$
\leq 2C(E[|L|^2(t)])^{\frac{1}{2}}(\frac{1}{2^n})^{\frac{1}{2}} \leq C(\frac{1}{2^n})^{\frac{1}{2}}.
$$
\n(26)

Collecting the estimates for all the remaining terms we arrive at

$$
E[A_2] \leq C(\frac{1}{2^n})^{\frac{1}{2}} + r^2 E[\int_0^t f_n(s) < \sigma^* \nabla \phi(X^n(s)), \sigma^* \nabla \phi(X(s)) > ds] \\
+ \frac{1}{2} r^2 E[\int_0^t f_n(s) |\sigma^* \nabla \phi|^2(X^n(s)) ds \\
+ r \int_0^t < g_n(s) \sigma^* (X^n(s)) (X^n(s) - X(s)), \sigma^* \nabla \phi(X^n(s)) > ds \\
- 2r \int_0^t < g_n(s) \sigma^* (X(s)) (X^n(s) - X(s)), \sigma^* \nabla \phi(X^n(s)) > ds. \tag{27}
$$

Now we turn to A_3 . By the chain rule, we have

$$
A_3 = r \int_0^t f_n(s_n^-) \sum_{i=1}^m [(\sigma^* \nabla \phi)_i(X^n(s)) - (\sigma^* \nabla \phi)_i(X^n(s_n^-))] dW_i^n(s)
$$

\n
$$
= r \int_0^t f_n(s_n^-) \sum_{i=1}^m \int_{s_n^-}^s [\langle \nabla (\sigma^* \nabla \phi)_i(X^n(u)) - \nabla (\sigma^* \nabla \phi)_i(X^n(s_n^-)) ,
$$

\n
$$
\sigma(X^n(u)) dW^n(u) >] dW_i^n(s)
$$

\n
$$
+ r \int_0^t f_n(s_n^-) \sum_{i=1}^m \int_{s_n^-}^s \langle \nabla (\sigma^* \nabla \phi)_i(X^n(s_n^-)) , (\sigma(X^n(u))
$$

\n
$$
- \sigma(X^n(s_n^-))) dW^n(u) > dW_i^n(s)
$$

$$
+r \int_0^t f_n(s_n^-) \sum_{i=1}^m \int_{s_n^-}^s <\nabla(\sigma^* \nabla \phi)_i(X^n(s_n^-)), \sigma(X^n(s_n^-))dW^n(u) > d
$$

+
$$
+r \int_0^t f_n(s_n^-) \sum_{i=1}^m \int_{s_n^-}^s <\nabla(\sigma^* \nabla \phi)_i(X^n(u)), \nu(X^n(u))d|L^n|(u) > dW_i
$$

+
$$
+r \int_0^t f_n(s_n^-) \sum_{i=1}^m \int_{s_n^-}^s <\nabla(\sigma^* \nabla \phi)_i(X^n(u)), b(X^n(u))du > dW_i^n(s)
$$

:= $A_{31} + A_{32} + A_{33} + A_{34} + A_{35}$

Similar to the estimates for A_{214} , A_{22} and the term $A_{21,2}$, it can be shown that

$$
E[A_{3i}] \le C\left(\frac{1}{2^n}\right)^{\frac{1}{2}}, \quad i = 1, 2, 4, 5. \tag{29}
$$

Now,

$$
A_{33} = r \sum_{k} (2^{n})^{2} \int_{\frac{k}{2^{n}}}^{\frac{k+1}{2^{n}}} \int_{\frac{k-1}{2^{n}}}^{\frac{k}{2^{n}}} f_{n}(\frac{k-1}{2^{n}}) \sum_{i=1}^{m} \sum_{j=1}^{m} (\sigma^{*}(\nabla(\sigma^{*}\nabla\phi)_{i}))_{j} (X^{n}(\frac{k-1}{2^{n}})
$$

$$
\times (W_{i}(\frac{k}{2^{n}}) - W_{i}(\frac{k-1}{2^{n}})) (W_{j}(\frac{k-1}{2^{n}} - W_{j}(\frac{k-2}{2^{n}})) ds du
$$

+
$$
r \sum_{k} (2^{n})^{2} \int_{\frac{k}{2^{n}}}^{\frac{k+1}{2^{n}}} \int_{\frac{k}{2^{n}}}^{s} f_{n}(\frac{k-1}{2^{n}}) \sum_{i=1}^{m} \sum_{j=1}^{m} (\sigma^{*}(\nabla(\sigma^{*}\nabla\phi)_{i}))_{j} (X^{n}(\frac{k-1}{2^{n}})
$$

$$
\times (W_{i}(\frac{k}{2^{n}}) - W_{i}(\frac{k-1}{2^{n}})) (W_{j}(\frac{k}{2^{n}}) - W_{j}(\frac{k-1}{2^{n}})) ds du
$$

$$
= r \sum_{k} f_{n}(\frac{k-1}{2^{n}}) \sum_{i=1}^{m} \sum_{j=1}^{m} (\sigma^{*}(\nabla(\sigma^{*}\nabla\phi)_{i}))_{j} (X^{n}(\frac{k-1}{2^{n}}))
$$

$$
\times (W_{i}(\frac{k}{2^{n}}) - W_{i}(\frac{k-1}{2^{n}})) (W_{j}(\frac{k-1}{2^{n}}) - W_{j}(\frac{k-2}{2^{n}}))
$$

+
$$
\frac{1}{2} r \sum_{k} f_{n}(\frac{k-1}{2^{n}}) \sum_{i=1}^{m} \sum_{j=1}^{m} (\sigma^{*}(\nabla(\sigma^{*}\nabla\phi)_{i}))_{j} (X^{n}(\frac{k-1}{2^{n}}))
$$

$$
\times (W_{i}(\frac{k}{2^{n}}) - W_{i}(\frac{k-1}{2^{n}})) (W_{j}(\frac{k}{2^{n}}) - W_{j}(\frac{k-1}{2^{n}}))
$$

:=
$$
A_{331} + A_{332}
$$
 (30)

 $\text{\rm Conditioning on }\mathcal{F}_{\frac{k-1}{2^n}},$ it is easy to see $E[A_{331}]=0.$ For the second term we have

$$
A_{332} = \frac{1}{2}r \sum_{k} f_n(\frac{k-1}{2^n}) \sum_{i \neq j}^{m} (\sigma^*(\nabla(\sigma^*\nabla\phi)_i))_j(X^n(\frac{k-1}{2^n}))
$$

$$
\times (W_i(\frac{k}{2^n}) - W_i(\frac{k-1}{2^n})) (W_j(\frac{k}{2^n}) - W_j(\frac{k-1}{2^n}))
$$

+
$$
\frac{1}{2}r \sum_{k} f_n(\frac{k-1}{2^n}) \sum_{i=1}^{m} (\sigma^*(\nabla(\sigma^*\nabla\phi)_i))_i(X^n(\frac{k-1}{2^n}))
$$

$$
\times \{ |W_i(\frac{k}{2^n}) - W_i(\frac{k-1}{2^n})|^2 - \frac{1}{2^n} \}
$$

+
$$
\frac{1}{2}r \int_0^t \{f_n(s_n^-) \sum_{i=1}^m (\sigma^*(\nabla(\sigma^*\nabla\phi)_i))_i(X^n(s_n^-))
$$

\n- $f_n(s) \sum_{i=1}^m (\sigma^*(\nabla(\sigma^*\nabla\phi)_i))_i(X^n(s))\} ds$
\n+ $\frac{1}{2}r \int_0^t f_n(s) \sum_{i=1}^m (\sigma^*(\nabla(\sigma^*\nabla\phi)_i))_i(X^n(s)) ds$
\n:= $A_{3321} + A_{3322} + A_{3323} + A_{3324}$ (31)

Using the martingale property and the independence of W_i, W_j for $i \neq j$, we find that $E[A_{3321}] = 0$ and $E[A_{3322}] = 0$. In view of (7) and (8), we have $E[A_{3323}]\leq C(\frac{1}{2^n})$ $\frac{1}{2^n}$)^{$\frac{1}{2}$}. Thus, we deduce from (30), (31) that

$$
E[A_{33}]
$$

\n
$$
\leq C(\frac{1}{2^n})^{\frac{1}{2}} + \frac{1}{2}r \int_0^t f_n(s) \sum_{i=1}^m (\sigma^*(\nabla(\sigma^*\nabla\phi)_i))_i(X^n(s))d\phi(s)
$$

Finally it follows from (28), (29), (29) that

$$
E[A_3] \leq C(\frac{1}{2^n})^{\frac{1}{2}} + \frac{1}{2}r \int_0^t f_n(s) \sum_{i=1}^m (\sigma^*(\nabla(\sigma^*\nabla\phi)_i))_i(X^n(s))d\phi(s)
$$

Combining (27) with (33), we complete the proof of Lemma.

The sketch of the proof

lemma[4].We have

$$
rE[\int_{0}^{t} g_{n}(s) < X^{n}(s) - X(s), \sigma(X^{n}(s))dW^{n}(s) >]
$$
\n
$$
\leq rE[\int_{0}^{t} g_{n}(s) < \sigma^{*}\nabla\phi(X^{n}(s)), \sigma^{*}(X^{n}(s))(X^{n}(s) - X(s)) > ds]
$$
\n
$$
+ 2rE[\int_{0}^{t} g_{n}(s) < \sigma^{*}\nabla\phi(X(s)), \sigma^{*}(X^{n}(s))(X^{n}(s) - X(s)) > ds]
$$
\n
$$
+ E[\int_{0}^{t} g_{n}(s) \sum_{i=1}^{d} \sum_{j=1}^{m} \sigma_{ij}^{2}(X^{n}(s))ds]
$$
\n
$$
+ E[\int_{0}^{t} g_{n}(s) \sum_{i=1}^{d} (X_{i}^{n}(s) - X_{i}(s)) \sum_{j=1}^{m} (\sigma^{*}\nabla\sigma_{ij})_{j}(X^{n}(s))ds]
$$
\n
$$
- 2E[\int_{0}^{t} g_{n}(s) \sum_{i=1}^{d} \sum_{j=1}^{m} \sigma_{ij}(X(s))\sigma_{ij}(X^{n}(s))ds] + C(\frac{1}{2^{n}})^{\frac{1}{2}}. (34)
$$

Tusheng Zhang | Strong Convergence of Wong-Zakai Approximations of Reflecte

The sketch of the proof

Proof of the main result: (Continued). Choose $r < -\frac{2C_0}{\alpha}$ where α , C_0 are the constants appeared in the assumptions (D.1) and (D.2). By the Lipschitz continuity of the coefficients and boundedness of ϕ , ϕ'' , $\nabla\phi$, $\sigma\sigma'$ on the domain \bar{D} , it follows from (12) that

$$
E[f_n(t)]
$$

\n
$$
\leq C_r E[\int_0^t f_n(s) ds]
$$

\n+ $E[\int_0^t \{ \langle f_n(s) \nabla \phi(X(s)) - 2g_n(s)(X^n(s) - X(s)), \nu(X(s)) \rangle \} d|L|$
\n+ $rE[\int_0^t f_n(s) \langle \nabla \phi(X^n(s)), \sigma(X^n(s)) dW^n(s) \rangle]$
\n+ $E[\int_0^t \{ \langle f_n(s) \nabla \phi(X^n(s)) + 2g_n(s)(X^n(s) - X(s)), \nu(X^n(s)) \rangle \} d|L^n|(s)]$

The sketch of the proof

+
$$
2E[\int_0^t g_n(s) < X^n(s) - X(s), \sigma(X^n(s))dW^n(s) >]
$$

\n- $E[\int_0^t g_n(s) < X^n(s) - X(s), \sigma\sigma'(X(s)) > ds]$
\n+ $E[\int_0^t g_n(s)tr(\sigma\sigma^*(X(s)))ds]$
\n- $2rE[\int_0^t g_n(s) < \sigma^*(X(s))(X^n(s) - X(s)), \sigma^*\nabla\phi(X(s)) > ds].$ \n(35)

In view of $r < 0$ and the assumptions (D.1) and (D.2), we deduce that

$$
\langle rf_n(s)\nabla\phi(X(s)) - 2g_n(s)(X^n(s) - X(s)), \nu(X(s)) \rangle
$$
\n
$$
= g_n(s)[r \langle \nabla\phi(X(s)), \nu(X(s)) \rangle |x^n(s) - X(s)|^2
$$
\n
$$
-2 \langle X^n(s) - X(s), \nu(X(s)) \rangle]
$$
\n
$$
\leq g_n(s)[r\alpha |x^n(s) - X(s)|^2 + 2C_0|X^n(s) - X(s)|^2] \leq 0, (36)
$$

and similarly

$$
\langle r f_n(s) \nabla \phi(X^n(s)) + 2g_n(s) (X^n(s) - X(s)), \nu(X^n(s)) \rangle
$$

$$
\leq 0.
$$
 (37)

Thus, using Lemma 3 and Lemma 4, taking into account (36) and (37) we obtain from (35) that

$$
E[f_n(t)]
$$

\n
$$
\leq C_r E[\int_0^t f_n(s) ds] + C(\frac{1}{2^n})^{\frac{1}{2}}
$$

\n
$$
- E[\int_0^t g_n(s) < X^n(s) - X(s), \sigma\sigma'(X(s)) > ds]
$$

\n
$$
+ E[\int_0^t g_n(s) \sum_{i=1}^d \sum_{j=1}^m \sigma_{ij}^2(X(s)) ds]
$$

\n
$$
- 2rE[\int_0^t g_n(s) < \sigma^*(X(s))(X^n(s) - X(s)), \sigma^* \nabla \phi(X(s)) > ds]
$$

\n
$$
+ 2r \int_0^t < g_n(s)\sigma^*(X^n(s))(X^n(s) - X(s)), \sigma^* \nabla \phi(X^n(s)) > ds
$$

\n
$$
- 2r \int_0^t < g_n(s)\sigma^*(X(s))(X^n(s) - X(s)), \sigma^* \nabla \phi(X^n(s)) > ds
$$

+
$$
2rE[\int_0^t g_n(s) < \sigma^* \nabla \phi(X(s)), \sigma^*(X^n(s))(X^n(s) - X(s)) > ds]
$$

+ $E[\int_0^t g_n(s) \sum_{i=1}^d \sum_{j=1}^m \sigma_{ij}^2(X^n(s)) ds]$
+ $E[\int_0^t g_n(s) < X^n(s) - X(s), \sigma \sigma'(X^n(s)) > ds]$
-2 $E[\int_0^t g_n(s) \sum_{i=1}^d \sum_{j=1}^m \sigma_{ij}(X(s)) \sigma_{ij}(X^n(s)) ds]$

$$
\leq C_{r}E[\int_{0}^{t}f_{n}(s)ds] + C(\frac{1}{2^{n}})^{\frac{1}{2}} \n+ E[\int_{0}^{t}g_{n}(s)\sum_{i=1}^{d}\sum_{j=1}^{m}(\sigma_{ij}(X(s)) - \sigma_{ij}(X^{n}(s)))^{2}ds] \n+ 2r\int_{0}^{t} < g_{n}(s)(\sigma^{*}(X^{n}(s)) - \sigma^{*}(X(s)))(X^{n}(s) - X(s)), \n\sigma^{*}\nabla\phi(X^{n}(s)) > ds \n+ 2rE[\int_{0}^{t}g_{n}(s) < \sigma^{*}\nabla\phi(X(s)), \n(\sigma^{*}(X^{n}(s)) - \sigma^{*}(X(s)))(X^{n}(s) - X(s)) > ds] \n+ E[\int_{0}^{t}g_{n}(s) < X^{n}(s) - X(s), \sigma\sigma'(X^{n}(s)) - \sigma\sigma'(X(s)) > ds] \n\leq CE[\int_{0}^{t}f_{n}(s)ds] + C(\frac{1}{2^{n}})^{\frac{1}{2}},
$$
\n(38)

Strong Convergence of Wong-Zakai Approximations of Reflecte

where the Lipschitz continuity of the coefficients and the fact that $f_n(s) = g_n(s) |X^n(s) - X(s)|^2$ have been used. Finally by the Gronwall's inequality, we obtain

$$
E[f_n(t)] \le C(\frac{1}{2^n})^{\frac{1}{2}} \to 0 \tag{39}
$$

as $n \to \infty$, completing the proof of (11), hence the theorem.

References

- **S.** Aida and K. Sasaki: Wong-Zakai approximation of solutions for reflecting stochastic differential equations on domains in Euclidean spaces, To appear in Stochastic Processes and Their applications .
- **E** L. C. Evans and D. W. Stroock: An approximation scheme for reflected stochastic differential equations, Stochastic Processes and Their applications 121 (2011) 1464-1491.
- 罰 N. Ikeda and S. Watanable: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981.
- P.L. Lions and A.S. Sznitman: Stochastic differential equations 昂 with reflecting boundary conditions, Communications in Pure and Applied Mathematics 37:4 (1984) 511-537.

References

- P. Marin-Rubio and J. Real: Some results on stochastic 围 differential equations with reflecting boundary conditions, Journal of Theoretical Probability 17:4 (2004) 705-716.
- 量 B. Øksendal: Stochastic Differential Equations: An Introduction with Applications, Springer-Verlag, New York, sixth edition 2003.
- R. Petterson: Wong-Zakai approximations for reflecting 暈 stochastic differential equations, Stochastic Analysis and Applications 17:4 (1999) 609-617.
- 暈 Y. Saisho: Stochastic differential equations for multidimensional domain with reflecting boundary conditions, Probability Theory and Related Fields 74:4 (1987) 455-477.
- 罰

H. Tanaka: Stochastic differential equations with reflecting boundary conditions in convex regions, Hiroshima Math. J. 9:1 (19790 163-177.

References

- J.B. Walsh: An introduction to stochastic partial differential 暈 equations, Lecture Notes in Mathematics 1180 (1986), Springer-Verlag, Berlin Heidelberg New York Tokyo.
- E. Wong and M. Zakai: On the convegence of ordinary 暈 integrals to stochastic integrals, Ann. Math. Statist. 36(1965)1560-1564.
- E. Wong and M. Zakai: On the relation between ordinary and **SP** stochastic differential equations, Internat. J. Engrg. Sci. 3 (1965) 213-229.
- T. Zhang: On the strong solution of one–dimensional E stochastic differential equations with reflecting boundary, Stochastic Processes and Their Applications 50 (1994) 135–147.