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We start with some notation. For each integer n ≥ 1, let (Rn, 〈·, ·〉, | · |) be

the n-dimensional Euclidean space and Rn ⊗ Rm denote the totality of all

n ×m matrices. For a fixed constant τ > 0, C := C([−τ, 0];Rn) stands

for the family of all continuous mappings ζ : [−τ, 0] 7→ Rn equipped with

the uniform norm ‖ζ‖∞ := sup−τ≤θ≤0 |ζ(θ)|. For any continuous function

f : [−τ,∞) 7→ Rn and t ≥ 0, let ft ∈ C be such that ft(θ) = f(t+ θ) for

each θ ∈ [−τ, 0]. Let W (t) be an m-dimensional Wiener process defined on

a complete filtered probability space (Ω,F , {Ft}t≥0,P). Let P(C ) denote

the collection of all probability measures on (C ,B(C )), Bb(C ) means the

set of all bounded measurable functions F : C → R endowed with the

uniform norm ‖F‖0 := supφ∈C |F (φ)|, and µ(·) stands for a probability

measure on [−τ, 0]. For any F ∈ Bb(C ) and π(·) ∈ P(C ), let π(F ) :=∫
C F (φ)π(dφ).
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We consider a retarded SDE on (Rn, 〈·, ·〉, | · |) in the framework

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), t > 0 (1)

with the initial data X0 = ξ ∈ C , where b : [0,∞) × C 7→ Rn and

σ : [0,∞) × C 7→ Rn ⊗ Rm are measurable and locally Lipschitz with

respect to the second variable. We assume that the initial value ξ ∈ C is

independent of {W (t)}t≥0.
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For any φ, ψ ∈ C and t, p ≥ 0, we assume that

(H1) There exist α1 > α2 > 0 such that

E{|φ(0)− ψ(0)|p(2〈φ(0)− ψ(0), b(t, φ)− b(t, ψ)〉+ ‖σ(t, φ)− σ(t, ψ)‖2)}

≤ −α1E|φ(0)− ψ(0)|2+p + α2 sup
−τ≤θ≤0

E{|φ(0)− ψ(0)|p|φ(θ)− ψ(θ)|2};

(H2) There exists α3 > 0 such that

E‖σ(t, φ)− σ(t, ψ)‖2+p ≤ α3 sup
−τ≤θ≤0

E(|φ(θ)− ψ(θ)|2+p).
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The following remark shows that there are some examples such that (H1)

and (H2).

Let b(t, φ) = b(t, φ(0), φ(−δ(t))) and σ(t, φ) = σ(t, φ(0), φ(−δ(t))) with

φ ∈ C , where δ : [0,∞) 7→ [0, τ ] is a measurable function. For any φ ∈ C

and t ≥ 0, if

2〈φ(0)− ψ(0), b(t, φ(0), φ(−δ(t)))− b(t, ψ(0), ψ(−δ(t)))〉

+ ‖σ(t, φ(0), φ(−δ(t)))− σ(t, ψ(0), ψ(−δ(t)))‖2

≤ −α1|φ(0)− ψ(0)|2 + α2|φ(−δ(t))− ψ(−δ(t))|2,

and

‖σ(t, φ)− σ(t, ψ)‖2 ≤ α3(|φ(0)− ψ(0)|2 + |φ(−δ(t))− ψ(−δ(t))|2),

then (H1) and (H2) hold respectively for some constants α1, α2, α3 > 0.

Chenggui Yuan A joint work with J. Bao, L. Wang and Y. Yin (Swansea University)Exponential Mixing of SFDEs 09/07/2013 6 / 41



On the other hand, for arbitrary φ ∈ C and t ≥ 0, if

2〈φ(0)− ψ(0), b(t, φ)− b(t, ψ)〉+ ‖σ(t, φ)− σ(t, ψ)‖2

≤ −α1|φ(0)− ψ(0)|2 + α2

∫ 0

−τ
|φ(θ)− ψ(θ)|2µ(dθ),

and

‖σ(t, φ)− σ(t, ψ)‖2 ≤ α3

(
|φ(0)− ψ(0)|2 +

∫ 0

−τ
|φ(θ)− ψ(θ)|2µ(dθ)

)
,

where µ(·) is a probability measure on [−τ, 0], then (H1) and (H2) are also

fulfilled for some α1, α2, α3 > 0.

From the previous discussions, we deduce that our framework cover SDEs

with constant/variable/distributed delays
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Lemma

Let u, v : [0,∞) 7→ R+ be continuous functions and β > 0. If

u(t) ≤ u(s)− β
∫ t

s
u(r)dr +

∫ t

s
v(r)dr, 0 ≤ s < t <∞,

then

u(t) ≤ u(0) +

∫ t

0
ε−β(t−r)v(r)dr.
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Lemma

Let u : [0,∞) 7→ R+ be a continuous function and δ > 0, α > β > 0. If

u(t) ≤ δ + β

∫ t

0
ε−α(t−s)u(s)ds, t ≥ 0,

then u(t) ≤ (δα)/(α− β).

Lemma

For a, b > 0, let u(·) be a nonnegative function such that

u′(t) ≤ −au(t) + b sup
t−τ≤s≤t

u(s), t > 0

Then, for a > b > 0, there exists λ > 0 such that

u(t) ≤
(

sup
−τ≤s≤0

u(s)
)
ε−λt, t ≥ 0.
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Lemma

Assume that (H1) and (H2) hold. Then there exists a sufficiently small

κ > 0 such that

sup
t≥−τ

E‖Xt(ξ)‖2+κ
∞ <∞. (2)
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Sketch of Proof

For any κ > 0, by the Itô formula, we obtain that

ρ(t) := E|X(t)|2+κ

≤ 2 + κ

2
E
∫ t

0
|X(s)|κ{2〈X(s), b(s,Xs)〉+ ‖σ(s,Xs)‖2}ds

+ |ξ(0)|2+κ +
κ(2 + κ)

2
E
∫ t

0
|X(s)|κ · ‖σ(s,Xs)‖2ds

=: I1(t) + I2(t).

(3)
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By (H1) and (H2), it is readily to see that there exist ν1 > ν2 > 0 such that

E{|φ(0)|κ(2〈φ(0), b(t, φ)〉+ ‖σ(t, φ)‖2)} ≤ −ν1E|φ(0)|2+κ

+ ν2 sup
−τ≤θ≤0

E(|φ(0)|κ · |φ(θ)|2) + c
(4)

for any t ≥ 0 and φ ∈ C . This, together with the Young inequality:

aβb1−β ≤ βa+ (1− β)b, a, b > 0, β ∈ (0, 1), (5)

gives that

I1(t) ≤ 2 + κ

2

∫ t

0

{−ν1ρ(s) + ν2 sup
−τ≤θ≤0

E(|X(s)|κ · |X(s+ θ)|2) + c}ds

≤ − (2 + κ)ν1
2

∫ t

0

ρ(s)ds+
(2 + κ)ν2

2

∫ t

0

{ κ

2 + κ
ρ(s) +

2

2 + κ
sup

−τ≤θ≤s
ρ(r) + c

}
ds

≤ − (2 + κ)

2

(
ν1 −

ν2κ

2 + κ
− κ
)∫ t

0

ρ(s)ds+

∫ t

0

{c+ ν2r(s)}ds,

where r(t) := sup0≤s≤t ρ(s).
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Hence, we arrive at

ρ(t) ≤ ‖ξ‖2+κ
∞ − λ1

∫ t

0
ρ(s)ds+

∫ t

0
{c+ λ2r(s)}ds, (6)

where, for a sufficiently small κ ∈ (0, 1),

λ1 :=
(2 + κ)

2

(
ν1 −

ν2κ

2 + κ
− (c+ 1)κ

)
> λ2 := ν2 +

cκ(2 + κ)

2

due to ν1 > ν2. Combining (6) with Lemma gives that

ρ(t) ≤ ‖ξ‖2+κ
∞ +

∫ t

0
ε−λ1(t−s){c+ λ2r(s)}ds. (7)

We therefore infer from (7) that

r(t) ≤ ‖ξ‖2+κ
∞ +

∫ t

0
ε−λ1(t−s){c+ λ2r(s)}ds ≤ c+ λ2

∫ t

0
ε−λ1(t−s)r(s)ds.

Thanks to λ1 > λ2, Lemma leads to supt≥−τ ρ(t) <∞.
Chenggui Yuan A joint work with J. Bao, L. Wang and Y. Yin (Swansea University)Exponential Mixing of SFDEs 09/07/2013 13 / 41



Next, for any t ≥ τ , applying the Itô formula, together with the Burkhold-

Davis-Gundy inequality and the Young inequality (5), we deduce from (4)

that

E‖Xt‖2+κ
∞ ≤ ρ(t− τ) + c

∫ t

t−τ
{1 + ρ(s) + r(s)}ds

+ (2 + κ)E
(

sup
−τ≤θ≤0

∣∣∣ ∫ t+θ

t−τ
|X(s)|κ〈X(s), σ(s,Xs)dW (s)〉

∣∣∣)
≤ 1

2
E‖Xt‖2+κ

∞ + ρ(t− τ) + c

∫ t

t−τ
{1 + ρ(s) + r(s)}ds.

That is,

E‖Xt‖2+κ
∞ ≤ 2ρ(t− τ) + c

∫ t

t−τ
{1 + ρ(s) + r(s)}ds, t ≥ τ. (8)
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Definition

A probability measure π(·) ∈ P(C ) is called an invariant measure of (1)

if, for arbitrary F ∈ Bb(C ),

π(PtF ) = π(F ), t ≥ 0,

where PtF (ξ) := EF (Xt(ξ)).

Theorem

Under (H1) and (H2), (1) has a unique invariant measure π(·) ∈ P(C )

and is exponentially mixing. More precisely, there exists λ > 0 such that

|PtF (ξ)− π(F )| ≤ cε−λt, t ≥ 0, F ∈ Bb(C ), ξ ∈ C . (9)
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Sketch of Proof

Step 1: Existence of an Invariant Measure. The proof on existence of

an invariant measure is due to the classical Arzelà–Ascoli tightness charac-

terization of the space C . For arbitrary integer n ≥ 1, set

µn(·) :=
1

n

∫ n

0
Pt(ξ, ·)dt,

where Pt(ξ, ·) is the Markovian transition kernel of Xt(ξ). By the Krylov-

Bogoliubov theorem, to show existence of an invariant measure, it is suffi-

cient to verify that {µn(·)}n≥1 is relatively compact. Note that the phase

space C for the segment process Xt(ξ) is a complete separable space under

the uniform metric ‖ · ‖∞.
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We only need to show that {µn(·)}n≥1 is tight. It suffices to claim that

lim
δ↓0

sup
n≥1

µn(ϕ ∈ C : w[−τ,0](ϕ, δ) ≥ ε) = 0 (10)

for any ε > 0, where w[−τ,0](ϕ, δ), the modulus of continuity of ϕ ∈ C , is

defined by

w[−τ,0](ϕ, δ) := sup
|s−t|≤δ,s,t∈[−τ,0]

|ϕ(s)− ϕ(t)|, δ > 0.
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I(t, δ) : = sup
t≤v≤u≤t+τ,0≤u−v≤δ

|X(u)−X(v)|

≤ sup
t≤v≤u≤t+τ,0≤u−v≤δ

∫ u

v
|b(s,Xs)|ds

+ sup
t≤v≤u≤t+τ,0≤u−v≤δ

∣∣∣ ∫ u

v
σ(s,Xs)dW (s)

∣∣∣
=: I1(t, δ) + I2(t, δ), t ≥ τ,

one has

P(I(t, δ) ≥ ε) ≤ P(I1(t, δ) ≥ ε/2) + P(I2(t, δ) ≥ ε/2).
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For any ε̃ ∈ (0, 1), by the Chebyshev inequality and Lemma 4, there exists

an R0 > 0 sufficiently large such that

P(‖Xt‖∞ > R0) + P(‖Xt+τ‖∞ > R0)

≤ R−2
0 sup

t≥−τ
(E‖Xt+τ‖2∞ + E‖Xt‖2∞) ≤ ε̃.

(11)

Moreover, since b enjoys locally bounded property, there exists a sufficiently

small δ0 > 0 such that

P(I1(t, δ) ≥ ε/2| ‖Xt‖∞ ≤ R0, ‖Xt+τ‖∞ ≤ R0) = 0, δ < δ0. (12)

Accordingly, we obtain from (11) and (27) that

P(I1(t, δ) ≥ ε/2) ≤ P(I1(t, δ) ≥ ε/2| ‖Xt‖∞ ≤ R0, ‖Xt+τ‖∞ ≤ R0)

+ P(‖Xt‖∞ ≥ R0) + P(‖Xt+τ‖∞ ≥ R0)

≤ ε̃.

(13)
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On the other hand, for κ ∈ (0, 1) arbitrary 0 ≤ s ≤ t, by the Burkhold-

Davis-Gundy inequality, (H2), it follows that

E
∣∣∣ ∫ t

s
σ(r,Xr)dW (r)

∣∣∣2+k
≤ c(t− s)κ/2

∫ t

s
{1 + E‖Xr‖2+κ

∞ }dr

≤ c(t− s)1+κ/2.

This, combining with the Kolmogrov tightness criterion, implies that

lim
δ↓0

sup
t≥τ

P(I2(t, δ) ≥ ε/2) = 0. (14)

Consequently, (10) follows from (13), (14), the arbitrariness of ε̃, and by

noticing that

µn(ϕ ∈ C : w[−τ,0](ϕ, δ) ≥ ε) ≤
2τ

n
+

1

n

∫ n

τ
P(I(t, δ) ≥ ε)dt

for n > τ.
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Step 2: Uniqueness of Invariant Measures.

By the Itô formula, it is easy to see that

u(t) := E|X(t, ξ)−X(t, η)|2

= |ξ(0)− η(0)|2 +

∫ t

0
E{2〈X(s, ξ)−X(s, η), b(s,Xs(ξ))− b(s,Xs(η))〉

+ ‖σ(s,Xs(ξ))− σ(s,Xs(η))‖2}ds.

(15)

Differentiating with respect to t on both sides of (15), one has from (H1)

with p = 0 that

u′(t) ≤ −α1u(t) + α2 sup
t−τ≤s≤t

|u(s)|.

Then

E|X(t, ξ)−X(t, η)|2 ≤ ‖ξ − η‖2∞ε−λt, t ≥ 0 (16)

for some λ > 0.
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Exponential Mixing for Neutral SDEs

Consider a neutral SDE on Rn

d{X(t)−G(Xt)} = b(Xt)dt+ σ(Xt)dW (t) (17)

with the initial value X0 = ξ ∈ C which is independent of {W (t)}t≥0,

where G : C 7→ Rn is measurable and continuous such that G(0) = 0, and

b : C 7→ Rn, σ : C 7→ Rn ⊗ Rm are measurable and locally Lipschitz.

For any φ, ψ ∈ C , we assume that

(A1) There exists κ ∈ (0, 1) such that

E|G(φ)−G(ψ)| ≤ κ sup
−τ≤θ≤0

E|φ(θ)− ψ(θ)|2

.
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(A2) There exist α1 > α2 > 0 such that

E{2〈φ(0)− ψ(0)− (G(φ)−G(ψ)), b(φ)− b(ψ)〉+ ‖σ(φ)− σ2(ψ)‖2}

≤ −α1E|φ(0)− ψ(0)|2 + α2 sup
−τ≤θ≤0

E|φ(θ)− ψ(θ)|2.

(A3) There exists α3 > 0 such that

E‖σ(φ)− σ(ψ)‖2 ≤ α3 sup
−τ≤θ≤0

E|φ(θ)− ψ(θ)|2.

Under (A1)-(A2), (17) has a unique strong solution {X(t, ξ)}t≥0 with the

initial data ξ ∈ C .
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Lemma

Let (A1) hold and assume further that there exist δ ≥ 0, λ > 0 such that

E{2〈φ(0)−G(φ),b(φ)〉+ ‖σ(φ)‖2} ≤ δ − λE|φ(0)−G(φ)|2 (18)

provided that, for some q > (1− κ)−2,

E|φ(θ)|2 < q|φ(0)−G(φ)|2, −τ ≤ θ ≤ 0. (19)

Then there exists γ < λ sufficiently small such that

E|X(t)|2 ≤ δ/λ+ ε−γt(1 + κ)2‖ξ‖2∞
(1− κεγτ/2)2

, t ≥ −τ. (20)
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Our main result in this section is presented as below.

Theorem

Let (A1)-(A3) hold and κ ∈ (0, 1/2) and α1 > α2/(1 − 2κ)2. Assume

further that

|G(φ)−G(ψ)| ≤ κ‖φ− ψ‖∞, φ, ψ ∈ C . (21)

Then, (17) has a unique invariant measure π(·) ∈ P(C ) and is exponen-

tially mixing. That is, there exists λ > 0 such that

|PtF (ξ)− π(F )| ≤ cε−λt, t ≥ 0, F ∈ Bb(C ), ξ ∈ C .
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Exponential Mixing for Retarded SDEs with Jumps

Consider a non-autonomous retarded SDE with jump

dX(t) = b(Xt)dt+

∫
Γ
σ(Xt−, z)Ñ(dt,dz), t ≥ 0 (22)

with the initial value ξ ∈ D which is independent ofN(·, ·), where Xt−(θ) :=

X((t + θ)−) := lims↑t+θX(s) for θ ∈ [−τ, 0], b : D 7→ Rn and σD 7→

Rn × Γ 7→ Rn are progressively measurable.
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For any φ, ψ ∈ D and any t ≥ 0, we assume that

(B1) There exist α1 > α2 > 0 such that

E
{

2〈φ(0)− ψ(0), b(φ)− b(ψ)〉+

∫
Γ
|σ(φ, z)− σ(ψ, z)|2m(dz)

}
≤ −α1E|φ(0)− ψ(0)|2 + α2 sup

−τ≤θ≤0
E|φ(θ)− ψ(θ)|2;

(B2) There exists α3 > 0 such that

E|b(φ)− b(ψ)|2 + E
∫

Γ
|σ(φ, z)− σ(ψ, z)|2m(dz)

≤ α3 sup
−τ≤θ≤0

E|φ(θ)− ψ(θ)|2.
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The main result in this section is stated as follows.

Theorem

Under (B1)-(B2), (22) has a unique invariant measure π(·) ∈ P(D) and

is exponentially mixing. More precisely, there exists λ > 0 such that

|PtF (ξ)− π(F )| ≤ cε−λt, t ≥ τ, F ∈ Bb(D), ξ ∈ D .
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Sketch of the Proof

Step 1: Claim a uniform bound of Xt:

sup
t≥−τ

E‖Xt‖2∞ <∞. (23)

We can derive that δ := supt≥−τ E|X(t)|2 < ∞. By the Itô formula, for

any t ≥ τ and θ ∈ [−τ, 0], it follows that

|X(t+ θ)|2 = |X(t− τ)|2 + 2

∫ t+θ

t−τ
〈X(s), b(s,Xs)〉ds

+

∫ t+θ

t−τ

∫
Γ
|σ(s,Xs−, z)|2N(ds, dz) + 2Π(t, t+ θ),

(24)

where

Π(t, t+ θ) :=

∫ t+θ

t−τ

∫
Γ
〈X(s−), σ(s,Xs−, z)〉Ñ(ds, dz).
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Next, due to the Burkhold-Davis-Gundy inequality, and the Jensen inequal-

ity, we derive that

E
(

sup
−τ≤θ≤0

|Π(t, t+ θ)|
)
≤ cE

√
[Π,Π][t−τ,t]

≤ cE

√∫ t

t−τ

∫
Γ
|〈X(s−), σ(s,Xs−, z)〉|2N(ds, dz)

≤ c

√
E‖Xt‖2∞E

∫ t

t−τ

∫
Γ
|σ(s,Xs−, z)|2N(ds, dz)

≤ 1

4
E‖Xt‖2∞ + cE

∫ t

t−τ

∫
Γ
|σ(s,Xs, z)|2m(dz)ds,

(25)

where [Π,Π][t−τ,t] stands for the quadratic variation process (square bracket

process) of Π(t, t− τ). Then the result follows from (24)
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Step 2:

Existence of an invariant measure. For θ ∈ [−τ, 0] and θ̃ ∈ [0,4], where

4 > 0 is an arbitrary constant such that θ + 4 ∈ [−τ, 0]. Set Es· :=

E(·|Fs), s ≥ 0. By the Itô isometry, for any t ≥ τ , we obtain from (22)

that

Et+θ|Xt(θ + θ̃)−Xt(θ)|2 = Et+θ|X(t+ θ + θ̃)−X(t+ θ)|2

≤ c
∫ t+θ+4

t+θ
Et+θ

{
|b(s,Xs)|2 +

∫
Γ
|σ(s,Xs−, z)|2m(dz)

}
ds.

By virtue of (B1)-(B2) and (23), there is a γ0(t,4) satisfying

Et+θ|X(t+ θ + θ̃)−X(t+ θ)|2 ≤ Et+θγ0(t,4).
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By virtue of (B1)-(B2) and (23), there is a γ0(t,4) satisfying

Et+θ|X(t+ θ + θ̃)−X(t+ θ)|2 ≤ Et+θγ0(t,4).

Taking expectation and lim supt→∞ followed by lim4→0, we obtain from

(B1)-(B2) and (23) that

lim
4→0

lim sup
t→∞

Eγ0(t,4) = 0. (26)

Therefore, in view of (23) and (26), combining with ” Kushner, H. J.,

Approximation and Weak Convergence Methods for Random Processes, with

Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA,

1984.”, we conclude that Xt is tight under the Skorohod metric dS .
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frametitleThe Remote Start Method

(H1′) There exist ν1 > ν2 > 0, ν3 > 0 and a probability measure µ(·) on

[−τ, 0] such that

2〈ϕ(0)− φ(0), b(ϕ)− b(φ)〉+

∫
Γ
|σ(ϕ, z)− σ(φ, z)|2m(dz)

≤ −ν1|ϕ(0)− φ(0)|2 + ν2

∫ 0

−τ
|ϕ(θ)− φ(θ)|2µ(dθ)

and

|b(ϕ)− b(φ)|2 +

∫
Γ
|σ(ϕ, z)− σ(φ, z)|2m(dz)

≤ ν3

(
|ϕ(0)− φ(0)|2 +

∫ 0

−τ
|ϕ(θ)− φ(θ)|2µ(dθ)

)
.

Theorem

Under (H1′), (22) has a unique ergodic invariant measure.
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Sketch of Proof

We adopt the remote start method, e.g., Da Prato and Zabczyk (1996).

Let N1(·, ·) be an independent copy of N(·, ·) and N0(·, ·) a doubled-sided

Poission process defined by

N0(t,Γ) :=

N(t,Γ), t ≥ 0

N1(−t,Γ), t < 0,

for all Γ ∈ B(Z), with filtration

F̄t :=
⋂
s>t

F̄ 0
s ,

where F̄ 0
s := σ({N0([r1, r2],Γ) : −∞ < r1 ≤ r2 ≤ s,Γ},N ) and N :=

{A ∈ F |P(A) = 0}.
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For arbitrary t ∈ R, s ∈ (−∞, t] and ξ ∈ D , consider functional SDE

dX(t) = b(Xt)dt+

∫
Γ
σ(Xt, z)Ñ0(dt,dz), Xs = ξ, (27)

where Ñ0(dt,dz) := N0(dt,dz)−dt⊗m(dz). Equation (27), under (H1′),

has a unique strong solution X(t; s, ξ) with initial data ξ at time s.
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For any ν > 0, by the Itô formula and (H1′), one has

E(|X(t; s1, ξ)−X(t; s2, ξ)|2) ≤ c(1 + ‖ξ‖2∞)ε−ν(t−s2). (28)

For s1, s2 ∈ (−∞, t] such that s1 ≤ s2 ≤ t− 2τ , we can show that

E(‖Xt(s1, ξ)−Xt(s2, ξ)‖2∞) ≤ c(1 + ‖ξ‖2∞)ε−ν(t−s2). (29)

Taking s2 → −∞, it follows that there exists ηt ∈ L2(Ω,F ,P; D) such

that

lim
s→−∞

‖Xt(s, ξ)− ηt‖2∞ = 0. (30)
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For bounded Lipschitz F : C → R and s ≤ t, let

Ps,t(ξ, dη) := P ◦ (Xt(s, ξ))
−1(dη) and Ps,tF (ξ) :=

∫
C
F (η)Ps,t(ξ,dη).

Note from (30) implies that

P−s,0(ξ, η)→ π := P ◦ η−1
0 weakly as s→∞.

Then one has∫
C
P0,tF (η)π(dη) = lim

s→∞
P−s,0(P0,tF )(ξ) = lim

s→∞
P−(t+s),0F (ξ)

=

∫
C
F (η)π(dη)

This indeed gives that π = P ◦ η−1
0 is an invariant measure
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