Exponential Mixing of SFDEs

Chenggui Yuan

A joint work with J. Bao, L. Wang and Y. Yin

Swansea University

09/07/2013

 $\text{Unenggui Yuan A join} \begin{array}{lll} \text{Exponential Mixing of SFDEs} \end{array} \begin{array}{lll} \text{SINR} \end{array}$

- Exponential Ergodicity for Retarded SDEs
- Exponential Ergodicity fo Neutral SDEs
- Exponential Ergodicity for Retarded SDEs with Jumps

We start with some notation. For each integer $n\geq 1$, let $(\mathbb{R}^{n},\langle\cdot,\cdot\rangle, |\cdot|)$ be the n -dimensional Euclidean space and $\mathbb{R}^n\otimes \mathbb{R}^m$ denote the totality of all $n\times m$ matrices. For a fixed constant $\tau>0,$ $\mathscr{C}:=C([-\tau,0];\mathbb{R}^{n})$ stands for the family of all continuous mappings $\zeta:[-\tau,0]\mapsto \mathbb{R}^n$ equipped with the uniform norm $\|\zeta\|_\infty := \sup_{-\tau\leq\theta\leq 0} |\zeta(\theta)|.$ For any continuous function $f:[-\tau,\infty)\mapsto \mathbb{R}^n$ and $t\geq 0$, let $f_t\in \mathscr{C}$ be such that $f_t(\theta)=f(t+\theta)$ for each $\theta \in [-\tau, 0]$. Let $W(t)$ be an m-dimensional Wiener process defined on a complete filtered probability space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t>0}, \mathbb{P})$. Let $\mathcal{P}(\mathscr{C})$ denote the collection of all probability measures on $(\mathscr{C}, \mathscr{B}(\mathscr{C}))$, $\mathscr{B}_b(\mathscr{C})$ means the set of all bounded measurable functions $F : \mathscr{C} \to \mathbb{R}$ endowed with the uniform norm $||F||_0 := \sup_{\phi \in \mathscr{C}} |F(\phi)|$, and $\mu(\cdot)$ stands for a probability measure on $[-\tau, 0]$. For any $F \in \mathscr{B}_b(\mathscr{C})$ and $\pi(\cdot) \in \mathcal{P}(\mathscr{C})$, let $\pi(F) :=$ $\int_{\mathscr{C}} F(\phi) \pi(\mathrm{d}\phi).$ $\sqrt{\text{Nenggu1 Yuan A}}$ joint we exponential Mixing of SFDEs (Sw[ang](#page-1-0) $\frac{1}{2}$ [an](#page-3-0)[d](#page-1-0) $\frac{1}{2}$ and $\frac{1}{2}$ \frac

We consider a retarded SDE on $(\mathbb{R}^n,\langle\cdot,\cdot\rangle, |\cdot|)$ in the framework

$$
dX(t) = b(t, X_t)dt + \sigma(t, X_t)dW(t), \quad t > 0
$$
\n(1)

with the initial data $X_0 = \xi \in \mathscr{C}$, where $b : [0, \infty) \times \mathscr{C} \mapsto \mathbb{R}^n$ and $\sigma\,:\,[0,\infty)\times\mathscr{C}\,\mapsto\,\mathbb{R}^n\otimes\mathbb{R}^m$ are measurable and locally Lipschitz with respect to the second variable. We assume that the initial value $\xi \in \mathscr{C}$ is independent of $\{W(t)\}_{t\geq0}$.

For any $\phi, \psi \in \mathscr{C}$ and $t, p \geq 0$, we assume that

(H1) There exist $\alpha_1 > \alpha_2 > 0$ such that

$$
\mathbb{E}\{|\phi(0) - \psi(0)|^p (2\langle \phi(0) - \psi(0), b(t, \phi) - b(t, \psi) \rangle + ||\sigma(t, \phi) - \sigma(t, \psi)||^2\}
$$

\n
$$
\leq -\alpha_1 \mathbb{E}|\phi(0) - \psi(0)|^{2+p} + \alpha_2 \sup_{-\tau \leq \theta \leq 0} \mathbb{E}\{|\phi(0) - \psi(0)|^p |\phi(\theta) - \psi(\theta)|^2\}
$$

(H2) There exists $\alpha_3 > 0$ such that

$$
\mathbb{E} \|\sigma(t,\phi) - \sigma(t,\psi)\|^{2+p} \leq \alpha_3 \sup_{-\tau \leq \theta \leq 0} \mathbb{E}(|\phi(\theta) - \psi(\theta)|^{2+p}).
$$

 \sim

The following remark shows that there are some examples such that (H1) and (H2).

Let $b(t, \phi) = b(t, \phi(0), \phi(-\delta(t)))$ and $\sigma(t, \phi) = \sigma(t, \phi(0), \phi(-\delta(t)))$ with $\phi \in \mathscr{C}$, where $\delta : [0, \infty) \mapsto [0, \tau]$ is a measurable function. For any $\phi \in \mathscr{C}$ and $t \geq 0$, if

$$
2\langle \phi(0) - \psi(0), b(t, \phi(0), \phi(-\delta(t))) - b(t, \psi(0), \psi(-\delta(t))) \rangle + \| \sigma(t, \phi(0), \phi(-\delta(t))) - \sigma(t, \psi(0), \psi(-\delta(t))) \|^2 \leq -\alpha_1 |\phi(0) - \psi(0)|^2 + \alpha_2 |\phi(-\delta(t)) - \psi(-\delta(t))|^2,
$$

and

$$
\|\sigma(t,\phi)-\sigma(t,\psi)\|^2 \leq \alpha_3(|\phi(0)-\psi(0)|^2+|\phi(-\delta(t))-\psi(-\delta(t))|^2),
$$

then (H1) and (H2) hold respectively for some [con](#page-4-0)[st](#page-6-0)[a](#page-4-0)[nts](#page-5-0) $\alpha_1, \alpha_2, \alpha_3 > 0$ $\alpha_1, \alpha_2, \alpha_3 > 0$. \bigcup **nenggui Yuan A join** Exponential Mixing of SFDEs (Spansea University) 09/07/2013 6 / 41 On the other hand, for arbitrary $\phi \in \mathscr{C}$ and $t \geq 0$, if

$$
2\langle \phi(0) - \psi(0), b(t, \phi) - b(t, \psi) \rangle + ||\sigma(t, \phi) - \sigma(t, \psi)||^2
$$

$$
\leq -\alpha_1 |\phi(0) - \psi(0)|^2 + \alpha_2 \int_{-\tau}^0 |\phi(\theta) - \psi(\theta)|^2 \mu(d\theta),
$$

and

$$
\|\sigma(t,\phi)-\sigma(t,\psi)\|^2 \leq \alpha_3 \Big(|\phi(0)-\psi(0)|^2+\int_{-\tau}^0|\phi(\theta)-\psi(\theta)|^2\mu(\mathrm{d}\theta)\Big),
$$

where $\mu(\cdot)$ is a probability measure on $[-\tau, 0]$, then (H1) and (H2) are also fulfilled for some $\alpha_1, \alpha_2, \alpha_3 > 0$.

From the previous discussions, we deduce that our framework cover SDEs with constant/variable/distributed delays

Let $u, v : [0, \infty) \mapsto \mathbb{R}_+$ be continuous functions and $\beta > 0$. If

$$
u(t) \le u(s) - \beta \int_s^t u(r) dr + \int_s^t v(r) dr, \quad 0 \le s < t < \infty,
$$

then

$$
u(t) \le u(0) + \int_0^t \epsilon^{-\beta(t-r)} v(r) dr.
$$

Let $u : [0, \infty) \to \mathbb{R}_+$ be a continuous function and $\delta > 0, \alpha > \beta > 0$. If

$$
u(t) \le \delta + \beta \int_0^t \epsilon^{-\alpha(t-s)} u(s) \mathrm{d} s, \quad t \ge 0,
$$

then $u(t) \leq (\delta \alpha)/(\alpha - \beta)$.

Lemma

For $a, b > 0$, let $u(\cdot)$ be a nonnegative function such that

$$
u'(t) \le -au(t) + b \sup_{t-\tau \le s \le t} u(s), \quad t > 0
$$

Then, for $a > b > 0$, there exists $\lambda > 0$ such that

$$
u(t) \le \Big(\sup_{-\tau \le s \le 0} u(s)\Big) \epsilon^{-\lambda t}, \quad t \ge 0.
$$

 $\sqrt{\text{Nenggul M} \text{Uan A}}$ $\sqrt{\text{Nenggul M} \text{Uan A}}$ $\sqrt{\text{Nenggul M} \text{Uan A}}$ jo[i](#page-1-0)n Exponential Mixing of SFDEs (Sample 19/07/2013 9/41)

Assume that (H1) and (H2) hold. Then there exists a sufficiently small $\kappa > 0$ such that

$$
\sup_{t\geq -\tau} \mathbb{E} \|X_t(\xi)\|_{\infty}^{2+\kappa} < \infty. \tag{2}
$$

For any $\kappa > 0$, by the Itô formula, we obtain that

$$
\rho(t) := \mathbb{E}|X(t)|^{2+\kappa} \n\leq \frac{2+\kappa}{2} \mathbb{E} \int_0^t |X(s)|^{\kappa} \{2\langle X(s), b(s, X_s) \rangle + ||\sigma(s, X_s)||^2\} ds \n+ |\xi(0)|^{2+\kappa} + \frac{\kappa(2+\kappa)}{2} \mathbb{E} \int_0^t |X(s)|^{\kappa} \cdot ||\sigma(s, X_s)||^2 ds \n=: I_1(t) + I_2(t).
$$
\n(3)

By (H1) and (H2), it is readily to see that there exist $\nu_1 > \nu_2 > 0$ such that

$$
\mathbb{E}\{|\phi(0)|^{\kappa}(2\langle\phi(0),b(t,\phi)\rangle + \|\sigma(t,\phi)\|^2)\} \le -\nu_1 \mathbb{E}|\phi(0)|^{2+\kappa} + \nu_2 \sup_{-\tau \le \theta \le 0} \mathbb{E}(|\phi(0)|^{\kappa} \cdot |\phi(\theta)|^2) + c
$$
\n(4)

for any $t \geq 0$ and $\phi \in \mathscr{C}$. This, together with the Young inequality:

$$
a^{\beta}b^{1-\beta} \le \beta a + (1-\beta)b, \quad a, b > 0, \beta \in (0,1),
$$
 (5)

gives that

$$
I_1(t) \leq \frac{2+\kappa}{2} \int_0^t \{-\nu_1 \rho(s) + \nu_2 \sup_{-\tau \leq \theta \leq 0} \mathbb{E}(|X(s)|^{\kappa} \cdot |X(s+\theta)|^2) + c\} ds
$$

\n
$$
\leq -\frac{(2+\kappa)\nu_1}{2} \int_0^t \rho(s) ds + \frac{(2+\kappa)\nu_2}{2} \int_0^t \left\{ \frac{\kappa}{2+\kappa} \rho(s) + \frac{2}{2+\kappa} \sup_{-\tau \leq \theta \leq s} \rho(r) + c \right\} ds
$$

\n
$$
\leq -\frac{(2+\kappa)}{2} \left(\nu_1 - \frac{\nu_2 \kappa}{2+\kappa} - \kappa \right) \int_0^t \rho(s) ds + \int_0^t \{c + \nu_2 r(s)\} ds,
$$

\nwhere $r(t) := \sup_{0 \leq s \leq t} \rho(s).$
\n**Chenggui** Y uAn A join

Hence, we arrive at

$$
\rho(t) \le ||\xi||_{\infty}^{2+\kappa} - \lambda_1 \int_0^t \rho(s) \mathrm{d}s + \int_0^t \{c + \lambda_2 r(s)\} \mathrm{d}s,\tag{6}
$$

where, for a sufficiently small $\kappa \in (0,1)$,

$$
\lambda_1 := \frac{(2+\kappa)}{2} \left(\nu_1 - \frac{\nu_2 \kappa}{2+\kappa} - (c+1)\kappa\right) > \lambda_2 := \nu_2 + \frac{c\kappa(2+\kappa)}{2}
$$

due to $\nu_1 > \nu_2$. Combining [\(6\)](#page-10-1) with Lemma gives that

$$
\rho(t) \le ||\xi||_{\infty}^{2+\kappa} + \int_0^t \epsilon^{-\lambda_1(t-s)} \{c + \lambda_2 r(s)\} \mathrm{d}s. \tag{7}
$$

We therefore infer from [\(7\)](#page-12-1) that

$$
r(t) \leq \|\xi\|_{\infty}^{2+\kappa} + \int_0^t \epsilon^{-\lambda_1(t-s)} \{c + \lambda_2 r(s)\} ds \leq c + \lambda_2 \int_0^t \epsilon^{-\lambda_1(t-s)} r(s) ds.
$$

Thanks to $\lambda_1 > \lambda_2$, Lemma leads to $\sup_{t>-\tau} \rho(t) < \infty$ $\sup_{t>-\tau} \rho(t) < \infty$ $\sup_{t>-\tau} \rho(t) < \infty$ $\sup_{t>-\tau} \rho(t) < \infty$ $\sup_{t>-\tau} \rho(t) < \infty$ [.](#page-12-0) Then [i](#page-1-0)ts to $\lambda_1 > \lambda_2$, Lemma reads to $\sup_{t \ge -\tau} P(V_t) \rightarrow \sup_{t \ge -\tau} \sup_{s \in \mathbb{R}} \sup_{s \in \mathbb{$ $\sup_{t \ge -\tau} P(V_t) \rightarrow \sup_{t \ge -\tau} \sup_{s \in \mathbb{R}} \sup_{s \in \mathbb{$ $\sup_{t \ge -\tau} P(V_t) \rightarrow \sup_{t \ge -\tau} \sup_{s \in \mathbb{R}} \sup_{s \in \mathbb{$ Next, for any $t \geq \tau$, applying the Itô formula, together with the Burkhold-Davis-Gundy inequality and the Young inequality [\(5\)](#page-11-1), we deduce from [\(4\)](#page-11-2) that

$$
\mathbb{E}\|X_t\|_{\infty}^{2+\kappa} \leq \rho(t-\tau) + c \int_{t-\tau}^t \{1+\rho(s)+r(s)\} ds
$$

+ $(2+\kappa)\mathbb{E}\Big(\sup_{-\tau\leq\theta\leq 0} \Big| \int_{t-\tau}^{t+\theta} |X(s)|^{\kappa} \langle X(s), \sigma(s, X_s) dW(s) \rangle \Big|$
 $\leq \frac{1}{2} \mathbb{E}\|X_t\|_{\infty}^{2+\kappa} + \rho(t-\tau) + c \int_{t-\tau}^t \{1+\rho(s)+r(s)\} ds.$

That is,

$$
\mathbb{E}\|X_t\|_{\infty}^{2+\kappa} \le 2\rho(t-\tau) + c \int_{t-\tau}^t \{1+\rho(s) + r(s)\} \mathrm{d}s, \quad t \ge \tau. \tag{8}
$$

Definition

A probability measure $\pi(\cdot) \in \mathcal{P}(\mathscr{C})$ is called an invariant measure of [\(1\)](#page-3-1) if, for arbitrary $F \in \mathscr{B}_b(\mathscr{C})$,

$$
\pi(P_t F) = \pi(F), \quad t \ge 0,
$$

where $P_t F(\xi) := \mathbb{E} F(X_t(\xi)).$

Theorem

Under (H1) and (H2), [\(1\)](#page-3-1) has a unique invariant measure $\pi(\cdot) \in \mathcal{P}(\mathscr{C})$ and is exponentially mixing. More precisely, there exists $\lambda > 0$ such that

$$
|P_t F(\xi) - \pi(F)| \le c\epsilon^{-\lambda t}, \quad t \ge 0, \ F \in \mathscr{B}_b(\mathscr{C}), \ \xi \in \mathscr{C}.
$$
 (9)

 \bigcup \bigcup \bigcup nenggui [Y](#page-0-0)ua[n](#page-40-0) A join Exponential Mixing of SFDEs 09/07/2013 15 / 41

Step 1: Existence of an Invariant Measure. The proof on existence of an invariant measure is due to the classical Arzelà–Ascoli tightness characterization of the space $\mathscr C$. For arbitrary integer $n \geq 1$, set

$$
\mu_n(\cdot) := \frac{1}{n} \int_0^n \mathbb{P}_t(\xi, \cdot) \mathrm{d}t,
$$

where $\mathbb{P}_t(\xi, \cdot)$ is the Markovian transition kernel of $X_t(\xi)$. By the Krylov-Bogoliubov theorem, to show existence of an invariant measure, it is sufficient to verify that $\{\mu_n(\cdot)\}_{n>1}$ is relatively compact. Note that the phase space $\mathscr C$ for the segment process $X_t(\xi)$ is a complete separable space under the uniform metric $\|\cdot\|_{\infty}$.

We only need to show that $\{\mu_n(\cdot)\}_{n\geq 1}$ is tight. It suffices to claim that

$$
\lim_{\delta \downarrow 0} \sup_{n \ge 1} \mu_n(\varphi \in \mathscr{C} : w_{[-\tau,0]}(\varphi, \delta) \ge \varepsilon) = 0 \tag{10}
$$

for any $\varepsilon > 0$, where $w_{[-\tau,0]}(\varphi,\delta)$, the modulus of continuity of $\varphi \in \mathscr{C}$, is defined by

$$
w_{[-\tau,0]}(\varphi,\delta):=\sup_{|s-t|\leq \delta, s,t\in [-\tau,0]}|\varphi(s)-\varphi(t)|,\quad \delta>0.
$$

$$
I(t,\delta) := \sup_{t \le v \le u \le t + \tau, 0 \le u - v \le \delta} |X(u) - X(v)|
$$

\n
$$
\le \sup_{t \le v \le u \le t + \tau, 0 \le u - v \le \delta} \int_v^u |b(s, X_s)| ds
$$

\n
$$
+ \sup_{t \le v \le u \le t + \tau, 0 \le u - v \le \delta} \left| \int_v^u \sigma(s, X_s) dW(s) \right|
$$

\n
$$
=: I_1(t,\delta) + I_2(t,\delta), \quad t \ge \tau,
$$

one has

$$
\mathbb{P}(I(t,\delta)\geq \varepsilon)\leq \mathbb{P}(I_1(t,\delta)\geq \varepsilon/2)+\mathbb{P}(I_2(t,\delta)\geq \varepsilon/2).
$$

 $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{SIN} \quad \text{OQCD} \quad \text{OQ07/2013} \quad \text{18 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{SIN} \quad \text{OQCD} \quad \text{OQ07/2013} \quad \text{18 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{SIN} \quad \text{OQCD} \quad \text{OQ07/2013} \quad \text{18 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{SIN} \quad \text{OQCD} \quad \text{OQ07/2013} \quad \text{18 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{SIN} \quad \text{OQCD} \quad \text{OQ07/2013} \quad \text{18 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{SIN} \quad \text{OQCD} \quad \text{OQ07/2013} \quad \text{18 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{SIN} \quad \text{OQCD} \quad \text{OQ07/2013} \quad \text{18 / 41}$

For any $\tilde{\varepsilon} \in (0,1)$, by the Chebyshev inequality and Lemma [4,](#page-9-1) there exists an $R_0 > 0$ sufficiently large such that

$$
\mathbb{P}(\|X_t\|_{\infty} > R_0) + \mathbb{P}(\|X_{t+\tau}\|_{\infty} > R_0)
$$
\n
$$
\leq R_0^{-2} \sup_{t \geq -\tau} (\mathbb{E} \|X_{t+\tau}\|_{\infty}^2 + \mathbb{E} \|X_t\|_{\infty}^2) \leq \tilde{\varepsilon}.\tag{11}
$$

Moreover, since b enjoys locally bounded property, there exists a sufficiently small $\delta_0 > 0$ such that

 $\mathbb{P}(I_1(t,\delta) > \varepsilon/2 \|\|X_t\|_{\infty} < R_0, \|X_{t+\tau}\|_{\infty} < R_0) = 0, \quad \delta < \delta_0.$ (12)

Accordingly, we obtain from [\(11\)](#page-18-1) and [\(27\)](#page-18-2) that

 $\mathbb{P}(I_1(t,\delta) \geq \varepsilon/2) \leq \mathbb{P}(I_1(t,\delta) \geq \varepsilon/2 \|\|X_t\|_{\infty} \leq R_0, \|X_{t+\tau}\|_{\infty} \leq R_0)$ + $\mathbb{P}(\|X_t\|_{\infty} > R_0) + \mathbb{P}(\|X_{t+\tau}\|_{\infty} \geq R_0)$

On the other hand, for $\kappa \in (0,1)$ arbitrary $0 \leq s \leq t$, by the Burkhold-Davis-Gundy inequality, (H2), it follows that

$$
\mathbb{E}\Big|\int_{s}^{t} \sigma(r, X_{r}) dW(r)\Big|^{2+k} \leq c(t-s)^{\kappa/2} \int_{s}^{t} \{1+\mathbb{E}\|X_{r}\|_{\infty}^{2+\kappa}\} dr
$$

$$
\leq c(t-s)^{1+\kappa/2}.
$$

This, combining with the Kolmogrov tightness criterion, implies that

$$
\lim_{\delta \downarrow 0} \sup_{t \ge \tau} \mathbb{P}(I_2(t,\delta) \ge \varepsilon/2) = 0. \tag{14}
$$

Consequently, [\(10\)](#page-16-1) follows from [\(13\)](#page-18-3), [\(14\)](#page-19-1), the arbitrariness of $\tilde{\varepsilon}$, and by noticing that

$$
\mu_n(\varphi \in \mathscr{C}: w_{[-\tau,0]}(\varphi, \delta) \ge \varepsilon) \le \frac{2\tau}{n} + \frac{1}{n} \int_{\tau}^n \mathbb{P}(I(t,\delta) \ge \varepsilon) dt
$$

 $\begin{array}{lllllllllllll} & \text{for} \; n > \tau. \ \text{Corr} \sim \mathbb{C} & \text{for} \; n > \tau. \ \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text$ $\begin{array}{lllllllllllll} & \text{for} \; n > \tau. \ \text{Corr} \sim \mathbb{C} & \text{for} \; n > \tau. \ \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text$ $\begin{array}{lllllllllllll} & \text{for} \; n > \tau. \ \text{Corr} \sim \mathbb{C} & \text{for} \; n > \tau. \ \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text$ $\begin{array}{lllllllllllll} & \text{for} \; n > \tau. \ \text{Corr} \sim \mathbb{C} & \text{for} \; n > \tau. \ \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text$ $\begin{array}{lllllllllllll} & \text{for} \; n > \tau. \ \text{Corr} \sim \mathbb{C} & \text{for} \; n > \tau. \ \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text$ $\begin{array}{lllllllllllll} & \text{for} \; n > \tau. \ \text{Corr} \sim \mathbb{C} & \text{for} \; n > \tau. \ \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text$ $\begin{array}{lllllllllllll} & \text{for} \; n > \tau. \ \text{Corr} \sim \mathbb{C} & \text{for} \; n > \tau. \ \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} \sim \mathbb{C} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text{Corr} & \text{Corr} & \text{Corr} & \text{for} \; n \sim \tau. \ \text{Corr} & \text$

for $n > \tau$.

Step 2: Uniqueness of Invariant Measures.

By the Itô formula, it is easy to see that

$$
u(t) := \mathbb{E}|X(t,\xi) - X(t,\eta)|^2
$$

= $|\xi(0) - \eta(0)|^2 + \int_0^t \mathbb{E}\{2\langle X(s,\xi) - X(s,\eta), b(s,X_s(\xi)) - b(s,X_s(\eta))\rangle$
+ $||\sigma(s,X_s(\xi)) - \sigma(s,X_s(\eta))||^2\}ds.$

(15)

Differentiating with respect to t on both sides of (15) , one has from $(H1)$ with $p = 0$ that

$$
u'(t) \le -\alpha_1 u(t) + \alpha_2 \sup_{t-\tau \le s \le t} |u(s)|.
$$

Then

$$
\mathbb{E}|X(t,\xi)-X(t,\eta)|^2\leq \|\xi-\eta\|_{\infty}^2\epsilon^{-\lambda t},\ \text{and}\ \epsilon\geq \theta\quad\text{as}\ \epsilon\geq(16)\infty
$$

Consider a neutral SDE on \mathbb{R}^n

$$
d\{X(t) - G(X_t)\} = b(X_t)dt + \sigma(X_t)dW(t)
$$
\n(17)

with the initial value $X_0 = \xi \in \mathscr{C}$ which is independent of $\{W(t)\}_{t>0}$, where $G:\mathscr{C}\mapsto\mathbb{R}^n$ is measurable and continuous such that $G(0)=0$, and $b: \mathscr{C} \mapsto \mathbb{R}^n, \sigma: \mathscr{C} \mapsto \mathbb{R}^n \otimes \mathbb{R}^m$ are measurable and locally Lipschitz. For any $\phi, \psi \in \mathscr{C}$, we assume that

(A1) There exists $\kappa \in (0,1)$ such that

$$
\mathbb{E}|G(\phi) - G(\psi)| \le \kappa \sup_{-\tau \le \theta \le 0} \mathbb{E}|\phi(\theta) - \psi(\theta)|^2
$$

.

(A2) There exist $\alpha_1 > \alpha_2 > 0$ such that

$$
\mathbb{E}\{2\langle\phi(0) - \psi(0) - (G(\phi) - G(\psi)), b(\phi) - b(\psi)\rangle + \|\sigma(\phi) - \sigma_2(\psi)\|^2\}
$$

\n
$$
\leq -\alpha_1 \mathbb{E}|\phi(0) - \psi(0)|^2 + \alpha_2 \sup_{-\tau \leq \theta \leq 0} \mathbb{E}|\phi(\theta) - \psi(\theta)|^2.
$$

(A3) There exists $\alpha_3 > 0$ such that

$$
\mathbb{E} \|\sigma(\phi) - \sigma(\psi)\|^2 \leq \alpha_3 \sup_{-\tau \leq \theta \leq 0} \mathbb{E} |\phi(\theta) - \psi(\theta)|^2.
$$

Under (A1)-(A2), [\(17\)](#page-21-1) has a unique strong solution $\{X(t,\xi)\}_{t\geq 0}$ with the initial data $\xi \in \mathscr{C}$.

Let (A1) hold and assume further that there exist $\delta \geq 0, \lambda > 0$ such that

$$
\mathbb{E}\left\{2\langle\phi(0) - G(\phi), b(\phi)\rangle + \|\sigma(\phi)\|^2\right\} \le \delta - \lambda \mathbb{E}|\phi(0) - G(\phi)|^2 \tag{18}
$$

provided that, for some $q > (1 - \kappa)^{-2}$,

$$
\mathbb{E}|\phi(\theta)|^2 < q|\phi(0) - G(\phi)|^2, \quad -\tau \le \theta \le 0. \tag{19}
$$

Then there exists $\gamma < \lambda$ sufficiently small such that

$$
\mathbb{E}|X(t)|^2 \le \frac{\delta/\lambda + \epsilon^{-\gamma t}(1+\kappa)^2 \|\xi\|_{\infty}^2}{(1-\kappa\epsilon^{\gamma\tau/2})^2}, \quad t \ge -\tau. \tag{20}
$$

Our main result in this section is presented as below.

Theorem

Let (A1)-(A3) hold and $\kappa \in (0, 1/2)$ and $\alpha_1 > \alpha_2/(1 - 2\kappa)^2$. Assume further that

$$
|G(\phi) - G(\psi)| \le \kappa \|\phi - \psi\|_{\infty}, \quad \phi, \psi \in \mathscr{C}.
$$
 (21)

Then, [\(17\)](#page-21-1) has a unique invariant measure $\pi(\cdot) \in \mathcal{P}(\mathscr{C})$ and is exponentially mixing. That is, there exists $\lambda > 0$ such that

$$
|P_t F(\xi) - \pi(F)| \le c\epsilon^{-\lambda t}, \quad t \ge 0, \ F \in \mathscr{B}_b(\mathscr{C}), \ \xi \in \mathscr{C}.
$$

Consider a non-autonomous retarded SDE with jump

$$
dX(t) = b(X_t)dt + \int_{\Gamma} \sigma(X_{t-}, z)\tilde{N}(dt, dz), \quad t \ge 0 \tag{22}
$$

with the initial value $\xi \in \mathscr{D}$ which is independent of $N(\cdot, \cdot)$, where $X_{t-}(\theta) :=$ $X((t + \theta)-) := \lim_{s \uparrow t + \theta} X(s)$ for $\theta \in [-\tau, 0], b : \mathscr{D} \mapsto \mathbb{R}^n$ and $\sigma \mathscr{D} \mapsto$ $\mathbb{R}^n \times \Gamma \mapsto \mathbb{R}^n$ are progressively measurable.

For any $\phi, \psi \in \mathscr{D}$ and any $t \geq 0$, we assume that (B1) There exist $\alpha_1 > \alpha_2 > 0$ such that

$$
\mathbb{E}\Big\{2\langle\phi(0)-\psi(0),b(\phi)-b(\psi)\rangle+\int_{\Gamma}|\sigma(\phi,z)-\sigma(\psi,z)|^2m(\mathrm{d}z)\Big\}
$$

\$\leq -\alpha_1\mathbb{E}|\phi(0)-\psi(0)|^2+\alpha_2\sup_{-\tau\leq\theta\leq 0}\mathbb{E}|\phi(\theta)-\psi(\theta)|^2\$;

(B2) There exists $\alpha_3 > 0$ such that

$$
\mathbb{E}|b(\phi) - b(\psi)|^2 + \mathbb{E} \int_{\Gamma} |\sigma(\phi, z) - \sigma(\psi, z)|^2 m(\mathrm{d}z)
$$

\$\leq \alpha_3 \sup_{-\tau \leq \theta \leq 0} \mathbb{E}|\phi(\theta) - \psi(\theta)|^2\$.

The main result in this section is stated as follows.

Theorem

Under (B1)-(B2), [\(22\)](#page-25-1) has a unique invariant measure $\pi(\cdot) \in \mathcal{P}(\mathcal{D})$ and is exponentially mixing. More precisely, there exists $\lambda > 0$ such that

$$
|P_t F(\xi) - \pi(F)| \le c\epsilon^{-\lambda t}, \quad t \ge \tau, \ F \in \mathscr{B}_b(\mathscr{D}), \ \xi \in \mathscr{D}.
$$

 ${\bf Step\ 1:}$ Claim a uniform bound of X_t :

$$
\sup_{t\geq -\tau} \mathbb{E} \|X_t\|_{\infty}^2 < \infty. \tag{23}
$$

We can derive that $\delta:=\sup_{t\geq -\tau}\mathbb{E}|X(t)|^2<\infty.$ By the Itô formula, for any $t \geq \tau$ and $\theta \in [-\tau, 0]$, it follows that

$$
|X(t + \theta)|^{2} = |X(t - \tau)|^{2} + 2 \int_{t-\tau}^{t+\theta} \langle X(s), b(s, X_{s}) \rangle ds
$$

+
$$
\int_{t-\tau}^{t+\theta} \int_{\Gamma} |\sigma(s, X_{s-}, z)|^{2} N(ds, dz) + 2\Pi(t, t + \theta),
$$
 (24)

where

$$
\Pi(t, t + \theta) := \int_{t-\tau}^{t+\theta} \int_{\Gamma} \langle X(s-), \sigma(s, X_{s-}, z) \rangle \tilde{N}(\mathrm{d}s, \mathrm{d}z).
$$

 \bigcup \bigcup \bigcup Aenggui [Y](#page-0-0)ua[n](#page-40-0) A join Exponential Mixing of SFDEs 09/07/2013 29 / 41

Next, due to the Burkhold-Davis-Gundy inequality, and the Jensen inequality, we derive that

$$
\mathbb{E}\Big(\sup_{-\tau\leq\theta\leq0}|\Pi(t,t+\theta)|\Big)\leq c\mathbb{E}\sqrt{[\Pi,\Pi]_{[t-\tau,t]}}
$$
\n
$$
\leq c\mathbb{E}\sqrt{\int_{t-\tau}^{t}\int_{\Gamma}|\langle X(s-),\sigma(s,X_{s-},z)\rangle|^{2}N(\mathrm{d}s,\mathrm{d}z)}
$$
\n
$$
\leq c\sqrt{\mathbb{E}\|X_{t}\|_{\infty}^{2}}\mathbb{E}\int_{t-\tau}^{t}\int_{\Gamma}|\sigma(s,X_{s-},z)|^{2}N(\mathrm{d}s,\mathrm{d}z)
$$
\n
$$
\leq \frac{1}{4}\mathbb{E}\|X_{t}\|_{\infty}^{2}+c\mathbb{E}\int_{t-\tau}^{t}\int_{\Gamma}|\sigma(s,X_{s},z)|^{2}m(\mathrm{d}z)\mathrm{d}s,
$$
\n(25)

where $[\Pi,\Pi]_{[t-\tau,t]}$ stands for the quadratic variation process (square bracket process) of $\Pi(t, t - \tau)$. Then the result follows from [\(24\)](#page-28-1)

Existence of an invariant measure. For $\theta \in [-\tau, 0]$ and $\widetilde{\theta} \in [0, \triangle]$, where $\triangle > 0$ is an arbitrary constant such that $\theta + \triangle \in [-\tau, 0]$. Set \mathbb{E}_{s} := $\mathbb{E}(\cdot|\mathscr{F}_s), s \geq 0$. By the Itô isometry, for any $t \geq \tau$, we obtain from [\(22\)](#page-25-1) that

$$
\mathbb{E}_{t+\theta}|X_t(\theta+\widetilde{\theta}) - X_t(\theta)|^2 = \mathbb{E}_{t+\theta}|X(t+\theta+\widetilde{\theta}) - X(t+\theta)|^2
$$

\n
$$
\leq c \int_{t+\theta}^{t+\theta+\Delta} \mathbb{E}_{t+\theta} \Big\{ |b(s,X_s)|^2 + \int_{\Gamma} |\sigma(s,X_{s-},z)|^2 m(\mathrm{d}z) \Big\} \mathrm{d}s.
$$

By virtue of (B1)-(B2) and [\(23\)](#page-28-2), there is a $\gamma_0(t, \triangle)$ satisfying

$$
\mathbb{E}_{t+\theta}|X(t+\theta+\widetilde{\theta})-X(t+\theta)|^2 \leq \mathbb{E}_{t+\theta}\gamma_0(t,\triangle).
$$

By virtue of (B1)-(B2) and [\(23\)](#page-28-2), there is a $\gamma_0(t, \triangle)$ satisfying

$$
\mathbb{E}_{t+\theta}|X(t+\theta+\widetilde{\theta})-X(t+\theta)|^2 \leq \mathbb{E}_{t+\theta}\gamma_0(t,\triangle).
$$

Taking expectation and $\limsup_{t\to\infty}$ followed by $\lim_{\Delta\to 0}$, we obtain from (B1)-(B2) and [\(23\)](#page-28-2) that

$$
\lim_{\Delta \to 0} \limsup_{t \to \infty} \mathbb{E}\gamma_0(t, \Delta) = 0.
$$
 (26)

Therefore, in view of [\(23\)](#page-28-2) and [\(26\)](#page-31-1), combining with " Kushner, H. J., Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA, 1984.", we conclude that X_t is tight under the Skorohod metric $\mathrm{d}_S.$

frametitleThe Remote Start Method

 $(H1')$ There exist $\nu_1 > \nu_2 > 0$, $\nu_3 > 0$ and a probability measure $\mu(\cdot)$ on $[-\tau, 0]$ such that

$$
2\langle \varphi(0) - \phi(0), b(\varphi) - b(\phi) \rangle + \int_{\Gamma} |\sigma(\varphi, z) - \sigma(\phi, z)|^2 m(\mathrm{d}z)
$$

$$
\leq -\nu_1 |\varphi(0) - \phi(0)|^2 + \nu_2 \int_{-\tau}^0 |\varphi(\theta) - \phi(\theta)|^2 \mu(\mathrm{d}\theta)
$$

and

$$
|b(\varphi) - b(\phi)|^2 + \int_{\Gamma} |\sigma(\varphi, z) - \sigma(\phi, z)|^2 m(\mathrm{d}z)
$$

\$\leq \nu_3 \left(|\varphi(0) - \phi(0)|^2 + \int_{-\tau}^0 |\varphi(\theta) - \phi(\theta)|^2 \mu(\mathrm{d}\theta) \right)\$.

Theorem

Under $(H1')$, (22) has a unique ergodic invariant measure.

 \bigcup \bigcup \bigcup nenggui [Y](#page-0-0)ua[n](#page-40-0) A join Exponential Mixing of SFDEs 09/07/2013 33 / 41

We adopt the remote start method, e.g., Da Prato and Zabczyk (1996). Let $N_1(\cdot, \cdot)$ be an independent copy of $N(\cdot, \cdot)$ and $N_0(\cdot, \cdot)$ a doubled-sided Poission process defined by

$$
N_0(t,\Gamma) := \begin{cases} N(t,\Gamma), & t \ge 0 \\ N_1(-t,\Gamma), & t < 0, \end{cases}
$$

for all $\Gamma \in \mathscr{B}(\mathbb{Z})$, with filtration

$$
\bar{\mathscr{F}}_t:=\bigcap_{s>t}\bar{\mathscr{F}}^0_s,
$$

where $\bar{\mathscr{F}}_s^0:=\sigma(\{N_0([r_1,r_2],\Gamma): -\infty < r_1 \leq r_2 \leq s,\Gamma\},\mathscr{N})$ and $\mathscr{N}:=$ ${A \in \mathscr{F}}[\mathbb{P}(A) = 0].$ Cner Cner Cner [an](#page-34-0)[d](#page-32-0) Cner and Cner $\text{Cner$ For arbitrary $t \in \mathbb{R}$, $s \in (-\infty, t]$ and $\xi \in \mathscr{D}$, consider functional SDE

$$
dX(t) = b(X_t)dt + \int_{\Gamma} \sigma(X_t, z)\tilde{N}_0(dt, dz), \quad X_s = \xi,
$$
 (27)

where $\tilde{N}_0(\mathrm{d} t, \mathrm{d} z):=N_0(\mathrm{d} t, \mathrm{d} z)-\mathrm{d} t\mathop{\otimes} m(\mathrm{d} z).$ Equation [\(27\)](#page-18-2), under (H1′), has a unique strong solution $X(t; s, \xi)$ with initial data ξ at time s.

For any $\nu > 0$, by the Itô formula and $(\mathsf{H1}'),$ one has

$$
\mathbb{E}(|X(t;s_1,\xi)-X(t;s_2,\xi)|^2) \leq c(1+\|\xi\|_{\infty}^2)\epsilon^{-\nu(t-s_2)}.\tag{28}
$$

For $s_1, s_2 \in (-\infty, t]$ such that $s_1 \leq s_2 \leq t - 2\tau$, we can show that

$$
\mathbb{E}(\|X_t(s_1,\xi)-X_t(s_2,\xi)\|_{\infty}^2) \leq c(1+\|\xi\|_{\infty}^2)\epsilon^{-\nu(t-s_2)}.\tag{29}
$$

Taking $s_2\to -\infty$, it follows that there exists $\eta_t\in L^2(\Omega,\mathscr{F},\mathbb{P};\mathscr{D})$ such that

$$
\lim_{s \to -\infty} \|X_t(s,\xi) - \eta_t\|_{\infty}^2 = 0. \tag{30}
$$

For bounded Lipschitz $F : \mathscr{C} \to \mathbb{R}$ and $s \leq t$, let

 $\mathbb{P}_{s,t}(\xi, d\eta) := \mathbb{P} \circ (X_t(s,\xi))^{-1}(d\eta)$ and $P_{s,t}F(\xi) := \int$ C $F(\eta)\mathbb{P}_{s,t}(\xi, d\eta).$

Note from [\(30\)](#page-35-1) implies that

$$
\mathbb{P}_{-s,0}(\xi,\eta) \to \pi := \mathbb{P} \circ \eta_0^{-1} \quad \text{ weakly as } s \to \infty.
$$

Then one has

$$
\int_{\mathscr{C}} P_{0,t} F(\eta) \pi(\mathrm{d}\eta) = \lim_{s \to \infty} P_{-s,0}(P_{0,t} F)(\xi) = \lim_{s \to \infty} P_{-(t+s),0} F(\xi)
$$
\n
$$
= \int_{\mathscr{C}} F(\eta) \pi(\mathrm{d}\eta)
$$

This indeed gives that $\pi=\mathbb{P}\circ\eta_0^{-1}$ is an invariant measure

References

- Bao, J., Yin, G., Yuan, C., Ergodicity for Functional Stochastic Differential Equations, Preprint.
- Bao, J., Yin, G., L. wang, Yuan, C., Exponential mixing for retarded SDEs, Preprint.
- Bo, L., Yuan, C., Invariant measures of reflected stochastic delay differential equations with jumps, arXiv:1301.0442.
- Billingsley, P., *Convergence of probability measures*, J. Wiley & Sons, New York, 1968.
- Bakhtin, Y., Mattingly, J. C., Stationary solutions of stochastic differential equations with memory and stochastic partial differential equations, Commun. Contemp. Math., 7 (2005[\),](#page-36-0) [55](#page-38-0)[3](#page-36-0)[–5](#page-37-0)[8](#page-38-0)[2.](#page-0-0) $\text{Chenggui Yuan A join}$ $\text{Chenggui Yuan A join}$ $\text{Chenggui Yuan A join}$ between tial Mixing of SFDEs 09/07/2013 38 / 41 (Swansea University)

References

- Es-Sarhir, A., Scheutzow, M., van Gaans, O., Invariant measures for stochastic functional differential equations with superlinear drift term, Differential Integral Equations, 23 (2010), 189–200.
- **Itô, K., Nisio, M., On stationary solutions of a stochastic differential** equation, *J. Math. Kyoto Univ.*, $4-1$ (1964), 1-75.
- Hairer, M., Mattingly, J. C., Scheutzow, M., Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations, Probab. Theory Related Fields, 149 (2011), 223–259.
- Kinnally, M. S., Williams, R. J., On existence and uniqueness of stationary distributions for stochastic delay differential equations with positivity constraints, Electron. J. Probab., 15 (2010), 409–451.

Chenggui Yuan A join Exp[on](#page-39-0)e[n](#page-0-0)tial [M](#page-0-0)ixing [o](#page-0-0)f SFDEs 09/07/2013 39 / 41

- Mattingly, J. C., Stuart, A. M., Higham, D. J., Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl., 101 (2001), 185–232.
- Mohammed, S-E. A., Stochastic Functional Differential Equations, Pitman, Boston, 1984.
- Odasso, C., Exponential mixing for stochastic PDEs: the non-additive case, Probab. Theory Related Fields, 140 (2008), 41–82.
- Scheutzow, M., Exponential growth rate for a singular linear stochastic delay differential equation, arXiv:1201.2599v1.
- Zhang, X., Exponential ergodicity of non-Lipschitz stochastic differential equations, Proc. Amer. Math. Soc., 1[37](#page-38-0) [\(2](#page-40-0)[0](#page-38-0)[09](#page-39-0)[\)](#page-40-0)[,](#page-0-0) [3](#page-1-0)[29](#page-40-0)[–](#page-0-0)[3](#page-1-0)[37](#page-40-0)[.](#page-0-0) $\sqrt{\text{Nenggui}}\ \text{Yuan A join}$ Exponential Mixing of SFDEs 09/07/2013 40 / 41 (Swansea University)

Thank You Very Much !

 $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{Syly/2013} \quad \text{41 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{Syly/2013} \quad \text{41 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{Syly/2013} \quad \text{41 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{Syly/2013} \quad \text{41 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{Syly/2013} \quad \text{41 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{Syly/2013} \quad \text{41 / 41}$ $\text{Cnenggui Yuan A join} \quad \text{Exponential Mixing of SFDEs} \quad \text{Syly/2013} \quad \text{41 / 41}$

