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We start with some notation. For each integer n > 1, let (R™, (-,-),|-|) be
the n-dimensional Euclidean space and R™ @ R™ denote the totality of all
n X m matrices. For a fixed constant 7 > 0, ¥ := C([—7,0];R™) stands
for the family of all continuous mappings ¢ : [—7,0] — R™ equipped with
the uniform norm ||(||e := sup_,<p<o [¢(#)|. For any continuous function
fi[-m,00) = R™and t >0, let f; € € be such that f;(6) = f(t + ) for
each 6 € [—7,0]. Let W(¢) be an m-dimensional Wiener process defined on
a complete filtered probability space (2, .%,{.%:}:+>0,P). Let P(%) denote
the collection of all probability measures on (¢, 2(%)), %,(¢) means the
set of all bounded measurable functions F' : € — R endowed with the
uniform norm [[Fllo := supgeq |F(¢)], and u(-) stands for a probability
measure on [—T, 0]. For any F' € %,(%¢) and w(-) € P(¥), let n(F) :=

fcg
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We consider a retarded SDE on (R™, (-,-),| - |) in the framework
dX(t) = b(t, Xy)dt + o(t, X;)dW(t), t>0 (1)

with the initial data Xg = £ € ¢, where b : [0,00) X € +— R" and
o :[0,00) x € — R"™ @ R™ are measurable and locally Lipschitz with

respect to the second variable. We assume that the initial value £ € % is

independent of {W (t)}+>0.
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For any ¢, € € and t,p > 0, we assume that

(H1) There exist ag > o > 0 such that

E{|6(0) — 9 (0)["(2(6(0) — (0),b(t, ) — b(t, %)) + llo(t, ¢) — o (t, )]
< —nE[¢(0) — $(0)[* + a Sup_ E{\¢() Y(0)P|o(0) — v (0)*}

77’

(H2) There exists a3 > 0 such that

Ello(t,¢) — o(t,¥)|**? < az sup E(|¢(6) — v (0)]**7).

—7<0<0
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The following remark shows that there are some examples such that (H1)
and (H2).

¢ € €, where ¢ : [0,00) — [0, 7] is a measurable function. For any ¢ € €
and ¢t >0, if

2(¢(0) — 1(0), b(t, #(0), p(—46(£))) — b(t,1(0),v(=4(2))))
+ o (t, $(0), d(=6(t))) — o (t, 1(0), % (=5(t)))|I?
< —a1|(0) — P (0)* + anlo(—d(t)) — ¥ (—=5(t)) [,
and

lo(t, @) — ot ¥)|* < as(|6(0) — »(0)]* + |¢(—d(2)) — w(=8(t)),

then (H1) and (H2) hold respectively for some constants a1, ag, s > 0.
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On the other hand, for arbitrary ¢ € € and ¢t > 0, if

2(¢(0) — (0),b(t, ) = b(t,v)) + [lo(t, d) — o (t,4)|”
0
< —anlo(0) = ¥(O) +az [ 10(6) ~ w(O)Pu(as),
and
0
lo(t, )~ (e, 0)IP < s (1000) ~ w0 + [ 16(6) - v(6) Putas)).

where p(+) is a probability measure on [—7, 0], then (H1) and (H2) are also
fulfilled for some a, asg, ag > 0.

From the previous discussions, we deduce that our framework cover SDEs

with constant/variable/distributed delays
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Lemma

Let u,v : [0,00) — R4 be continuous functions and g > 0. If

u(t) ﬁ/ dr+/ o(r)dr, 0<s<t< oo,

then
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Lemma

Let u : [0,00) — Ry be a continuous function and 6 > 0, > 3 > 0. If

<5+5/ alt=5)y(s)ds, t >0,

then u(t) < (da)/(ax — B).

Lemma

For a,b > 0, let u(-) be a nonnegative function such that

u'(t) < —au(t) +b sup u(s), t>0
t—7<s<t

Then, for a > b > 0, there exists A > 0 such that

u(t) < ( sup u(s))e”‘t, t>0.
—7<5<0
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Lemma

Assume that (H1) and (H2) hold. Then there exists a sufficiently small
k > 0 such that
sup EX(0) " < . 2)

v
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Sketch of Proof

For any x > 0, by the It6 formula, we obtain that
plt) = E|X (1) P+

< 2+”E/ | X (s)]"{2(X (), b(s, X)) + [|o(s, X5)||*}ds

k(2
e+ g [ X oo, X, Pas

=: Il(t) -+ Ig(t).

Jjoin Exponential Mixing of SFDEs 09/07/2013



By (H1) and (H2), it is readily to see that there exist v; > v > 0 such that

E{[¢(0)["(2(¢(0),b(t, #)) + llo(t, 9)|*)} < —1E|p(0)[*"

. ) (4)
+v2 sup E(|¢(0)[" - [0(0)]7) + ¢
—7<6<0
for any t > 0 and ¢ € €. This, together with the Young inequality:
a’b' P < Ba+ (1-B)b, a,b>0,8€(0,1), (5)

gives that

0 < 255 [Hempl)+v sup E(X(P - 1X(a+0)R) + chas

2 —7<6<0

(24 Kk)1y /t (2+ K)o /t K 2
< _Lren d { ﬁ
< 5 Op@)8+ 5 ; 2+HM@+2+RiiﬁgMH+c E

< BEA(, ) / p(s)ds + / et var(s))ds,

where 7(t) := supg<s<¢ p(5)-
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Hence, we arrive at

o(t) < €12 — Ay /0 p(s)ds + /0 {e+ Aor(s)}ds, (6)

where, for a sufficiently small x € (0,1),

ck(2+ k)

(2+ k) ( V9K )
= - - 1 =
A1 SR G v (et 1)k ) > Ao i=vp + —
due to v1 > v5. Combining (6) with Lemma gives that
t
) < L6137+ [ Mot dar()}ds, "
0

We therefore infer from (7) that

t t
r(t) < ||€|I%" + / MU= e 4 Agr(s)bds < ¢+ Ao / M=) r(5)ds.
0 0

Thanks to A1 > A2, Lemma leads to sup;>_, p(t) < oc.
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Next, for any t > 7, applying the 1t6 formula, together with the Burkhold-
Davis-Gundy inequality and the Young inequality (5), we deduce from (4)
that

EJIX/ |2 < plt—7)+ 0 t{1+p<> () ds

+ (24 r)E( sup ‘/ttw X(s )J(SaXs)dW(S»D

7T<9<0

< EIIX 1357 + p(t =) +c {1 +p(s) +r(s)}ds.

t—1

That is,

E| X337 <2p(t=71)+c | {1+p(s) +r(s)}ds, t>7. (8)

t—1

oin Exponential Mixing of SFDEs 09/07/2013
/ /



Definition
A probability measure 7(-) € P(%) is called an invariant measure of (1)

if, for arbitrary F' € %,(¢),

where P,F(§) := EF(X¢(€)).

Theorem

Under (H1) and (H2), (1) has a unique invariant measure 7(-) € P(%)

and is exponentially mixing. More precisely, there exists A > 0 such that

|P,F(&) —m(F)| <ce™, t>0, FeB(E), EcF. (9)
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Sketch of Proof

Step 1: Existence of an Invariant Measure. The proof on existence of
an invariant measure is due to the classical Arzela—Ascoli tightness charac-

terization of the space %. For arbitrary integer n > 1, set

() = /0 "B(e, ),

n

where P;(&, ) is the Markovian transition kernel of X;(£). By the Krylov-
Bogoliubov theorem, to show existence of an invariant measure, it is suffi-
cient to verify that {i,(-)}n>1 is relatively compact. Note that the phase
space ¢ for the segment process X () is a complete separable space under

the uniform metric || - ||o-
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We only need to show that {1, (-) }n>1 is tight. It suffices to claim that

Limsup (i € € w70 (9, 6) 2 €) =0 (10)

10 n>1

for any e > 0, where w_. o)(, ), the modulus of continuity of p € €, is
defined by

Wi_70)(,0) = sup [p(s) —@(t)],  6>0.
|s—t|<é,s,te[—T,0]
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I(t,9): = sup | X (u) — X (v)]

t<v<u<t+7,0<u—v<d

< s [

t<v<u<t+7,0<u—v<d

u
+ sup ’ / o(s, Xs)dW(s)
t<v<u<t+7,0<u—v<d ' Jov

=: Il(t,5)+12(t,5), t>T,

one has

P(I(t,6) > ) < P(I1(t,8) > £/2) + P(Is(t,6) > £/2).
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For any € € (0,1), by the Chebyshev inequality and Lemma 4, there exists

an Ry > 0 sufficiently large such that
P([ Xtlloo > Ro) + P(|| Xt4r]loc > Ro)
o 5 2y~ (11)
< By " sup (Bl Xeqr |5 + EIX:15) < &
>—T

Moreover, since b enjoys locally bounded property, there exists a sufficiently
small §p > 0 such that
P(I1(t,0) =2 /2| [ Xilloo < Ro, | Xtsrlloo < Ro) =0, 0 <d. (12)
Accordingly, we obtain from (11) and (27) that
B(L1(t,6) > £/2) < P(11(t,6) > £/2| [ Xlloo < Ro, | Xirloo < Ro)
+ P(|Xtlloo > Ro) + P(| Xt4r ][00 > Ro)

<Ee.
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On the other hand, for k € (0,1) arbitrary 0 < s < t, by the Burkhold-
Davis-Gundy inequality, (H2), it follows that

t 24k 5 (1 5
B [ ot X )aw (| < el — 9 [ {1+ B dr
< C(t— s)l-i-fi/?_

This, combining with the Kolmogrov tightness criterion, implies that

limsup P(I2(t,6) > ¢/2) = 0. (14)
340 ¢>r

Consequently, (10) follows from (13), (14), the arbitrariness of £, and by
noticing that
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Step 2: Uniqueness of Invariant Measures.

By the It6 formula, it is easy to see that

u(t) = E’X(t,f) - X(tvn)P

= [£(0) = n(0)* + / E{2(X(s,€) = X(s,1),b(s, Xs(&)) = b(s, Xs(n)))

0
+lo(s, Xs(€)) = o (s, Xs(m)*}ds.
(15)
Differentiating with respect to ¢ on both sides of (15), one has from (H1)
with p = 0 that

u'(t) < —aqu(t) +ag sup  |u(s)).

t—7<s<t
Then
EIX (1.6 — X(tn)] < € —n2e, 420 (16)
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Exponential Mixing for Neutral SDEs

Consider a neutral SDE on R"
d{X(t) — G(Xy)} = b(X¢)dt + o(X¢)dW (2) (17)

with the initial value Xo = £ € % which is independent of {W(¢)}+>o0,
where G : € — R" is measurable and continuous such that G(0) =0, and
b:%¢ —R" 0:% — R"®R"™ are measurable and locally Lipschitz.

For any ¢,v € %, we assume that

(A1) There exists k € (0,1) such that

E|G(¢) = G)| < x sup E|p(0) — ¢(0)[?

—7<0<0

Jjoin Exponential Mixing of SFDEs 09/07/2013 22/



(A2) There exist a3 > as > 0 such that

E{2(6(0) = 9(0) = (G(¢) = G(1), b(¢) = b(¥))) + o(9) — o2(¥)[|*}
< —a1E|6(0) = 9 (0)]* + a2 Sup. 1Elcb() YO,

—7<

(A3) There exists ag > 0 such that

Elo(¢) —o(¥)|> < as sup E|¢(9) —v(6)*.

—7<6<0

Under (A1)-(A2), (17) has a unique strong solution {X (t,&)}+>0 with the
initial data £ € %
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Lemma

Let (A1) hold and assume further that there exist § > 0, A > 0 such that

E{2(¢(0) — G(¢),b(9)) + lo(9)[I*} < & — AE|p(0) — G(¢)]>  (18)
provided that, for some ¢ > (1 — k)72,
E|¢(0)” < l6(0) — G(¢)|*, —7<6<0. (19)

Then there exists v < A sufficiently small such that

< S+ e+ r)2IENE

2
E’X(t)‘ = (1 _ H€7T/2)2

, t>-—T. (20)
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Our main result in this section is presented as below.

Theorem

Let (A1)-(A3) hold and x € (0,1/2) and oy > ag/(1 — 2k)2. Assume
further that

G(¢) = GW)| < Kl = Plloos S, €. (21)

Then, (17) has a unique invariant measure 7(-) € P(%¢) and is exponen-

tially mixing. That is, there exists A > 0 such that

|PF(E) —w(F)| <ce ™, t>0, FeB(6), £€F.
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Exponential Mixing for Retarded SDEs with Jumps

Consider a non-autonomous retarded SDE with jump
AX (1) = b(X,)dt + / o(Xe N(dLdz), t>0  (22)
r
with the initial value £ € Z which is independent of N (-, ), where X;_(6) :=
X((t+6)—) = limgps9 X(s) for 0 € [-7,0], b: Z — R" and 027

R™ x I' = R"™ are progressively measurable.
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For any ¢,v € & and any t > 0, we assume that

(B1) There exist a1 > ag > 0 such that

B{200(0) = 9(0).b(0) = b)) + | 10(6.2) = o(w2)Pm(ds)}

< —E[p(0) — (0)]* +as sup E|p(8) —(6)[%;

—7<6<0

(B2) There exists a3 > 0 such that

E[b(¢) — () + E / 0(6,2) — o (4, 2)|Pm(dz)

<az sup E|p(0) —(0)

—7<6<0
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The main result in this section is stated as follows.

Theorem

Under (B1)-(B2), (22) has a unique invariant measure 7(-) € P(%Z) and

is exponentially mixing. More precisely, there exists A > 0 such that

|PF(&) —n(F)| <ce ™ t>1, FeB(D), €D
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Sketch of the Proof

Step 1: Claim a uniform bound of X;:
sup E|| X ||% < oo. (23)
t>—7

We can derive that § := sup,>_, E|X(¢)|* < co. By the Ité formula, for

any t > 7 and 6 € [—,0], it follows that
t+6

IX(E+0)2 = [X(t— 1) + 2/ (X (s), bls, X,))ds

t—1

t+0 (24)
/ /\a 5, Xy, 2)2N(ds, dz) + 211(t, ¢ + 6),

where

t+6 N
T(t,t 4 6) : / / (5, Xo_, 2)) N(ds, dz).
t
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Next, due to the Burkhold-Davis-Gundy inequality, and the Jensen inequal-

ity, we derive that

E( sup [TI(t,t+6)[) < By /[0,

—7<60<0

<CE\//t T/\ (5, X, 2)) 2N (ds, dz)
gc\/EHXt|]§oIE/tT/F]a(s,XS_,z)PN(ds,dz)

1 t
< “E[| X% + CE/ / lo(s, X, 2)[*m(dz)ds,
4 t—7 JT

(25)

where [IL, IT];;_; 4 stands for the quadratic variation process (square bracket

process) of II(t,t — 7). Then the result follows from (24)
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Existence of an invariant measure. For § € [—7,0] and 6 € [0, A], where
A > 0 is an arbitrary constant such that 6 + A € [—7,0]. Set E- :=
E(-|%s),s > 0. By the Itd isometry, for any ¢ > 7, we obtain from (22)

that

Ee 16| X:(0 + 0) — Xy(0)]* = Byyo X (t+ 0+ 0) — X(t+0)[?
0+

< c/ Et+9{‘b(8,Xs)‘2+/‘O'(S,XS_,Z)‘Qm(dZ)}dS.
t+60 r

By virtue of (B1)-(B2) and (23), there is a vo(t, ) satisfying

By X (t+6+0) — X(t+0)]> <Eypgnolt, D).

31/ 41
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By virtue of (B1)-(B2) and (23), there is a (¢, /) satisfying
i X (t+0+0) — X(t+0)]> < Eypgnolt, D).

Taking expectation and lim sup,_,., followed by lima_,g, we obtain from
(B1)-(B2) and (23) that

lim limsup Eyy(¢, A) = 0. (26)

A—0 (oo
Therefore, in view of (23) and (26), combining with " Kushner, H. J.,
Approximation and Weak Convergence Methods for Random Processes, with
Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA,
1984.", we conclude that X; is tight under the Skorohod metric dg.
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frametitleThe Remote Start Method

(H1") There exist v; > v > 0, v3 > 0 and a probability measure y(-) on
[—7,0] such that

ﬂwm—¢mxww—hw»+zﬁmﬁa—owxwmmw

éﬂﬂMW—M®P+m/ 19(6) — 6(0) ()

-7

and
o)~ 0P + [ loe,2) = (6. 2)Pm(dz)
I
0
< (190~ 60)F + [ [o(6) — 6(0) Putas)).
Theorem
Under (H1'), (22) has a unique ergodic invariant measure. J

Jjoin Exponential Mixing of SFDEs 09/07/2013



Sketch of Proof

We adopt the remote start method, e.g., Da Prato and Zabczyk (1996)

Let Ni(-,-) be an independent copy of N(-,-) and Ny(-,-) a doubled-sided
Poission process defined by

N(t,T), t>0

Nl(—t,l“), t <0,

No(t, F) =
for all T' € B(Z), with filtration

where .70 := o({No([r1,72],T) : —00 <11 <13 < 5,T},A4) and A =
{A e F|P(A) = 0}.

join
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For arbitrary t € R, s € (—00,t] and £ € &, consider functional SDE
dX (1) = b(X,)dt + / o(Xi, ) No(dt,dz), Xs—¢,  (27)
r

where Ny(dt, dz) := Ny(dt,dz) —dt ® m(dz). Equation (27), under (H1'),

has a unique strong solution X (¢; s, &) with initial data £ at time s.
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For any v > 0, by the Itd formula and (H1’), one has

E(1X (t;51,€) — X(t;52,6)%) < c(1+ [[€]12)e ) (28)

For s1,s9 € (—00,t] such that s; < s9 <t — 27, we can show that

E([[Xe(51,€) = Xe(s2,€)lI2) < e1+ [[€]13)e 2. (29)

Taking s2 — —oo, it follows that there exists 1, € L2(,.%,P; %) such
that
lim || X¢(s, &) — nel|5, = 0. (30)

S——00
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For bounded Lipschitz F': € — R and s <'t, let

Psi(€,dn) == Po (Xi(s,€)) " (dn) and f2¢PY§):==jé,F(nNP&A§,dn)
Note from (30) implies that

P_s0(&n) — m:=Pon,' weakly as s — co.

Then one has
/ P07tF(T])7T(d?7) = lim P—s,O(PO,tF)(g) = lim P,(tJrS)’OF(f)
% S— 00 S§— 00
Z/FWMM)
4

This indeed gives that 1 =P o 7761 is an invariant measure
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