Brownian Motion and Thermal Capacity

Yimin Xiao

Michigan State University

(Based on joint paper with Davar Khoshnevisan)

July 8, 2013

Outline

- Intersection of the Brownian images and thermal capacity
- Hausdorff dimension of $W(E) \cap F$
- Further research and open problems

1. Intersection of the Brownian images and thermal capacity

Let $W := \{W(t)\}_{t \geq 0}$ denote standard d-dimensional Brownian motion where $d \geq 1$, and let E and F be compact subsets of $(0, \infty)$ and \mathbb{R}^d , respectively.

The following problems are of interest:

- When is $\mathbb{P}(W(E) \cap F \neq \emptyset) > 0$?

Note that

$$\{W(E) \cap F \neq \emptyset\} = \{(t, W(t)) \in E \times F \text{ for some } t > 0\}.$$

Problem 1 is an interesting problem in probabilistic potential theory.

Conditions for $\mathbb{P}(W(E) \cap F \neq \emptyset) > 0$

Necessary and sufficient condition in terms of "thermal capacity" for $\mathbb{P}(W(E) \cap F \neq \emptyset) > 0$ were proved by Waston (1978) and Doob (1984).

Waston and Taylor (1985) provided a simple-to-use condition:

$$\mathbb{P}(W(E) \cap F \neq \emptyset) \left\{ \begin{array}{l} >0, & \text{if } \dim_{\mathrm{H}}(E \times F; \varrho) > d, \\ =0, & \text{if } \dim_{\mathrm{H}}(E \times F; \varrho) < d. \end{array} \right.$$

In the above, $\dim_{\rm H}(E\times F\,;\varrho)$ is the Hausdorff dimension of $E\times F$ using the metric

$$\varrho((s,x);(t,y)) := \max(|t-s|^{1/2}, ||x-y||).$$

As a by-product of our main result, we obtain an improved version of the result of Waston (1978) and Doob (1984).

Theorem 1.1

Suppose $F \subset \mathbb{R}^d$ $(d \ge 1)$ is compact and has Lebesgue measure 0. Then

$$\mathbb{P}\{W(E) \cap F \neq \emptyset\} > 0 \iff \exists \ \mu \in \mathcal{P}_d(E \times F) \text{ such that } \mathcal{E}_0(\mu) < \infty,$$

where $\mathcal{P}_d(E \times F)$ is the collection of all probability measures μ on $E \times F$ such that $\mu(\{t\} \times F) = 0$ for all t > 0, and the energy $\mathcal{E}_0(\mu)$ will be defined below.

2. Hausdorff dimension of $\dim_{\mathbf{H}}(W(E) \cap F)$

Two common ways to compute the Hausdorff dimension of a set:

- Use a covering argument for obtaining an upper bound and a capacity argument for lower bound;
- The co-dimension argument.

The co-dimension argument

The "co-dimension argument" was initiated by S.J. Taylor (1966) for computing the Hausdorff dimension of the multiple points of a stable Lévy process in \mathbb{R}^d . His method was based on potential theory of Lévy processes.

Let $Z_{\alpha} = \{Z_{\alpha}(t), t \in \mathbb{R}_{+}\}$ be a (symmetric) stable Lévy process in \mathbb{R}^{d} of index $\alpha \in (0,2]$ and let $F \subset \mathbb{R}^{d}$ be a Borel set. Then

$$\mathbb{P}(\mathbf{Z}_{\alpha}((0,\infty))\cap F\neq\varnothing)>0\Longleftrightarrow\;\mathbf{Cap}_{d-\alpha}(F)>0,$$

where $\operatorname{Cap}_{d-\alpha}$ is the Riesz-Bessel capacity of order $d-\alpha$.

The co-dimension argument

The above result and Frostman's theorem lead to the *stochastic co-dimension argument*: If $\dim_H F \ge d - 2$, then

$$\begin{split} \dim_{{}_{\mathrm{H}}} & F = \sup\{d - \alpha : Z_{\alpha}((0,\infty)) \cap F \neq \varnothing\} \ &= d - \inf\big\{\alpha > 0 : \ F \ \ \text{is not polar for } Z_{\alpha}\big\}. \end{split}$$

[The restriction $\dim_{\mathrm{H}} F \geq d-2$ is caused by the fact that $Z_{\alpha}((0,\infty)) \cap F = \emptyset$ if $\dim_{\mathrm{H}} F < d-2$.]

This method determines $\dim_{H} F$ by intersecting F using a family of testing random sets.

Hawkes (1971) applied the co-dimension method for computing the Hausdorff dimension of the inverse image $X^{-1}(F)$ of a stable Lévy process.

The co-dimension argument

Families of testing random sets:

- ranges of symmetric stable Lévy processes;
- fractal percolation sets [Peres (1996, 1999)];
- ranges of additive Lévy processes [Khoshnevisan and X. (2003, 2005, 2009), Khoshnevisan, Shieh and X. (2008)].

Hausdorff dimension of $\dim_{\mathbf{H}}(\overline{W(E)} \cap F)$

If $F = \mathbb{R}^d$, then $\dim_{H} W(E) = \min\{d, 2\dim_{H} E\}$ a.s.

In general, $\dim_{H}(W(E) \cap F)$ is a (non-degenerate) random variable, an example was shown to us by Greg Lawler.

Hence we compute $\|\dim_{_{\mathrm{H}}}(W(E)\cap F)\|_{L^{\infty}(\mathbb{P})}$, the $L^{\infty}(\mathbb{P})$ -norm of $\dim_{_{\mathrm{H}}}(W(E)\cap F)$.

We distinguish two cases: |F| > 0 and |F| = 0, where $|\cdot|$ denotes the Lebesgue measure.

Theorem 2.1 [Khoshnevisan and X. (2012)]

If $F \subset \mathbb{R}^d$ $(d \ge 1)$ is compact and |F| > 0, then

$$\|\dim_{\mathrm{H}}(W(E)\cap F)\|_{L^{\infty}(\mathbb{P})} = \min\{d, 2\dim_{\mathrm{H}}E\}. \quad (1)$$

If $\dim_{H} E > \frac{1}{2}$ and d = 1, then $\mathbb{P}\{|W(E) \cap F| > 0\} > 0$.

Thanks to the uniform Hölder continuity of W(t) on bounded sets, we have

$$\dim_{{\rm H}} \left(W(E)\cap F\right) \leq \min\{d\,, 2{\dim_{{\rm H}}} E\}, \quad \text{ a.s. }$$

This implies the upper bound in (1).

For proving the lower bound in (1), we construct a random measure on $W(E) \cap F$ and use the capacity argument.

The last part is proved by showing that the constructed random measure on $W(E) \cap F$ has a density function almost surely.

Thanks to the uniform Hölder continuity of W(t) on bounded sets, we have

$$\dim_{{\rm H}} \left(W(E)\cap F\right) \leq \min\{d\,, 2{\dim_{{\rm H}}} E\}, \quad \text{ a.s. }$$

This implies the upper bound in (1).

For proving the lower bound in (1), we construct a random measure on $W(E) \cap F$ and use the capacity argument.

The last part is proved by showing that the constructed random measure on $W(E) \cap F$ has a density function almost surely.

Thanks to the uniform Hölder continuity of W(t) on bounded sets, we have

$$\dim_{{\rm H}} \left(W(E)\cap F\right) \leq \min\{d\,, 2{\dim_{{\rm H}}} E\}, \quad \text{ a.s. }$$

This implies the upper bound in (1).

For proving the lower bound in (1), we construct a random measure on $W(E) \cap F$ and use the capacity argument.

The last part is proved by showing that the constructed random measure on $W(E) \cap F$ has a density function almost surely.

Theorem 2.2 [Khoshnevisan and X. (2012)]

If $F \subset \mathbb{R}^d$ $(d \ge 1)$ is compact and |F| = 0, then

$$\begin{aligned} \left\| \dim_{_{\mathbf{H}}} \left(W(E) \cap F \right) \right\|_{L^{\infty}(\mathbb{P})} \\ &= \sup \left\{ \gamma \ge 0 : \inf_{\mu \in \mathcal{P}_d(E \times F)} \mathcal{E}_{\gamma}(\mu) < \infty \right\}, \end{aligned} \tag{2}$$

where $\mathcal{P}_d(E \times F)$ is the collection of all probability measures μ on $E \times F$ such that $\mu(\{t\} \times F) = 0$ for all t > 0, and

$$\mathcal{E}_{\gamma}(\mu) := \iint \frac{e^{-\|x-y\|^2/(2|t-s|)}}{|t-s|^{d/2} \cdot ||y-x||^{\gamma}} \, \mu(ds \, dx) \, \mu(dt \, dy). \tag{3}$$

4 D > 4 P > 4 E > 4 E > 9 Q P

Theorem 2.2 [Khoshnevisan and X. (2012)]

If $F \subset \mathbb{R}^d$ $(d \ge 1)$ is compact and |F| = 0, then

$$\begin{aligned} \left\| \dim_{\mathbf{H}} \left(W(E) \cap F \right) \right\|_{L^{\infty}(\mathbb{P})} \\ &= \sup \left\{ \gamma \ge 0 : \inf_{\mu \in \mathcal{P}_d(E \times F)} \mathcal{E}_{\gamma}(\mu) < \infty \right\}, \end{aligned} \tag{2}$$

where $\mathcal{P}_d(E \times F)$ is the collection of all probability measures μ on $E \times F$ such that $\mu(\{t\} \times F) = 0$ for all t > 0, and

$$\mathcal{E}_{\gamma}(\mu) := \iint \frac{e^{-\|x-y\|^2/(2|t-s|)}}{|t-s|^{d/2} \cdot \|y-x\|^{\gamma}} \, \mu(ds \, dx) \, \mu(dt \, dy). \tag{3}$$

Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not $W(E) \cap F$ intersects the (closure of the) range of an additive Lévy stable process.

Let $X^{(1)}, \ldots, X^{(N)}$ be N isotropic stable processes with common stability index $\alpha \in (0, 2]$. We assume that the $X^{(j)}$'s are independent from one another, as well as from the process W, and all take their values in \mathbb{R}^d .

We assume also that $X^{(1)}, \dots, X^{(N)}$ have right-continuous sample paths with left-limits and

$$\mathbb{E}\left[e^{i\langle\xi,X^{(k)}(1)\rangle}\right] = e^{-\|\xi\|^{\alpha}/2}, \quad \forall \ \xi \in \mathbb{R}^d.$$

Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not $W(E) \cap F$ intersects the (closure of the) range of an additive Lévy stable process.

Let $X^{(1)}, \ldots, X^{(N)}$ be N isotropic stable processes with common stability index $\alpha \in (0,2]$. We assume that the $X^{(j)}$'s are independent from one another, as well as from the process W, and all take their values in \mathbb{R}^d .

We assume also that $X^{(1)}, \dots, X^{(N)}$ have right-continuous sample paths with left-limits and

$$\mathbb{E}\left[e^{i\langle\xi,X^{(k)}(1)\rangle}\right] = e^{-\|\xi\|^{\alpha}/2}, \quad \forall \ \xi \in \mathbb{R}^d.$$

Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not $W(E) \cap F$ intersects the (closure of the) range of an additive Lévy stable process.

Let $X^{(1)}, \ldots, X^{(N)}$ be N isotropic stable processes with common stability index $\alpha \in (0,2]$. We assume that the $X^{(j)}$'s are independent from one another, as well as from the process W, and all take their values in \mathbb{R}^d .

We assume also that $X^{(1)}, \dots, X^{(N)}$ have right-continuous sample paths with left-limits and

$$\mathbb{E}\left[e^{i\langle \xi, X^{(k)}(1)
angle}
ight] = e^{-\|\xi\|^{lpha}/2}, \quad orall \ \ \xi \in \mathbb{R}^d.$$

Define the corresponding additive stable process $X_{\alpha} := \{X_{\alpha}(t), t \in \mathbb{R}^{N}_{+}\}$ as

$$X_{\alpha}(\boldsymbol{t}) := \sum_{k=1}^{N} X^{(k)}(t_k), \quad \forall \, \boldsymbol{t} = (t_1, \dots, t_N) \in \mathbb{R}_+^N. \quad (4)$$

Khoshnevisan (2002) showed that for any Borel set $G \subset \mathbb{R}^d$,

$$\mathbb{P}(\overline{X_{\alpha}(\mathbb{R}_{+}^{N})} \cap G \neq \emptyset)
\begin{cases}
= 0 & \text{if } \dim_{H}(G) < d - \alpha N, \\
> 0 & \text{if } \dim_{H}(G) > d - \alpha N.
\end{cases} (5)$$

The key ingredient for proving Theorem 2.2

Theorem 2.3

If $d > \alpha N$ and $F \subset \mathbb{R}^d$ has Lebesgue measure 0, then

$$\mathbb{P}\left\{W(E) \cap \overline{X_{\alpha}(\mathbb{R}^{N}_{+})} \cap F \neq \emptyset\right\} > 0$$

$$\iff \mathcal{C}_{d-\alpha N}(E \times F) > 0.$$

Here and in the sequel, \overline{A} denotes the closure of A, and C_{γ} is the capacity corresponding to the energy form (3): for all compact sets $U \subset \mathbb{R}_+ \times \mathbb{R}^d$ and $\gamma \geq 0$,

$$C_{\gamma}(U) := \left[\inf_{\mu \in \mathcal{P}_d(U)} \mathcal{E}_{\gamma}(\mu) \right]^{-1}. \tag{6}$$

Lower bound: Denote

$$\Delta := \sup \left\{ \gamma \ge 0 : \inf_{\mu \in \mathcal{P}_d(E \times F)} \mathcal{E}_{\gamma}(\mu) < \infty \right\}.$$
(7)

If $\Delta > 0$ and we choose $\alpha \in (0,2]$ and $N \in \mathbb{Z}_+ 0 < d - \alpha N < \Delta$. Then $\mathcal{C}_{d-\alpha N}(E \times F) > 0$. It follows from Theorem 2.3 and (5) that

$$\mathbb{P}\left\{\dim_{_{\mathbf{H}}}\left(W(E)\cap F\right)\geq d-\alpha N\right\}>0. \tag{8}$$

Because $d - \alpha N \in (0, \Delta)$ is arbitrary, we have

$$\|\dim_{_{\mathrm{H}}}(W(E)\cap F)\|_{L^{\infty}(\mathbb{P})}\geq \Delta.$$

Upper bound: Similarly, Theorem 2.3 and (5) imply that

$$d-\alpha N>\Delta \ \Rightarrow \ \dim_{_{\mathrm{H}}}\left(W(E)\cap F\right)\leq d-\alpha N \quad \ \ \text{a. s. } \ \, (9)$$

Hence $\|\dim_{\mathrm{H}}(W(E)\cap F)\|_{L^{\infty}(\mathbb{P})}\leq \Delta$ whenever $\Delta\geq 0$. This proves Theorem 2.2.

Proof of Theorem 2.3: The proof of sufficiency, which is based on using a second order argument on the occupation measure, is quite standard; but the proof of the necessity is hard. We omit the details.

Upper bound: Similarly, Theorem 2.3 and (5) imply that

$$d-\alpha N>\Delta \ \Rightarrow \ \dim_{_{\mathrm{H}}}\left(W(E)\cap F\right)\leq d-\alpha N \quad \ \ \text{a. s. } \ \, (9)$$

Hence $\|\dim_{\mathrm{H}}(W(E) \cap F)\|_{L^{\infty}(\mathbb{P})} \leq \Delta$ whenever $\Delta \geq 0$. This proves Theorem 2.2.

Proof of Theorem 2.3: The proof of sufficiency, which is based on using a second order argument on the occupation measure, is quite standard; but the proof of the necessity is hard. We omit the details.

An explicit formula

Theorem 2.4 [Khoshnevisan and X. (2012)]

If $d \ge 2$ and $\dim_{_{\rm H}} (E \times F; \varrho) \ge d$, then

$$\left\|\dim_{_{\mathrm{H}}}\left(W(E)\cap F\right)\right\|_{L^{\infty}(\mathbb{P})}=\dim_{_{\mathrm{H}}}\left(E\times F\,;\varrho\right)-d. \quad (10)$$

Remarks

- Eq (10) does not always hold for d=1: For E:=[0,1] and $F=\{0\}$, we have $\dim_{\mathrm{H}}(W(E)\cap F)=0$ a.s., whereas $\dim_{\mathrm{H}}(E\times F;\varrho)-d=1$.
- When $F \subset \mathbb{R}^d$ satisfies |F| > 0, it can be shown that

$$\dim_{_{\rm H}}(E \times F; \varrho) = 2\dim_{_{\rm H}}E + d.$$

Hence (1) coincides with (10) when $d \ge 2$.

The proof replies on the following "uniform dimension result" of Kaufman (1968): If $\{W(t), t \in \mathbb{R}_+\}$ is a Brownian motion in \mathbb{R}^d with $d \geq 2$, then

$$\mathbb{P}\{\dim_{_{\mathrm{H}}}W(G)=2\dim_{_{\mathrm{H}}}G,\ \forall\ \mathrm{Borel\ sets}\ \ G\subset\mathbb{R}_{+}\}=1.$$

It is sufficient to show that for all compact sets $E \subset (0, \infty)$ and $F \subset \mathbb{R}^d$,

$$\left\| \dim_{_{\mathrm{H}}} \left(E \cap W^{-1}(F) \right) \right\|_{L^{\infty}(\mathbb{P})} = \frac{\dim_{_{\mathrm{H}}} \left(E \times F \, ; \, \varrho \right) - d}{2}.$$

When d = 1, the lower bound of (11) was found first by Kaufman (1972).

3. Further research and open problems

Potential theoretic results have been proved for

- the Brownian sheet: Khoshnivisan and Shi (1999), Khoshnivisan and X. (2007);
- other (more general) Gaussian random fields: X. (2009), Biermé, Lacaux and X. (2009), Chen and X. (2012);
- additive Lévy processes: Khoshnevisan and X. (2002, 2005, 2009), Khoshnevisan, Shieh and X. (2008);
- SPDEs: Dalang and Nualart (2004), Dalang, et al (2007, 2009), Dalang and Sanz Solé (2010).

However, Problems 1 and 2 have not been solved for any of them.

Thank you