Brownian Motion and Thermal **Capacity**

Yimin Xiao

Michigan State University

(Based on joint paper with Davar Khoshnevisan)

July 8, 2013

റ േ ദ

- Intersection of the Brownian images and thermal capacity
- Hausdorff dimension of *W*(*E*) ∩ *F*
- Further research and open problems

つくい

1. Intersection of the Brownian images and thermal capacity

Let $W := \{W(t)\}_{t>0}$ denote standard *d*-dimensional Brownian motion where $d \geq 1$, and let *E* and *F* be compact subsets of $(0, \infty)$ and \mathbb{R}^d , respectively.

The following problems are of interest:

- 1 When is $\mathbb{P}(W(E) \cap F \neq \emptyset) > 0$?
- **2** What is dim_H $(W(E) \cap F)$?

Note that

 $\{W(E) \cap F \neq \emptyset\} = \{(t, W(t)) \in E \times F \text{ for some } t > 0\}.$

Problem 1 is an interesting problem in probabilistic potential theory. Ω

Conditions for $\mathbb{P}(W(E) \cap F \neq \emptyset) > 0$

Necessary and sufficient condition in terms of "thermal capacity" for $\mathbb{P}(W(E) \cap F \neq \emptyset) > 0$ were proved by Waston (1978) and Doob (1984).

Waston and Taylor (1985) provided a simple-to-use condition:

$$
\mathbb{P}(W(E) \cap F \neq \emptyset) \begin{cases} > 0, \quad \text{if } \dim_{\mathbb{H}}(E \times F; \varrho) > d, \\ = 0, \quad \text{if } \dim_{\mathbb{H}}(E \times F; \varrho) < d. \end{cases}
$$

In the above, $\dim_{\mathcal{H}}(E \times F; \varrho)$ is the Hausdorff dimension of $E \times F$ using the metric

$$
\varrho((s,x); (t,y)) := \max(|t-s|^{1/2}, \|x-y\|).
$$

As a by-product of our main result, we obtain an improved version of the result of Waston (1978) and Doob (1984).

Theorem 1.1

Suppose $F \subset \mathbb{R}^d$ ($d \geq 1$) is compact and has Lebesgue measure 0. Then

> $\mathbb{P}{W(E) \cap F \neq \emptyset} > 0 \iff$ $\exists \mu \in \mathcal{P}_d(E \times F)$ such that $\mathcal{E}_0(\mu) < \infty$,

where $P_d(E \times F)$ is the collection of all probability measures μ on $E \times F$ such that $\mu({t \} \times F) = 0$ for all $t > 0$, and the energy $\mathcal{E}_0(\mu)$ will be defined below.

Two common ways to compute the Hausdorff dimension of a set:

- Use a covering argument for obtaining an upper bound and a capacity argument for lower bound;
- The co-dimension argument.

The "co-dimension argument" was initiated by S.J. Taylor (1966) for computing the Hausdorff dimension of the multiple points of a stable Lévy process in \mathbb{R}^d . His method was based on potential theory of Lévy processes.

Let $Z_{\alpha} = \{Z_{\alpha}(t), t \in \mathbb{R}_+\}$ be a (symmetric) stable Lévy process in \mathbb{R}^d of index $\alpha \in (0,2]$ and let $F \subset \mathbb{R}^d$ be a Borel set. Then

 $\mathbb{P}(Z_{\alpha}((0,\infty)) \cap F \neq \emptyset) > 0 \Longleftrightarrow \text{Cap}_{d-\alpha}(F) > 0,$

where $\text{Cap}_{d-\alpha}$ is the Riesz-Bessel capacity of order $d-\alpha$.

つくい

The co-dimension argument

The above result and Frostman's theorem lead to the *stochastic co-dimension argument*: If $\dim_{\Pi} F > d - 2$, then

 $\dim_{\mathfrak{m}} F = \sup \{ d - \alpha : Z_{\alpha}((0, \infty)) \cap F \neq \emptyset \}$ $= d - \inf \big\{ \alpha > 0 : F \text{ is not polar for } Z_{\alpha} \big\}.$

[The restriction dim_u $F \geq d-2$ is caused by the fact that $Z_{\alpha}((0,\infty)) \cap F = \emptyset$ if dim_{*II}F* < *d* − 2.]</sub>

This method determines $\dim_{\mathfrak{m}} F$ by intersecting F using a family of testing random sets.

Hawkes (1971) applied the co-dimension method for computing the Hausdorff dimension of the inverse image $X^{-1}(F)$ of a stable Lévy process. **K ロ ト K 何 ト K ヨ ト K** Ω Families of testing random sets:

- ranges of symmetric stable Lévy processes;
- fractal percolation sets [Peres (1996, 1999)];
- ranges of additive Lévy processes [Khoshnevisan and X. (2003, 2005, 2009), Khoshnevisan, Shieh and X. (2008)].

റെ ഭ

- If $F = \mathbb{R}^d$, then $\dim_H W(E) = \min\{d, 2\dim_H E\}$ a.s.
- In general, $\dim_{\mathcal{H}}(W(E) \cap F)$ is a (non-degenerate) random variable, an example was shown to us by Greg Lawler.
- Hence we compute $\|\dim_{\mathcal{H}} (W(E) \cap F)\|_{L^{\infty}(\mathbb{P})}$, the $L^{\infty}(\mathbb{P})$ norm of dim_H $(W(E) \cap F)$.
- We distinguish two cases: $|F| > 0$ and $|F| = 0$, where $|\cdot|$ denotes the Lebesgue measure.

nar

Theorem 2.1 [Khoshnevisan and X. (2012)] If $F \subset \mathbb{R}^d$ ($d \ge 1$) is compact and $|F| > 0$, then $\|\dim_{\mathcal{H}} (W(E) \cap F)\|_{L^{\infty}(\mathbb{P})} = \min\{d, 2\dim_{\mathcal{H}} E\}.$ (1) If ${\rm dim}_{_{\rm H}}E > \frac{1}{2}$ $\frac{1}{2}$ and $d = 1$, then $\mathbb{P}\{|W(E) \cap F| > 0\} > 0$.

つくい

Thanks to the uniform Hölder continuity of $W(t)$ on bounded sets, we have

$$
\dim_{\mathrm{H}} (W(E) \cap F) \leq \min\{d\, , 2\dim_{\mathrm{H}} E\}, \quad \text{a.s.}
$$

This implies the upper bound in [\(1\)](#page-10-0).

For proving the lower bound in [\(1\)](#page-10-0), we construct a random measure on $W(E) \cap F$ and use the capacity argument.

The last part is proved by showing that the constructed random measure on $W(E) \cap F$ has a density function almost surely.

Thanks to the uniform Hölder continuity of $W(t)$ on bounded sets, we have

$$
\dim_{\mathrm{H}} \left(W(E) \cap F \right) \leq \min \{ d \, , 2\dim_{\mathrm{H}} E \}, \quad \text{a.s.}
$$

This implies the upper bound in [\(1\)](#page-10-0).

For proving the lower bound in [\(1\)](#page-10-0), we construct a random measure on $W(E) \cap F$ and use the capacity argument.

The last part is proved by showing that the constructed random measure on $W(E) \cap F$ has a density function almost surely.

Thanks to the uniform Hölder continuity of $W(t)$ on bounded sets, we have

$$
\dim_{\mathrm{H}} \left(W(E) \cap F \right) \leq \min \{ d \, , 2\dim_{\mathrm{H}} E \}, \quad \text{a.s.}
$$

This implies the upper bound in [\(1\)](#page-10-0).

For proving the lower bound in [\(1\)](#page-10-0), we construct a random measure on $W(E) \cap F$ and use the capacity argument.

The last part is proved by showing that the constructed random measure on $W(E) \cap F$ has a density function almost surely.

Theorem 2.2 [Khoshnevisan and X. (2012)]

If $F \subset \mathbb{R}^d$ ($d \ge 1$) is compact and $|F| = 0$, then

$$
\|\dim_{\mathcal{H}} \left(W(E) \cap F \right) \|_{L^{\infty}(\mathbb{P})}
$$

= $\sup \left\{ \gamma \geq 0 : \inf_{\mu \in \mathcal{P}_d(E \times F)} \mathcal{E}_{\gamma}(\mu) < \infty \right\},$ (2)

where $P_d(E \times F)$ is the collection of all probability measures μ on $E \times F$ such that $\mu({t \nvert x \nvert F}) = 0$ for all $t > 0$, and

$$
\mathcal{E}_{\gamma}(\mu) := \iint \frac{e^{-\|x-y\|^2/(2|t-s|)}}{|t-s|^{d/2} \cdot \|y-x\|^\gamma} \, \mu(ds \, dx) \, \mu(dt \, dy). \tag{3}
$$

Theorem 2.2 [Khoshnevisan and X. (2012)]

If $F \subset \mathbb{R}^d$ ($d \ge 1$) is compact and $|F| = 0$, then

$$
\|\dim_{\mathcal{H}} \left(W(E) \cap F \right) \|_{L^{\infty}(\mathbb{P})}
$$

= $\sup \left\{ \gamma \geq 0 : \inf_{\mu \in \mathcal{P}_d(E \times F)} \mathcal{E}_{\gamma}(\mu) < \infty \right\},$ (2)

where $P_d(E \times F)$ is the collection of all probability measures μ on $E \times F$ such that $\mu({t \} \times F) = 0$ for all $t > 0$, and

$$
\mathcal{E}_{\gamma}(\mu) := \iint \frac{e^{-\|x-y\|^2/(2|t-s|)}}{|t-s|^{d/2} \cdot \|y-x\|^\gamma} \, \mu(ds \, dx) \, \mu(dt \, dy). \tag{3}
$$

Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not $W(E) \cap$ *F* intersects the (closure of the) range of an additive Lévy stable process.

Let $X^{(1)},\ldots,X^{(N)}$ be N isotropic stable processes with common stability index $\alpha \in (0, 2]$. We assume that the $X^{(j)}$'s are independent from one another, as well as from the process *W*, and all take their values in \mathbb{R}^d .

We assume also that $X^{(1)}, \ldots, X^{(N)}$ have right-continuous sample paths with left-limits and

$$
\mathbb{E}\left[e^{i\langle\xi,X^{(k)}(1)\rangle}\right] = e^{-\|\xi\|^{\alpha}/2}, \quad \forall \xi \in \mathbb{R}^d.
$$

Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not $W(E) \cap$ *F* intersects the (closure of the) range of an additive Lévy stable process.

Let $X^{(1)}, \ldots, X^{(N)}$ be *N* isotropic stable processes with common stability index $\alpha \in (0, 2]$. We assume that the $X^{(j)}$'s are independent from one another, as well as from the process *W*, and all take their values in \mathbb{R}^d .

We assume also that $X^{(1)}, \ldots, X^{(N)}$ have right-continuous sample paths with left-limits and

$$
\mathbb{E}\left[e^{i\langle\xi,X^{(k)}(1)\rangle}\right] = e^{-\|\xi\|^{\alpha}/2}, \quad \forall \xi \in \mathbb{R}^d.
$$

Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not $W(E) \cap$ *F* intersects the (closure of the) range of an additive Lévy stable process.

Let $X^{(1)}, \ldots, X^{(N)}$ be *N* isotropic stable processes with common stability index $\alpha \in (0, 2]$. We assume that the $X^{(j)}$'s are independent from one another, as well as from the process *W*, and all take their values in \mathbb{R}^d .

We assume also that $X^{(1)}, \ldots, X^{(N)}$ have right-continuous sample paths with left-limits and

$$
\mathbb{E}\left[e^{i\langle\xi,X^{(k)}(1)\rangle}\right] = e^{-\|\xi\|^{\alpha}/2}, \quad \forall \xi \in \mathbb{R}^d.
$$

Define the corresponding additive stable process X_{α} := $\{X_\alpha(t), t \in \mathbb{R}^N_+\}$ as

$$
X_{\alpha}(\boldsymbol{t}) := \sum_{k=1}^{N} X^{(k)}(t_k), \quad \forall \, \boldsymbol{t} = (t_1, \ldots, t_N) \in \mathbb{R}^{N}_{+}.
$$
 (4)

Khoshnevisan (2002) showed that for any Borel set *G* ⊂ \mathbb{R}^d ,

$$
\mathbb{P}(\overline{X_{\alpha}(\mathbb{R}^N_+)} \cap G \neq \emptyset)
$$
\n
$$
\begin{cases}\n= 0 & \text{if } \dim_{\mathbb{H}}(G) < d - \alpha N, \\
> 0 & \text{if } \dim_{\mathbb{H}}(G) > d - \alpha N.\n\end{cases}
$$
\n
$$
(5)
$$

つくい

The key ingredient for proving Theorem 2.2

Theorem 2.3

If $d > \alpha N$ and $F \subset \mathbb{R}^d$ has Lebesgue measure 0, then

$$
\mathbb{P}\left\{W(E)\cap\overline{X_{\alpha}(\mathbb{R}^N_+)}\cap F\neq\emptyset\right\}>0
$$

$$
\iff \mathcal{C}_{d-\alpha N}(E\times F)>0.
$$

Here and in the sequel, *A* denotes the closure of *A*, and \mathcal{C}_{γ} is the capacity corresponding to the energy form [\(3\)](#page-14-0): for all compact sets $U \subset \mathbb{R}_+ \times \mathbb{R}^d$ and $\gamma \geq 0$,

$$
\mathcal{C}_{\gamma}(U) := \left[\inf_{\mu \in \mathcal{P}_d(U)} \mathcal{E}_{\gamma}(\mu) \right]^{-1}.
$$
 (6)

Lower bound: Denote

$$
\Delta := \sup \left\{ \gamma \geq 0 : \inf_{\mu \in \mathcal{P}_d(E \times F)} \mathcal{E}_{\gamma}(\mu) < \infty \right\}. \tag{7}
$$

If $\Delta > 0$ and we choose $\alpha \in (0, 2]$ and $N \in \mathbb{Z}_+$ 0 < $d - \alpha N < \Delta$. Then $C_{d-\alpha N}(E \times F) > 0$. It follows from Theorem 2.3 and [\(5\)](#page-19-0) that

$$
\mathbb{P}\left\{\dim_{\mathcal{H}}\left(W(E)\cap F\right)\geq d-\alpha N\right\}>0.\tag{8}
$$

Because $d - \alpha N \in (0, \Delta)$ is arbitrary, we have

$$
||\dim_{\mathrm{H}}(W(E)\cap F)||_{L^{\infty}(\mathbb{P})}\geq \Delta.
$$

nar

Upper bound: Similarly, Theorem 2.3 and [\(5\)](#page-19-0) imply that

$$
d - \alpha N > \Delta \implies \dim_{\mathcal{H}} \left(W(E) \cap F \right) \leq d - \alpha N \quad \text{a. s. (9)}
$$

Hence $\|\dim_{_{\mathrm{H}}}(W(E)\cap F)\|_{L^{\infty}(\mathbb{P})} \leq \Delta$ whenever $\Delta \geq 0$. This proves Theorem 2.2.

Proof of Theorem 2.3: The proof of sufficiency, which is based on using a second order argument on the occupation measure, is quite standard; but the proof of the necessity is hard. We omit the details.

nar

Upper bound: Similarly, Theorem 2.3 and [\(5\)](#page-19-0) imply that

$$
d - \alpha N > \Delta \implies \dim_{\mathcal{H}} \left(W(E) \cap F \right) \leq d - \alpha N \quad \text{a. s. (9)}
$$

Hence $\|\dim_{_{\mathrm{H}}}(W(E)\cap F)\|_{L^{\infty}(\mathbb{P})} \leq \Delta$ whenever $\Delta \geq 0$. This proves Theorem 2.2.

Proof of Theorem 2.3: The proof of sufficiency, which is based on using a second order argument on the occupation measure, is quite standard; but the proof of the necessity is hard. We omit the details.

Theorem 2.4 [Khoshnevisan and X. (2012)]

If $d \geq 2$ and $\dim_{_{\mathrm{H}}}(E \times F; \varrho) \geq d$, then

$$
\|\dim_{\mathrm{H}} (W(E)\cap F)\|_{L^{\infty}(\mathbb{P})} = \dim_{\mathrm{H}} (E\times F; \varrho) - d. \quad (10)
$$

Remarks

- Eq [\(10\)](#page-24-1) does not always hold for $d = 1$: For $E :=$ $[0, 1]$ and $F = \{0\}$, we have $\dim_{\mathcal{H}}(W(E) \cap F) = 0$ a.s., whereas $\dim_{\mathrm{H}}(E \times F; \varrho) - d = 1$.
- When $F \subset \mathbb{R}^d$ satisfies $|F| > 0$, it can be shown that

 $\dim_{_{\mathrm{H}}}(E \times F; \varrho) = 2\dim_{_{\mathrm{H}}}E + d.$

Hence [\(1\)](#page-10-0) coincides with [\(10\)](#page-24-1) w[hen](#page-23-0) $d \ge 2$ $d \ge 2$ $d \ge 2$ [.](#page-27-0)

Proof of Theorem 2.4

The proof replies on the following "uniform dimension result" of Kaufman (1968): If $\{W(t), t \in \mathbb{R}_+\}$ is a Brownian motion in \mathbb{R}^d with $d \geq 2$, then

 $\mathbb{P}\left\{\dim_{_{\mathrm{H}}}W(G)=2\dim_{_{\mathrm{H}}}G,\ \forall\ \text{Borel sets}\ \ G\subset\mathbb{R}_+\right\}=1.$

It is sufficient to show that for all compact sets $E \subset (0,\infty)$ and $F \subset \mathbb{R}^d$,

$$
\|\dim_{\mathcal{H}} (E \cap W^{-1}(F))\|_{L^{\infty}(\mathbb{P})} = \frac{\dim_{\mathcal{H}} (E \times F; \varrho) - d}{2}.
$$
\nWhen $d = 1$, the lower bound of (11) was found first by Kaufman (1972).

\nEquation 1972.

Potential theoretic results have been proved for

- the Brownian sheet: Khoshnivisan and Shi (1999), Khoshnivisan and X. (2007);
- other (more general) Gaussian random fields: X. (2009), Biermé, Lacaux and X. (2009) , Chen and X. (2012) ;
- additive Lévy processes: Khoshnevisan and X. $(2002, \Box)$ 2005, 2009), Khoshnevisan, Shieh and X. (2008);
- SPDEs: Dalang and Nualart (2004), Dalang, et al (2007, 2009), Dalang and Sanz Solé (2010).

However, Problems 1 and 2 have not been solved for any of them.

 Ω

Thank you

 299

 \leftarrow \Box \rightarrow

 \mathcal{A} 卢