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Background

We consider a class of switching jump-diffusion processes.

The underlying process can be thought of as a number of
jump-diffusion processes modulated by a random switching device.

It is a two-component process (X,Λ) with X delineating the
jump-diffusion behavior and Λ describing the switching involved.

One of the main ingredients is that the switching component depends
on the jump-diffusion component.

To give a better visualization of the process, we consider the following
scenario.
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Background (cont)

Suppose that we have a number of jump-diffusion processes sitting on
several parallel planes, respectively, with the switching component
residing at plane k initially. It sojourns in this plane for a random
duration. During this random period, the component X follows a
jump-diffusion process, in which the drift, diffusion, and jump
coefficients are determined by the discrete-event state k.

At a random instance, the switching process Λ changes state from k
to l 6= k, and sojourns in the new state l for a random duration.
Consequently, X follows another jump-diffusion process with the drift,
diffusion, and jump coefficients determined by the discrete-event state
l.

Please see an Illustration with Λ = α being continuous for simplicity.
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Hybrid Regime-Switching Diffusion: An Illustration

Discrete-event State 1
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Figure: A “Sample Path” of the Switching Diffusion (X(t),α(t)).



Background (cont)

The switching jump-diffusion process makes the formulation more
versatile with wider range of applications. Nevertheless, it makes the
analysis more difficult.

The motivation of our study stems from a wide range of applications
in communication systems, flexible manufacturing and production
planning, financial engineering, and economics.
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Problems

Stability theory: stability in probability, stability almost surely,
Lyapunov exponent, stability in distribution, stability in total variation
norm, · · · · · · .

Ergodicity theory: ordinary ergodicity, exponential ergodicity, strong
(or uniform) ergodicity, ergodic rate estimate, · · · · · · .

Feller properties: Feller continuity, strong Feller continuity, (· · · · · · ).

Analysis properties: gradient estimates, potential analysis, Harnack
inequality, · · · · · · .
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Construction of the Process

Let (X,Λ) be a Markov process on R
d × S, where S := {1, 2, · · · , n0}.

The first component X satisfies

dX(t) = b(X(t),Λ(t))dt + σ(X(t),Λ(t))dB(t)

+

∫

U

c(X(t−),Λ(t−), u)N(dt, du),
(1)

and the second component Λ satisfies

P{Λ(t+∆) = l|Λ(t) = k,X(t) = x} =

{
qkl(x)∆ + o(∆), if l 6= k,
1 + qkk(x)∆ + o(∆), if l = k.

(2)
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Standing Hypothesis

Assumption 1

(i) The functions b(·) and σ(·) satisfy b(0, k) = 0 and σ(0, k) = 0 for
each k ∈ S; and σ(·, k) vanishes only at x = 0 for each k ∈ S.

(ii) For each k ∈ S, both b(·, k) and σ(·, k) satisfy the Lipschitz
condition.

(iii) For any k 6= l ∈ S, qkl(·) is B(Rd) measurable and for some
constant H > 0, supx∈Rd, k 6=l∈S qkl(x) ≤ H < +∞.

(iv) For each k ∈ S, c(·, k, ·) is B(Rd) ×B(U) measurable and satisfy
that c(0, k, u) = 0 for each u ∈ U . In addition, assume that there
is c1(u) > 0 such that for each x ∈ R

d, k ∈ S and u ∈ U ,

|x + c(x, k, u)| ≥ c1(u)|x| and

∫

U

1

c1(u)
Π(du) < ∞. (3)

Fubao Xi (BIT) Stability and Instability for Switching Jump-Diffusion Processes July 9 2013 9 / 31



SDE’s Representation

For x ∈ R
d and k, l ∈ S with k 6= l, let △kl(x) be the consecutive

(with respect to the lexicographic ordering on S × S), left-closed,
right-open intervals of R+, each having length qkl(x).

Define a function h: R
d × S × [0, n0(n0 − 1)H] → R by

h(x, k, r) =
∑

l∈S

(l − k)1△kl(x)(r).

Then, (2) is equivalent to

dΛ(t) =

∫

R

h(X(t−),Λ(t−), r)N1(dt, dr), (4)

where N1(dt, dr) is another Poisson random measure.
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Switching Jump-Diffusion Process

The (X,Λ) associated with system (1) and (2) can be thought of as
the solution to system (1) and (4), the driving forces being the
Brownian motion B(·) and the Poisson random measures N(·, ·) and
N1(·, ·)

Theorem 2

System (1) and (4) has a unique (non-explosive) strong solution (X,Λ).

Lemma 3

P{X(x,k)(t) 6= 0, t ≥ 0} = 1 for any x 6= 0, k ∈ S. (5)
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Almost Sure Stability Definition

Defintion 4

The equilibrium point x = 0 of system (1) and (2) is said to be almost
surely exponentially stable if for any (x, k) ∈ R

d × S,

lim sup
t→∞

1

t
ln |X(x,k)(t)| < 0 w.p.1. (6)

It is said to be almost surely exponentially unstable if for any
(x, k) ∈ R

d × S with x 6= 0,

lim inf
t→∞

1

t
ln |X(x,k)(t)| > 0 w.p.1. (7)
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About the Proof

ln |X(t)| − ln |x|

=

∫ t

0

XT (s)b(X(s),Λ(s))

|X(s)|2
ds

+
1

2

∫ t

0

[
|σ(X(s),Λ(s))|2

|X(s)|2
−

2|XT (s)σ(X(s),Λ(s))|2

|X(s)|4

]
ds

+

∫ t

0

∫

U

[ln |X(s−) + c(X(s−),Λ(s−), u))| − ln |X(s−)|]Π(du)ds

+M1(t) + M2(t),

where

M1(t) =

∫ t

0

XT (s)

|X(s)|2
σ(X(s),Λ(s))dB(s),

M2(t) =

∫ t

0

∫

U

[ln |X(s−) + c(X(s−),Λ(s−), u))| − ln |X(s−)|]Ñ (ds, du).

Fubao Xi (BIT) Stability and Instability for Switching Jump-Diffusion Processes July 9 2013 13 / 31



Order-Preserving Coupling

The coupling methods have been used for a wide variety of
applications (see Chen M. F. (2004)). One application is that the
study of complex systems can be converted to the study of some
simple ones. For this the order-preserving couplings usually play an
important role.

Let Λ(1) and Λ(2) be two continuous-time Markov chains defined by

Q-matrices Q(1) =
(
q
(1)
kl

)
and Q(2) =

(
q
(2)
kl

)
on the finite state space

S, respectively.

On the product space S × S, an order-preserving coupling Q̃ of Q(1)

and Q(2) yields that

P̃ (k1,k2)
(
Λ(1)(t) ≤ Λ(2)(t)

)
= 1, t ≥ 0, k1 ≤ k2 ∈ S, (8)

where
(
Λ(1),Λ(2)

)
is the Markov chain generated by Q̃.
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Order-Preserving Coupling (cont)

For more general case, the construction of order-preserving couplings
was studied in Zhang Y.H. (1996, 1998). In particular, we have the
following lemma.

Lemma 5

If the generators Q(1) and Q(2) on S satisfy that

∑

l≥m

q
(1)
k1l

≤
∑

l≥m

q
(2)
k2l

for all k1 ≤ k2 < m and

∑

l≤m

q
(1)
k1l ≥

∑

l≤m

q
(2)
k2l for all m < k1 ≤ k2,

(9)

there exists an order-preserving coupling Q-matrix Q̃ on S × S and so (8)
holds.
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An Assumption

Assumption 6

Assume that there exists a generator Q∗ =
(
q∗(k, l)

)
on S such that the

following bounds hold:

sup
x∈Rd

∑

l≥m

qk1l(x) ≤
∑

l≥m

q∗(k2, l) for all k1 ≤ k2 < m and

inf
x∈Rd

∑

l≤m

qk1l(x) ≥
∑

l≤m

q∗(k2, l) for all m < k1 ≤ k2,
(10)

where the matrix
(
qkl(x)

)
is given in (2)
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Order-Preserving Coupling (cont)

By Lemma 5, for each x ∈ R
d, there exists an order-preserving

coupling of Q(x) and Q∗ given in Assumption 6. In fact, such an

order-preserving coupling Q̃∗(x) =
(
q̃∗(k, l;m,n)(x)

)
was constructed

explicitly in Zhang Y.H. (1996, 1998); see also Chen M. F. (2004).

Let Λ∗ be the Markov chain generated by Q∗. We now construct a
coupling process

(
X,Λ,Λ∗

)
as follows.

Let the first component X satisfy

dX(t) = b(X(t),Λ(t))dt + σ(X(t),Λ(t))dB(t)

+

∫

U

c(X(t−),Λ(t−), u)N(dt, du),

and let the second and third components together satisfy

P{(Λ(t + ∆),Λ∗(t + ∆)) = (m,n)|(Λ(t),Λ∗(t)) = (k, l),X(t) = x}

=

{
q̃∗(k, l;m,n)(x)∆ + o(∆), if (m,n) 6= (k, l),

1 + q̃∗(k, l;m,n)(x)∆ + o(∆), if (m,n) = (k, l).
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order-preserving coupling Q̃∗(x) =
(
q̃∗(k, l;m,n)(x)

)
was constructed

explicitly in Zhang Y.H. (1996, 1998); see also Chen M. F. (2004).

Let Λ∗ be the Markov chain generated by Q∗. We now construct a
coupling process

(
X,Λ,Λ∗

)
as follows.

Let the first component X satisfy

dX(t) = b(X(t),Λ(t))dt + σ(X(t),Λ(t))dB(t)

+

∫

U

c(X(t−),Λ(t−), u)N(dt, du),

and let the second and third components together satisfy

P{(Λ(t + ∆),Λ∗(t + ∆)) = (m,n)|(Λ(t),Λ∗(t)) = (k, l),X(t) = x}

=

{
q̃∗(k, l;m,n)(x)∆ + o(∆), if (m,n) 6= (k, l),

1 + q̃∗(k, l;m,n)(x)∆ + o(∆), if (m,n) = (k, l).
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Order-Preserving Coupling (cont)

Theorem 7

Suppose that Assumption 6 holds. For the coupling process
(
X,Λ,Λ∗

)

constructed above, we have

P̃ (x,k,l)
(
Λ(t) ≤ Λ∗(t)

)
= 1, t ≥ 0, x ∈ R

d, k ≤ l ∈ S, (11)

where P̃ (x,k,l) denotes the distribution of
(
X,Λ,Λ∗

)
starting from

(x, k, l). Moreover, suppose that Q∗ is irreducible, then for each
monotonic function h on S and each (x, k) ∈ R

d × S,

P (x,k)

(
lim sup

t→∞

1

t

∫ t

0
h(Λ(s))ds ≤

∑

m∈S

h(m)µ∗
m

)
= 1, (12)

where P (x,k) denotes the distribution of
(
X,Λ

)
starting from (x, k) and

µ∗ = (µ∗
1, · · · , µ∗

n0
) is the invariant probability measure associated with Λ∗.
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An Assumption

Assumption 8

(i) For each k ∈ S, there exist positive constants Hb(k), Hσ(k), and
Hd(k) such that for all x ∈ R

d,

xT b(x, k) ≤ Hb(k)|x|2, |σ(x, k)|2 ≤ Hσ(k)|x|2, |xT σ(x, k)| ≥ Hd(k)|x|2.
(13)

(ii) For each k ∈ S, there exists positive constant Hc(k) such that for
all x ∈ R

d and u ∈ U ,

|c(x, k, u)| ≤ Hc(k)|x|. (14)

(iii) The following function on S,

H(k) := Hb(k) +
1

2
Hσ(k) −

(
Hd(k)

)2
+ Π(U) ln

(
1 + Hc(k)

)
(15)

is monotonic.
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Almost Sure Stability Result

Theorem 9

Suppose that Assumptions 6 and 8 hold, and that Q∗ is irreducible. If

∑

k∈S

µ∗
k

(
Hb(k) +

1

2
Hσ(k)−

(
Hd(k)

)2
+ Π(U) ln

(
1 + Hc(k)

))
< 0, (16)

then the equilibrium point x = 0 of system (1) and (2) is almost surely
exponentially stable. Here µ∗ = (µ∗

1, · · · , µ∗
n0

) is the invariant probability
measure associated with Q∗.
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About the Proof (again)

ln |X(t)| − ln |x|

=

∫ t

0

XT (s)b(X(s),Λ(s))

|X(s)|2
ds

+
1

2

∫ t

0

[
|σ(X(s),Λ(s))|2

|X(s)|2
−

2|XT (s)σ(X(s),Λ(s))|2

|X(s)|4

]
ds

+

∫ t

0

∫

U

[ln |X(s−) + c(X(s−),Λ(s−), u))| − ln |X(s−)|]Π(du)ds

+M1(t) + M2(t),
(17)

where

M1(t) =

∫ t

0

XT (s)

|X(s)|2
σ(X(s),Λ(s))dB(s),

M2(t) =

∫ t

0

∫

U

[ln |X(s−) + c(X(s−),Λ(s−), u))| − ln |X(s−)|]Ñ (ds, du).

(18)
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About the Proof (and again)

Using the order-preserving coupling in (17) and (18), we can obtain
the almost sure stability by virtue of the strong law of large numbers
for local martingales and the ergodic property of Markov chains.

Note that Λ is not a Markov chain generally.
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Example

Example 10

Take d = 1, S = {1, 2, 3}. Consider the system (X,Λ) satisfying (1) and
(2) with the following specifications. Let

b(x, 1) = 3x+x sin2 x, b(x, 2) = x+x sin x, b(x, 3) = 2x+x sin x cos x,

σ(x, 1) = 10x σ(x, 2) = 3x + x sin x, σ(x, 3) = 3x + x cos x sin x,

c(x, k, u) = x for k = 1, 2, 3 and u ∈ U with Π(U) = 1,

and let Q(x) be

Q(x) =




−3 − | cos x| + sin2 x 1 + | cos x| 2 − sin2 x

1 + x2

1+x2 −2 − x2

1+x2 1

2 + | sin x| 1 + |x|
1+|x| −3 − | sin x| − |x|

1+|x|


 .
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Example (cont)

Assumption 6 is satisfied with the Q∗ given by

Q∗ = (q∗(k, l)) =




−4 2 2
1 −3 2
2 1 −3




and Assumption 8 is satisfied with

Hb(1) = 4,Hb(2) = 2,Hb(3) = 3,Hσ(1) = 100,Hσ(2) = 20,Hσ(3) = 20,

Hd(1) = 10, Hd(2) = 2, Hd(3) = 2, Hc(1) = Hc(2) = Hc(3) = 1,

H(1) = Hb(1) +
1

2
Hσ(1)−

(
Hd(1)

)2
+ Π(U) ln

(
1 + Hc(1)

)
= −46 + ln 2,

H(2) = Hb(2) +
1

2
Hσ(2) −

(
Hd(2)

)2
+ Π(U) ln

(
1 + Hc(2)

)
= 8 + ln 2,

H(3) = Hb(3) +
1

2
Hσ(3) −

(
Hd(3)

)2
+ Π(U) ln

(
1 + Hc(3)

)
= 9 + ln 2.
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Example (cont)

For the invariant probability measure µ∗ = (µ∗
1, µ

∗
2, µ

∗
3) = (7/25, 8/25, 2/5)

associated with the irreducible Q∗, we have

µ∗
1H(1) + µ∗

2H(2) + µ∗
3H(3) = −

168

25
+ ln 2 < 0.

Thus, by virtue of Theorem 9, the equilibrium point x = 0 of system (1)
and (2) is almost surely exponentially stable.
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Stochastic Stabilization

The regime-switching jump-diffusion X satisfying (1) can be regarded
as the following n0 single jump-diffusions

dX(k)(t) = b(X(k)(t), k)dt + σ(X(k)(t), k)dB(t)

+

∫

U

c(X(k)(t−), k, u)N(dt, du), k ∈ S
(19)

coupled by the discrete-event component Λ according the transition
rates defined by (2).

The system is often only observable when it operates in some modes
but not all. Let us decompose S = S1 ∪ S2, where for each mode
k ∈ S2, the jump-diffusion process (19) is not observable and hence
cannot be stabilized by feedback control, but it can be stabilized for
each mode k ∈ S1.
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Stochastic Stabilization (cont)

One question of both theoretical and practical interest is: if a
regime-switching jump-diffusion is not stable, can we design suitable
controls so that the controlled regime-switching jump-diffusion
become stable?

To answer the question, consider the regime-switching jump-diffusion

dX(t) =
[
b(X(t),Λ(t))+u(X(t),Λ(t))

]
dt + σ(X(t),Λ(t))dB(t)

+

∫

U

c(X(t−),Λ(t−), u)N(dt, du),

(20)
where u(x, k) ≡ 0 for k ∈ S2 while u(x, k) is a feedback control for
k ∈ S1.
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Stochastic Stabilization (cont)

Our aim is to design the control u(x, k) for k ∈ S1 only so that the
controlled system (20) is stabilized.

Now we only consider linear (in x) feedback controls of the form

u(x, k) = −L(k)x,

where for each k ∈ S, L(k) ∈ R
d×d is a constant matrix. Moreover, if

k ∈ S2, L(k) = 0.

Thus (20) can be rewritten as

dX(t) =
[
b(X(t),Λ(t)) − L(Λ(t))X(t)

]
dt + σ(X(t),Λ(t))dB(t)

+

∫

U

c(X(t−),Λ(t−), u)N(dt, du).

(21)
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Stochastic Stabilization (cont)

We have a wide variety of choices for the matrices L(k) with k ∈ S1

in order to make the coefficients in the system (21) with the
transition rule (2) to satisfy conditions of Theorem 9 and to get the
exponential stability.

Rewrite (21) as follows:

dX(t) = b̂(X(t),Λ(t))dt + σ(X(t),Λ(t))dB(t)

+

∫

U

c(X(t−),Λ(t−), u)N(dt, du),
(22)

where
b̂(x, k) = b(x, k) − L(k)x.
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Stochastic Stabilization (cont)

Theorem 11

For each k ∈ S, select the matrix L(k) so that the conditions of Theorem 9
are satisfied with the modification of replacing b(x, k) by b̂(x, k). Then the
resulting system is exponentially stabilizable almost surely.

Likewise, we also have some almost surely instability criteria and and
their applications to the stochastic destabilization.
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QED

Thank You Very Much!
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