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1 Small world effect

Small world effect, the fact that the diameters of most networks
are considerably smaller than their sizes, is one of the most
important features of real-world complex networks.

See graph G = (V,E) as a network, and suppose that |V | is large
enough. We say G exhibits the small world effect, if the diameter
of G is at most polynomially large in lg |V |. Namely, for some
polynomial function f , one has

diam(G) ≤ f(lg |V |).
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History

1. Karinthy 1929, · · · · · · a remarkable short story in his book:
Chains.

2. Milgram 1960s, “six degrees of separation”: Milgram carried
out his famous “small-world” experiments, in which letters passed
from person to person were able to reach a designated target
individual within six steps.

3. Watts and Strogatz 1998, Collective dynamics of ‘small-world’
networks, Nature 393, pp 440-442: WS small world.

· · · · · ·
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2 Why small world?—Modeling!

Three important models

1. BC small world 1988: B. Bollobás and F. Chung The dimeter of
a cycle plus a random matching, SIAM J. Discrete Math. 1, pp
328-333

2. WS small world 1998: D. J. Watts and S. H. Strogatz Collective
dynamics of ‘small-world’ networks, Nature 393, pp 440-442

3. NW small world 1999: M. E. J. Newman and D. J. Watts
Renormalization group analysis of the small-world network model,
Phys. Lett. A 263, pp 341-346

Other models

LCD Model 2004: B. Bollobás and O. Riordan The diameter of a
scale-free random graph, Combinatorica 24, pp 5-34
· · · · · ·
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Remarks

1. 1-3 small world models revealed a common fact: that is, adding
“long edges” to a regularly constructed (lattice-like) graph will
make the resulted graph a small world—“adding long edges ”
mechanism.

The 1-dimensional lattice ring with n vertices is chosen to be the
regularly constructed graph in all the three models.

2. Only the BC small world provided rigorous mathematical results.

3. A NEW mechanism other than the one working in BC, NW and
WS small world makes the ‘LCD’ model a small world—we will
discuss this aspect in another paper.
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3 Our model: Poisson geometry small world.

We consider the supercritical Poisson continuous percolation on
d-dimensional torus T dn with volume nd.

By adding “long edges” randomly to the largest percolation
cluster, we obtain a random graph Gn.

It can be proved that the diameter of Gn grows at most
polynomially fast in lg n and we call Gn the Poisson geometry
small world.
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Poisson continuous percolation on Rd

Let P denote the homogeneous Poisson point process of rate 1 on
Rd. Given r > 0. We define a random graph G = (V,E), where
V = P and E consists of the edges which connect all Poisson
point pairs lying in distance 2r.

Theorem AR.Meester and R.Roy (1995) Suppose d ≥ 2. Let ψ(r)
denote the probability that there exists a unique infinite connected
component, write as C∞, in G, let θ(r) denote the probability that
the distance between the origin 0 and some vertex of C∞ is less
than 2r. Then there exists 0 < rc <∞ such that

ψ(r)

{
= 1, if r > rc

= 0, if r < rc
, θ(r)

{
> 0, if r > rc

= 0, if r < rc
.

Where θ(r) is called the percolation probability.
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Continuous percolation on Bn := [0, n]d

Let Pn denote the homogeneous Poisson point process of rate 1
on Bn.

Given r > rc. We define a random graph Gn = (Vn, En), where
Vn = Pn = Bn ∩P and En consists of the edges which connect
all Pn point pairs lying in distance 2r.

A connected component C of Gn is called crossing for Bn, if the
distance between C and any of the face of Bn is less than r.

For continuous percolation on Bn := [0, n]d, we have the following
two propositions.(Penrose and Pisztora (1996))
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Proposition 1 Suppose r > rc. Suppose {φn : n ≥ 1} is
increasing with φn/ lg n→∞ as n→∞, and with φn < n for all
n.

Let E1(n) be the event that

(i) there is a unique component in Gn that is crossing for Bn, and

(ii) no other component in Gn has diameter greater than φn.

Then there exists a constant c1 > 0 such that for all large enough
n,

P(E1(n)) ≥ 1− exp(−c1φn).

Remark. If we take φn = lg(1+ε) n, then it follows from
Proposition 1 that, with high probability, all components except for
the largest one have diameters less than lg(1+ε) n.
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Proposition 2 Suppose r > rc, and 0 < ε < 1/2. Let E2(n)
be the event that

(i) there is a unique component Cb in Gn containing more than
εθ(r)nd points of Pn,

(ii)
(1− ε)θ(r) ≤ n−d|Cb| ≤ (1 + ε)θ(r),

(iii) Cb is crossing for Bn, and

(iv) Cb is part of the infinite component C∞ in G.

Then, there exist c2 > 0 and n2 such that

P(E2(n)) ≥ 1− exp(−c2n
d−1), n ≥ n2.
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Continuous percolation on the d-dimensional
torus T d

n

Let T dn denote the d-dimensional torus obtained from Bn by
cohering its opposite faces, and let PT

n denote the Poisson process
of rate 1 on T dn .

Given r > rc. We define a random graph GTn = (V T
n , E

T
n ), where

V T
n = PT

n and ETn consists of the edges which connect all PT
n

point pairs lying in distance 2r.

Let Cmax denote the maximum connected component in GTn , let
Ḡn denote the subgraph of GTn , which corresponds the maximum
connected component Cmax.
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Define the Poisson geometry small world Gn

For any given constants α, β, σ and ζ satisfying 0 < α < β < 1/2,
σ > 0 and ζ ≥ 0, we define a random graph Gn = Gn(α, β, σ, ζ)
from Ḡn as the following: for any u, v ∈ Cmax, if

αn ≤ dT∞(u, v) ≤ βn,

then we connect u and v independently by a“long edge” with
probability

pn = σn−d lg−ζ n;

otherwise, we do nothing.
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Where dT∞(·, ·) denote the l∞ metric on T dn inherited from the
usual l∞ metric d∞(·, ·) on Rd defined by

d∞(x, y) := max
1≤s≤d

|xs − ys|

for any x, y ∈ Rd.

Let En denote the new edge set with long edges, and let

Gn = (Cmax, En).
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1. Gn is a small world!

Theorem 1 Suppose r > rc. Then for any 0 < α < β < 1/2 with

(2β)d − (2α)d > 1/2,

σ > 0 and ζ ≥ 0, there exists constant C1 > 0 such that for any
ν > 0,

lim
n→∞

P(diam(Gn) ≤ C1 lg3+ζ+ν n) = 1.

Remark It seems that our setting on “long edge” is
REASONABLE! Obviously, if only shorter edges, for example with
length n1−ε, are added, then the diameter of the resulted graph
grows at least fast in nε, and the resulted graph does not exhibit
the small world effect. On the other hand, Theorem 1 indicates
that, to make the resulted graph a small world, adding such shorter
edges is not necessary.
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2. Random Walk on graph

In a graph G = (V,E), for any u, v ∈ V , let dG(u) be the the
degree of u in G, and write u ∼ v if u and v are neighbors in G.

For any u, v ∈ V , we define a transition kernel by P (u, u) = 1/2,
P (u, v) = 1/2dG(u) if u ∼ v and P (u, v) = 0 otherwise. A
discrete time Markov chain {Xt : t ≥ 0} on V with transition
kernel (P (u, v)) is called the lazy random walk on G.

Note that π(u) := dG(u)/D where D =
∑

v∈V dG(v) = 2|E|,
defines a reversible stationary distribution of {Xt} since

π(u)P (u, v) = 1/2D = π(v)P (v, u).
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Mixing time of Random Walk

By the basic theory of Markov chains, for any initial state u ∈ V ,
the distribution of Xt, i.e. P t(u, ·) := P(Xt ∈ · | X0 = u),
converges weakly to π as t→∞. To measure convergence to
equilibrium, we will use the total variation distance

||P t(u, ·)− π||TV :=
∑
v∈V
|pt(u, v)− π(v)|.

The mixing time of {Xt : t ≥ 0} is defined by

Tmix := min

{
t : max

u∈V
||P t(u, ·)− π||TV < 1/e

}
.
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Random Walk on Gn is rapid mixing

Denote by Tmix the mixing time of lazy random walk on Gn, then
we have

Throrem 2 Suppose r > rc. Then,

(i) for any 0 < α < β < 1/2, ζ ≥ d− 1 and for σ > 0
small enough, there exists constant C2 > 0 such that

lim
n→∞

P(Tmix ≥ C2 lg n) = 1;

(ii) for 0 < α < β < 1/2 with (2β)d − (2α)d > 1/2,
ζ ≥ 0 and σ > 0, there exists constant C3 > 0 such
that for any ν > 0,

lim
n→∞

P(Tmix ≤ C3 lg4ζ+5+ν n) = 1.
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1. Small world effect

There is a known result in algebraic graph theory, see N. Alon and
V. D. Milman (1985) and A. Berman and X. D. Zhang (2000), that

Lemma 1 For any connected graph G = (V,E), let ∆(G)
denote its maximum degree, ι(G) denote its edge isoperimetric
constant and let diam(G) denote its diameter. Then

diam(G) ≤ 4∆(G)

ι(G)
lg |V |.

The edge isoperimetric constant ι(G) is defined by

ι(G) := min
S:|S|≤|V |/2

e(S, Sc)

|S|
.

Where e(S, Sc) be the number of edges between S and Sc.
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Theorem 1 follows from Lemma 1, Proposition 2 and the following
Lemmas 2 and 3.

Lemma 2 Suppose r > rc. Then

lim
n→∞

P(∆(Gn) ≤ lg n) = 1.

Lemma 3 Suppose r > rc, 0 < α < β < 1/2 with
(2β)d − (2α)d > 1/2, ζ ≥ 0 and σ > 0. Then there exists C4 > 0
such that for any ν > 0

lim
n→∞

P
(
ι(Gn) ≥ C4lg−[1+ζ+ν] n

)
= 1.
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2. Lower bound of the mixing time

To bound the mixing time from below, it suffices to prove that,
with high probability (tends to 1 as n→∞), there exists a box B
in T dn satisfying

1. The side length of B is K lg n;

2. If we denote B′ as the box with side length K lg n/2 and
centered at the same center of B. Then B′ ∩Cmax 6= φ. Note that
Cmax is the vertex set of Gn;

3. There is no long edge between B and Bc.

Then the random walk started in B′ can not escape from B in
time K lg n/2r.
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3. Upper bound of the mixing time

Conductance: For the lazy random walk {Xt : t ≥ 0} on Gn, let
Q(u, v) := π(u)P (u, v) and Q(S, Sc) :=

∑
u∈S

∑
v∈Sc Q(u, v).

Define

h := min
S:π(S)≤1/2

Q(S, Sc)

π(S)

to be the conductance of {Xt : t ≥ 0}. Letting e(S, Sc) be the
number of edges between S and Sc, we have

h =
1

2
min

S:π(S)≤1/2

e(S, Sc)

Vol(S)
,

where Vol(S) =
∑

u∈S dGn(u).
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For our lazy random walk {Xt : t ≥ 0} on Gn, matrix theory tell us
that the transition kernel (P(u,v)) has nonnegative real eigenvalues

1 = λ0 ≥ λ1 ≥ λ2 ≥ . . . ≥ λ|Cmax|−1 ≥ 0.

Note that 1− λ1 is called the spectral gap of (P (u, v)). Let
πmin = minu∈Cmax π(u).

It was given in A. Sinclair and M. Jerrum (1989) that

(∗) sup
u∈Cmax

||P t(u, ·)− π||TV ≤
λt1
πmin

.

On the other hand the spectral gap 1− λ1 can be bounded from
above and below by the conductance h in the following way (see
Theorem 6.2.1] in R. Durrett (2007)),

(∗∗) h2

2
≤ 1− λ1 ≤ 2h.
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By equations (*) and (**) and the definition of mixing time, the
upper bound for Tmix follows from the following lemma.

Lemma 4 Suppose r > rc, 0 < α < β < 1/2 with

(2β)d − (2α)d > 1/2,

ζ ≥ 0 and σ > 0. Then there exists C5 > 0 such that for any ν > 0

lim
n→∞

P
(
h ≥ C5lg−[2(ζ+1)+ν] n

)
= 1.
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Geometry of Ḡn

With high probability, we have

1). (1− ε)θ(r) ≤ n−d|Cmax| ≤ (1 + ε)θ(r),

2). (1− ε)Γ ≤ n−d|Λn(u)| ≤ (1 + ε)Γ for all u ∈ Cmax,

3). ∆(Ḡn) ≤ lg n/2.

Where Γ = [(2β)d − (2α)d]θ(r) and

Λn(u) =
{
v ∈ Cmax : αn ≤ dT∞(u, v) ≤ βn

}
.
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The proof of Lemma 4 follows from the following two lemmas.

Lemma 5 Let a = a(n) = lg−(1+ζ) n. Then

lim
n→∞

P

 ⋂
S:|S|≥(1−a)|Cmax|

{
π(S) >

1

2

} = 1.

Let

ι̂(Gn) = min
S:|S|≤(1−a)|Cmax|

e(S, Sc)

Vol(S)
.

Then by Lemma 5,

P (h ≥ ι̂(Gn)/2)→ 1, as n→∞.
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So, to bound h from below, it suffices to bound ι̂(Gn) from bellow.
In fact, we have

Lemma 6 Suppose r > rc, 0 < α < β < 1/2 with

(2β)d − (2α)d > 1/2,

ζ ≥ 0 and σ > 0. Then there exists C > 0 such that for any ν > 0

lim
n→∞

P
(
ι̂(Gn) ≥ Clg−[2(ζ+1)+ν] n

)
= 1.

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Beijing, 100048, P. R. ChinaMixing Time of Random Walk on Poisson Geometry Small World



Introduction
Results

On the proofs
References

Maximum degree and isoperimetric constant
Lower bound of the mixing time
upper bound of the mixing time
Bound the conductance from below

The sketch of the proof of Lemma 6

Let

B1 := {S ⊂ Cmax : |S| ≤M/a}, and

B2 := {S ⊂ Cmax : M/a < |S| ≤ a|Cmax|}, and

B3 := {S ⊂ Cmax : a|Cmax| < |S| ≤ (1− a)|Cmax|},

where M > 0 is a large constant and a = a(n) = lg−(ζ+1) n.

We will prove Lemma 6 for S ∈ Bi, i = 1, 2, 3 respectively. Let

B =

3⋃
i=1

Bi.
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For any S ∈ B,

e(S, Sc)

Vol(S)
≥ c(S) + L(S, Sc)

∆(Ḡn)|S|+ 2L(S)

Where

c(S) is the number of connected components of S in Ḡn.

L(S, Sc) is the number of “long edges” between S and Sc.

L(S) is the number of “long edges” associated to S.

Clearly
L(S) = L(S, Sc) + L(S, S).
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Let N(S, Sc) be the number of non-ordered pairs
u ∈ S, v ∈ Sc := Cmax \ S such that u ∈ Λn(v), N(S, S) be the
number of non-ordered pairs u, v ∈ S such that u ∈ Λn(v). Let

N(S) = N(S, Sc) +N(S, S).

Then L(S, Sc) is independent to L(S, S), and

L(S, Sc) ∼ b(N(S, Sc), pn), L(S, S) ∼ b(N(S, S), pn),

L(S) ∼ b(N(S), pn).
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Large deviation inequality for binomial
distribution.

Lemma 7:Suppose Z ∼ b(n, p). Then

P(Z ≥ zn) ≤ exp(−I(z)n), z > p; P(Z ≤ zn) ≤ exp(−I(z)n), z < p,

where I(z) is the common rate function defined by

I(z) := z lg
zq

(1− z)p
− lg

q

1− z
, p 6= z ∈ (0, 1).

Especially for small p, the above inequalities can be rewritten as

P(Z ≥ zpn) ≤ exp(−γ(z)pn) for z > 1, and

P(Z ≤ zpn) ≤ exp
(
−1

2γ(z)pn
)
for 0 < z < 1,

with γ(z) = z lg z − z + 1.
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Now, let

B3 = B>b3 ∪ B<b3

Where B>K3 is the set of S in B3 such that c(S) ≥ |S|/ lgb n and
B<b3 = B3 \ B>b3 .

By the large deviation inequality, we have

lim
n→∞

Pε (L(S) ≤ |S| lg n, ∀ S ∈ B3) = 1.

Where Pε is the conditional probability function that the three
items of the geometry of Ḡn hold. This implies

lim
n→∞

Pε
{
e(S, Sc)

Vol(S)
≥ 2/3

lgb+1 n
, ∀ S ∈ B>b3

}
= 1.
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Now, let’s choose ε small enough such that

1− ε
(1 + ε)θ̃(r)

Γ =
(1− ε)[(2β)d − (2α)d]

(1 + ε)
> 1/2.

For any S ∈ B3, if a|Cmax| ≤ |S| ≤ |Cmax|/2, then

N(S, Sc) =
∑
u∈S

∑
v∈Sc∩Λn(u)

1 ≥ |S|
(

min
u∈S
|Λn(u)| − |S|

)
≥|S|

(
1− ε

(1 + ε)θ(r)
Γ|Cmax| − |S|

)
≥a|Cmax|

(
1− ε

(1 + ε)θ(r)
Γ|Cmax| − a|Cmax|

)
≥ a

(
1− 2ε

(1 + ε)θ(r)
Γ

)
|Cmax|2.
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On the other hand, if a|Cmax| ≤ |Sc| ≤ |Cmax|/2, then

N(S, Sc) = N(Sc, S) =
∑
u∈Sc

∑
v∈S∩Λn(u)

1 ≥ |Sc|
(

min
u∈Sc
|Λn(u)| − |Sc|

)
≥ a|Cmax|

(
1− ε

(1 + ε)θ(r)
Γ|Cmax| − a|Cmax|

)
≥ a

(
1− 2ε

(1 + ε)θ(r)
Γ

)
|Cmax|2.

So

N(S) ≤ (1 + ε)Γnd|S| ≤ (1 + ε)Γnd(1− a)|Cmax|

≤ (1 + ε)Γ(1− a)

(1− ε)θ(r)
|Cmax|2 ≤

(1 + ε)Γ

(1− ε)θ(r)
|Cmax|2

≤ 1
a ·

(1 + ε)2

(1− ε)(1− 2ε)
N(S, Sc).
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Let f(ε) = (1− ε)(1− 2ε)/(1 + ε)2, then

N(S, Sc) ≥ f(ε)aN(S).

By the large deviation inequality, we have

Pε (L(S, Sc) ≥ f(ε)aL(S)/4)

≥ Pε(L(S, Sc) ≥ 1
2f(ε)aN(S)pn and L(S) ≤ 2N(S)pn)

≥ 1− exp(−1
4σγ(1/2)f(ε)(1− ε)Γ|S| lg−(2ζ+1) n)

− exp(−1
2σγ(2)(1− ε)Γ|S| lg−ζ n)

≥ 1− exp
(
−C(σ, ε)|S| lg−(2ζ+1) n

)
.
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On the other hand, by the large deviation inequality, we have

Pε (L(S) ≥ µ|S|) ≥ P
(
Z2(S) ≥ 2τ

σ(1−ε)ΓN2(S)pn

)
≥ 1− exp

(
−O

(
|S| lg−ζ n

))
.

Where µ = µ(n) = τ lg−ζ n with 2τ/σ(1− ε)Γ < 1,
N2(S) = 1

2(1− ε)Γnd|S| and

Z2(S) ∼ b(N2(S), pn).
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Note that L(S, Sc) ≥ f(ε)aL(S)/4 and L(S) ≥ µ|S| imply that

e(S, Sc)

Vol(S)
≥ L(S, Sc)

|S|∆(Ḡn) + 2L(S)
≥ f(ε)aL(S)/4

|S| lg n/2 + 2L(S)

≥


τ lg−ζ nf(ε)a|S|/4
|S| lg n/2 + 2|S|

≥ C ′′6

lg2(ζ+1) n
, if L(S) ≤ |S|;

f(ε)aL(S)/4

L(S) lg n/2 + 2L(S)
≥ C ′′′6

lgζ+2 n
, if |S| ≤ L(S).

Thus, for any S ∈ B3

Pε
(
e(S, Sc)

Vol(S)
≥ C ′′6

lg2(ζ+1) n

)
≥ 1− exp

(
−C(σ, ε)|S| lg−(2ζ+1) n

)
.
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Finally, for any a|Cmax| ≤ s ≤ (1− a)|Cmax|, let B<b3,s denote the

set of S ∈ B<b3 with |S| = s. For any 1 ≤ j ≤ s/ lgb n =: js, let
B<b3,s,j denote the set of S ∈ B<b3,s such that c(S) = j. Then

|B<b3,s,j | ≤
(
|Cmax|
j

)(
s− 1

j − 1

)
≤
(|Cmax|

j

)(
s
j

)
≤
(
|Cmax|
js

)(
s

js

)
≤
(
|Cmax|e
js

)js
·
(
se

js

)js
≤ exp

(
js

{
lg

(
|Cmax|
s

)
+ 2 lg

(
s

js

)
+ 2

})
≤ exp

(
D lg lgn · s lg−b n

)
.

Then
|B<b3,s| ≤ s · exp

(
D lg lg n · s lg−b n

)
.
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Provided b = 2ζ + 1 + ν with ν > 0, we have

lim
n→∞

Pε
(
e(S, Sc)

Vol(S)
≥ C ′7

lg2(ζ+1) n
, ∀ S ∈ B<b3

)
= 1.

Thus, we finish the proof of the lemma.
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Thanks for your attention!
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