Mixing Time of Random Walk on Poisson Geometry Small World

Xian-Yuan Wu

School of Mathematical Sciences, Capital Normal University, Beijing, 100048, P. R. China

July 9, 2013

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Time of Random Walk on Poisson Geometry Small Wo

 $4\Box$ \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow

- Introduction \bullet
- **Results** \bullet
- On the proofs \bullet
- **References** \bullet

Xian-Yuan Wu School of Mathematical Sciences, Capital North Mixing Time of Random Walk on Poisson Geometry Small Wo

目

 2990

[Small world effect](#page-2-0) **[History](#page-3-0)** [Why small world?—Modeling!](#page-4-0) [Our model: Poisson geometry small world](#page-6-0)

 $4\Box$ \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow

 OQ

1 Small world effect

Small world effect, the fact that the diameters of most networks are considerably smaller than their sizes, is one of the most important features of real-world complex networks.

See graph $G = (V, E)$ as a network, and suppose that $|V|$ is large enough. We say G exhibits the small world effect, if the diameter of G is at most polynomially large in $\lg |V|$. Namely, for some polynomial function f , one has

 $diam(G) \leq f(\lg |V|).$

[Introduction](#page-2-0) [Results](#page-14-0) [On the proofs](#page-18-0) [References](#page-39-0) [Small world effect](#page-2-0) **[History](#page-3-0)** [Why small world?—Modeling!](#page-4-0) [Our model: Poisson geometry small world](#page-6-0)

History

· · · · · ·

1. Karinthy $1929, \cdots$ a remarkable short story in his book: Chains.

2. Milgram 1960s, "six degrees of separation": Milgram carried out his famous "small-world" experiments, in which letters passed from person to person were able to reach a designated target individual within six steps.

3. Watts and Strogatz 1998, Collective dynamics of 'small-world' networks, Nature 393, pp 440-442: WS small world.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

2 Why small world?—Modeling!

Three important models

1. BC small world 1988: B. Bollobás and F. Chung The dimeter of a cycle plus a random matching, $SIAM$ J. Discrete Math. 1, pp 328-333

2. WS small world 1998: D. J. Watts and S. H. Strogatz Collective dynamics of 'small-world' networks, Nature 393, pp 440-442

3. NW small world 1999: M. E. J. Newman and D. J. Watts Renormalization group analysis of the small-world network model, Phys. Lett. A 263, pp 341-346

Other models

· · · · · ·

LCD Model 2004: B. Bollobás and O. Riordan The diameter of a scale-free random graph, Combinatorica 24, pp 5-34

K ロ ▶ K 倒 ▶ K 듣 ▶ K 듣 ▶ ...

[Introduction](#page-2-0) [Results](#page-14-0) [On the proofs](#page-18-0) [References](#page-39-0) [Small world effect](#page-2-0) **[History](#page-3-0)** [Why small world?—Modeling!](#page-4-0) [Our model: Poisson geometry small world](#page-6-0)

Remarks

1. 1-3 small world models revealed a common fact: that is, adding "long edges" to a regularly constructed (lattice-like) graph will make the resulted graph a small world—"adding long edges " mechanism.

The 1-dimensional lattice ring with n vertices is chosen to be the regularly constructed graph in all the three models.

2. Only the BC small world provided rigorous mathematical results.

3. A **NEW** mechanism other than the one working in BC, NW and WS small world makes the 'LCD' model a small world—we will discuss this aspect in another paper.

K ロ ⊁ K 倒 ≯ K ミ ≯ K ミ ≯

[Introduction](#page-2-0) [Results](#page-14-0) [On the proofs](#page-18-0) [References](#page-39-0) [Small world effect](#page-2-0) **[History](#page-3-0)** [Why small world?—Modeling!](#page-4-0) [Our model: Poisson geometry small world](#page-6-0)

3 Our model: Poisson geometry small world.

We consider the supercritical Poisson continuous percolation on d -dimensional torus T_n^d with volume $n^d.$

By adding "long edges" randomly to the largest percolation cluster, we obtain a random graph \mathscr{G}_n .

It can be proved that the diameter of \mathscr{G}_n grows at most polynomially fast in $\lg n$ and we call \mathscr{G}_n the Poisson geometry small world.

 $4\Box$ \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow

 Ω

.

 Ω

Poisson continuous percolation on \mathbb{R}^d

Let $\mathscr P$ denote the homogeneous Poisson point process of rate 1 on $\mathbb{R}^d.$ Given $r>0.$ We define a random graph $G=(V,E)$, where $V = \mathscr{P}$ and E consists of the edges which connect all Poisson point pairs lying in distance $2r$.

Theorem AR.Meester and R.Roy (1995) Suppose $d \geq 2$. Let $\psi(r)$ denote the probability that there exists a unique infinite connected component, write as C_{∞} , in G, let $\theta(r)$ denote the probability that the distance between the origin 0 and some vertex of C_{∞} is less than 2r. Then there exists $0 < r_c < \infty$ such that

$$
\psi(r) \begin{cases}\n= 1, & \text{if } r > r_c \\
= 0, & \text{if } r < r_c\n\end{cases}, \quad \theta(r) \begin{cases}\n> 0, & \text{if } r > r_c \\
= 0, & \text{if } r < r_c\n\end{cases}
$$

Where $\theta(r)$ is called the percolation probabi[lity](#page-6-0)[.](#page-8-0)

Continuous percolation on $B_n:=[0,n]^d$

Let \mathscr{P}_n denote the homogeneous Poisson point process of rate 1 on B_n .

Given $r > r_c$. We define a random graph $G_n = (V_n, E_n)$, where $V_n = \mathscr{P}_n = B_n \cap \mathscr{P}$ and E_n consists of the edges which connect all \mathscr{P}_n point pairs lying in distance $2r$.

A connected component C of G_n is called crossing for B_n , if the distance between C and any of the face of B_n is less than r.

For continuous percolation on $B_n:=[0,n]^d,$ we have the following two propositions.(Penrose and Pisztora (1996))

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ..

 Ω

Proposition 1 Suppose $r > r_c$. Suppose $\{\phi_n : n \geq 1\}$ is increasing with $\phi_n/\lg n \to \infty$ as $n \to \infty$, and with $\phi_n < n$ for all n .

Let $E_1(n)$ be the event that

(i) there is a unique component in G_n that is crossing for B_n , and (ii) no other component in G_n has diameter greater than ϕ_n .

Then there exists a constant $c_1 > 0$ such that for all large enough n .

$$
\mathbb{P}(E_1(n)) \ge 1 - \exp(-c_1 \phi_n).
$$

Remark. If we take $\phi_n = \lg^{(1+\epsilon)} n$, then it follows from Proposition 1 that, with high probability, all components except for the largest one have diameters less than $\lg(1+\epsilon) n$. $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$

Proposition 2 Suppose $r > r_c$, and $0 < \epsilon < 1/2$. Let $E_2(n)$ be the event that

(i) there is a unique component C_b in G_n containing more than $\epsilon\theta(r)n^d$ points of \mathscr{P}_n ,

(ii)

$$
(1 - \epsilon)\theta(r) \le n^{-d} |C_b| \le (1 + \epsilon)\theta(r),
$$

(iii) C_b is crossing for B_n , and (iv) C_b is part of the infinite component C_{∞} in G. Then, there exist $c_2 > 0$ and n_2 such that

$$
\mathbb{P}(E_2(n)) \ge 1 - \exp(-c_2 n^{d-1}), \ \ n \ge n_2.
$$

 Ω

- イート イート イート

Continuous percolation on the d -dimensional torus $\, T_n^d \,$ n

Let T_n^d denote the d-dimensional torus obtained from B_n by cohering its opposite faces, and let \mathscr{P}^T_n denote the Poisson process of rate 1 on T_n^d .

Given $r > r_c$. We define a random graph $G_n^T = (V_n^T, E_n^T)$, where $V^T_n = \mathscr{P}^T_n$ and E^T_n consists of the edges which connect all \mathscr{P}^T_n point pairs lying in distance $2r$.

Let $C_{\rm max}$ denote the maximum connected component in G^T_n , let \bar{G}_n denote the subgraph of G_n^T , which corresponds the maximum connected component C_{max} .

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 글

Define the Poisson geometry small world \mathscr{G}_n

For any given constants α, β, σ and ζ satisfying $0 < \alpha < \beta < 1/2$, $\sigma > 0$ and $\zeta \geq 0$, we define a random graph $\mathscr{G}_n = \mathscr{G}_n(\alpha, \beta, \sigma, \zeta)$ from \bar{G}_n as the following: for any $u,v\in C_{\max}$, if

$$
\alpha n \le d_{\infty}^T(u, v) \le \beta n,
$$

then we connect u and v independently by a "long edge" with probability

$$
p_n = \sigma n^{-d} \lg^{-\zeta} n;
$$

otherwise, we do nothing.

 OQ

 \mathcal{A} $\overline{\oplus}$ \mathcal{B} \mathcal{A} $\overline{\oplus}$ \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B}

Where $d_{\infty}^T(\cdot,\cdot)$ denote the l_{∞} metric on T_n^d inherited from the usual l_{∞} metric $d_{\infty}(\cdot,\cdot)$ on \mathbb{R}^d defined by

$$
d_{\infty}(x, y) := \max_{1 \le s \le d} |x_s - y_s|
$$

for any $x,y\in\mathbb{R}^d$.

Let \mathcal{E}_n denote the new edge set with long edges, and let

 $\mathscr{G}_n = (C_{\text{max}}, \mathcal{E}_n).$

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Time of Random Walk on Poisson Geometry Small Wo

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R} is a set of \mathbb{R} is a set of \mathbb{R}

 \mathscr{G}_n [is a small world!](#page-14-0) [Random Walk on graph](#page-15-0) [Mixing time of Random Walk](#page-16-0) [Random Walk on](#page-17-0) \mathscr{G}_n is rapid mixing

 Ω

1. \mathscr{G}_n is a small world!

Theorem 1 Suppose $r > r_c$. Then for any $0 < \alpha < \beta < 1/2$ with

 $(2\beta)^d - (2\alpha)^d > 1/2,$

 $\sigma > 0$ and $\zeta \geq 0$, there exists constant $C_1 > 0$ such that for any $\nu > 0$.

 $\lim_{n\to\infty} \mathbb{P}(\text{diam}(\mathcal{G}_n) \leq C_1 \lg^{3+\zeta+\nu} n) = 1.$

Remark It seems that our setting on "long edge" is REASONABLE! Obviously, if only shorter edges, for example with length $n^{1-\epsilon}$, are added, then the diameter of the resulted graph grows at least fast in n^ϵ , and the resulted graph does not exhibit the small world effect. On the other hand, Theorem 1 indicates that, to make the resulted graph a small world, adding such shorter edges is not necessary. **K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁**

[Introduction](#page-2-0) [Results](#page-14-0) [On the proofs](#page-18-0) [References](#page-39-0) \mathscr{G}_n [is a small world!](#page-14-0) [Random Walk on graph](#page-15-0) [Mixing time of Random Walk](#page-16-0) [Random Walk on](#page-17-0) \mathscr{G}_n is rapid mixing

2. Random Walk on graph

In a graph $G = (V, E)$, for any $u, v \in V$, let $d_G(u)$ be the the degree of u in G, and write $u \sim v$ if u and v are neighbors in G.

For any $u, v \in V$, we define a transition kernel by $P(u, u) = 1/2$, $P(u, v) = 1/2d_G(u)$ if $u \sim v$ and $P(u, v) = 0$ otherwise. A discrete time Markov chain $\{X_t : t \geq 0\}$ on V with transition kernel $(P(u, v))$ is called the *lazy random walk* on G.

Note that $\pi(u) := d_G(u)/D$ where $D = \sum_{v \in V} d_G(v) = 2|E|$, defines a reversible stationary distribution of $\{X_t\}$ since

$$
\pi(u)P(u,v) = 1/2D = \pi(v)P(v,u).
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ .

[Introduction](#page-2-0) [Results](#page-14-0) [On the proofs](#page-18-0) [References](#page-39-0) \mathscr{G}_n [is a small world!](#page-14-0) [Random Walk on graph](#page-15-0) [Mixing time of Random Walk](#page-16-0) [Random Walk on](#page-17-0) \mathscr{G}_n is rapid mixing

Mixing time of Random Walk

By the basic theory of Markov chains, for any initial state $u \in V$, the distribution of X_t , i.e. $P^t(u, \cdot) := \mathbb{P}(X_t \in \cdot \mid X_0 = u)$, converges weakly to π as $t \to \infty$. To measure convergence to equilibrium, we will use the total variation distance

$$
||P^{t}(u,\cdot)-\pi||_{TV} := \sum_{v\in V} |p^{t}(u,v)-\pi(v)|.
$$

The mixing time of $\{X_t : t \geq 0\}$ is defined by

$$
T_{\text{mix}} := \min \left\{ t : \max_{u \in V} ||P^t(u, \cdot) - \pi||_{TV} < 1/e \right\}.
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

Random Walk on \mathscr{G}_n is rapid mixing

Denote by T_{mix} the mixing time of lazy random walk on \mathscr{G}_n , then we have

Throrem 2 Suppose $r > r_c$. Then,

(i) for any $0 < \alpha < \beta < 1/2$, $\zeta \geq d-1$ and for $\sigma > 0$ small enough, there exists constant $C_2 > 0$ such that

 $\lim_{n\to\infty} \mathbb{P}(T_{\text{mix}} \geq C_2 \lg n) = 1;$

(ii) for $0 < \alpha < \beta < 1/2$ with $(2\beta)^d - (2\alpha)^d > 1/2$, $\zeta > 0$ and $\sigma > 0$, there exists constant $C_3 > 0$ such that for any $\nu > 0$,

$$
\lim_{n \to \infty} \mathbb{P}(T_{\text{mix}} \le C_3 \lg^{4\zeta + 5 + \nu} n) = 1.
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

[Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

 Ω

1. Small world effect

There is a known result in algebraic graph theory, see N. Alon and V. D. Milman (1985) and A. Berman and X. D. Zhang (2000), that

Lemma 1 For any connected graph $G = (V, E)$, let $\Delta(G)$ denote its maximum degree, $\iota(G)$ denote its edge isoperimetric constant and let $\text{diam}(G)$ denote its diameter. Then

$$
diam(G) \le \frac{4\Delta(G)}{\iota(G)} \lg |V|.
$$

The edge isoperimetric constant $\iota(G)$ is defined by

$$
\iota(G) := \min_{S:|S| \le |V|/2} \frac{e(S, S^c)}{|S|}.
$$

Where $e(S, S^c)$ $e(S, S^c)$ $e(S, S^c)$ be the number of edges bet[we](#page-17-0)e[n](#page-19-0) S [a](#page-18-0)n[d](#page-17-0) S^c [.](#page-17-0)

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Time of Random Walk on Poisson Geometry Small Wo

[Introduction](#page-2-0) [Results](#page-14-0) [On the proofs](#page-18-0) [References](#page-39-0) [Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

Theorem 1 follows from Lemma 1, Proposition 2 and the following Lemmas 2 and 3.

Lemma 2 Suppose $r > r_c$. Then

 $\lim_{n\to\infty} \mathbb{P}(\Delta(\mathscr{G}_n) \leq \lg n) = 1.$

Lemma 3 Suppose $r > r_c$, $0 < \alpha < \beta < 1/2$ with $(2\beta)^d-(2\alpha)^d>1/2,~\zeta\geq 0$ and $\sigma>0.$ Then there exists $C_4>0$ such that for any $\nu > 0$

$$
\lim_{n \to \infty} \mathbb{P}\left(\iota(\mathscr{G}_n) \ge C_4 \lg^{-[1+\zeta+\nu]} n\right) = 1.
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 Ω

[Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 OQ

2. Lower bound of the mixing time

To bound the mixing time from below, it suffices to prove that, with high probability (tends to 1 as $n \to \infty$), there exists a box B in $\, T_n^d \,$ satisfying

1. The side length of B is $K \lg n$;

2. If we denote B' as the box with side length $K\lg n/2$ and centered at the same center of B. Then $B' \cap C_{\text{max}} \neq \emptyset$. Note that C_{max} is the vertex set of \mathscr{G}_n ;

3. There is no long edge between B and B^c .

Then the random walk started in B' can not escape from B in time $K \lg n/2r$.

[Introduction](#page-2-0) [Results](#page-14-0) [On the proofs](#page-18-0) [References](#page-39-0) [Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

3. Upper bound of the mixing time

Conductance: For the lazy random walk $\{X_t : t\ge 0\}$ on \mathscr{G}_n , let $Q(u, v) := \pi(u) P(u, v)$ and $Q(S, S^c) := \sum_{u \in S} \sum_{v \in S^c} Q(u, v)$. Define

$$
h:=\min_{S:\pi(S)\leq 1/2}\frac{Q(S,S^c)}{\pi(S)}
$$

to be the *conductance* of $\{X_t : t \geq 0\}$. Letting $e(S, S^c)$ be the number of edges between S and S^c , we have

$$
h = \frac{1}{2} \min_{S: \pi(S) \le 1/2} \frac{e(S, S^c)}{\text{Vol}(S)},
$$

where $\text{Vol}(S) = \sum_{u \in S} d_{\mathscr{G}_n}(u)$.

K ロ ▶ K 倒 ▶ K 듣 ▶ K 듣 ▶ ...

For our lazy random walk $\{X_t : t\ge 0\}$ on \mathscr{G}_n , matrix theory tell us that the transition kernel $(P(u,v))$ has nonnegative real eigenvalues

$$
1 = \lambda_0 \geq \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{|C_{\max}|-1} \geq 0.
$$

Note that $1 - \lambda_1$ is called the spectral gap of $(P(u, v))$. Let $\pi_{\min} = \min_{u \in C_{\max}} \pi(u).$

It was given in A. Sinclair and M. Jerrum (1989) that

(*)
$$
\sup_{u \in C_{\text{max}}} ||P^t(u, \cdot) - \pi||_{TV} \leq \frac{\lambda_1^t}{\pi_{\text{min}}}.
$$

On the other hand the spectral gap $1 - \lambda_1$ can be bounded from above and below by the conductance h in the following way (see Theorem 6.2.1] in R. Durrett (2007)),

$$
(**) \qquad \qquad \frac{h^2}{2} \le 1 - \lambda_1 \le 2h.
$$

K 御 ▶ | K 唐 ▶ | K 唐 ▶ | |

By equations (*) and (**) and the definition of mixing time, the upper bound for T_{mix} follows from the following lemma.

Lemma 4 Suppose $r > r_c$, $0 < \alpha < \beta < 1/2$ with

$$
(2\beta)^d - (2\alpha)^d > 1/2,
$$

 $\zeta > 0$ and $\sigma > 0$. Then there exists $C_5 > 0$ such that for any $\nu > 0$

$$
\lim_{n \to \infty} \mathbb{P}\left(h \ge C_5 \lg^{-[2(\zeta+1)+\nu]} n\right) = 1.
$$

マーター マーティング

[Introduction](#page-2-0) [Results](#page-14-0) [On the proofs](#page-18-0) [References](#page-39-0) [Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

Geometry of \bar{G}_n

With high probability, we have

1).
$$
(1 - \epsilon)\theta(r) \le n^{-d}|C_{\text{max}}| \le (1 + \epsilon)\theta(r)
$$
,
2). $(1 - \epsilon)\Gamma \le n^{-d}|\Lambda_n(u)| \le (1 + \epsilon)\Gamma$ for all $u \in C_{\text{max}}$,
3). $\Delta(\bar{G}_n) \le \lg n/2$.

Where $\Gamma=[(2\beta)^d-(2\alpha)^d]\theta(r)$ and

$$
\Lambda_n(u) = \left\{ v \in C_{\max} : \alpha n \le d_{\infty}^T(u, v) \le \beta n \right\}.
$$

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Time of Random Walk on Poisson Geometry Small Wo

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 $2Q$

重

The proof of Lemma 4 follows from the following two lemmas.

Lemma 5 Let $a = a(n) = \lg^{-(1+\zeta)} n$. Then

$$
\lim_{n \to \infty} \mathbb{P}\left(\bigcap_{S:|S| \ge (1-a)|C_{\text{max}}|} \left\{\pi(S) > \frac{1}{2}\right\}\right) = 1.
$$

Let

$$
\hat{\iota}(\mathscr{G}_n) = \min_{S:|S| \le (1-a)|C_{\text{max}}|} \frac{e(S, S^c)}{\text{Vol}(S)}.
$$

Then by Lemma 5,

$$
\mathbb{P}\left(h \geq \hat{\iota}(\mathscr{G}_n)/2\right) \to 1, \text{ as } n \to \infty.
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 $2QQ$

重

So, to bound h from below, it suffices to bound $\hat{\iota}(\mathscr{G}_n)$ from bellow. In fact, we have

Lemma 6 Suppose $r > r_c$, $0 < \alpha < \beta < 1/2$ with

$$
(2\beta)^d - (2\alpha)^d > 1/2,
$$

 $\zeta > 0$ and $\sigma > 0$. Then there exists $C > 0$ such that for any $\nu > 0$

$$
\lim_{n \to \infty} \mathbb{P}\left(\hat{\iota}(\mathscr{G}_n) \ge C \lg^{-\left[2(\zeta+1)+\nu\right]} n\right) = 1.
$$

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Time of Random Walk on Poisson Geometry Small Wo

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ..

[Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 $2Q$

The sketch of the proof of Lemma 6

Let

$$
B_1 := \{ S \subset C_{\text{max}} : |S| \le M/a \}, \text{ and}
$$

\n
$$
B_2 := \{ S \subset C_{\text{max}} : M/a < |S| \le a |C_{\text{max}}| \}, \text{ and}
$$

\n
$$
B_3 := \{ S \subset C_{\text{max}} : a |C_{\text{max}}| < |S| \le (1 - a) |C_{\text{max}}| \},
$$

where $M > 0$ is a large constant and $a = a(n) = \lg^{-(\zeta+1)} n$.

We will prove Lemma 6 for $S \in \mathcal{B}_i, \,\, i=1,2,3$ respectively. Let

$$
\mathcal{B} = \bigcup_{i=1}^3 \mathcal{B}_i.
$$

For any
$$
S \in \mathcal{B}
$$
,

$$
\frac{e(S, S^c)}{\text{Vol}(S)} \ge \frac{c(S) + L(S, S^c)}{\Delta(\bar{G}_n)|S| + 2L(S)}
$$

Where

 $c(S)$ is the number of connected components of S in $\bar{G}_n.$ $L(S, S^c)$ is the number of "long edges" between S and S^c . $L(S)$ is the number of "long edges" associated to S.

Clearly

$$
L(S) = L(S, S^c) + L(S, S).
$$

K ロ ▶ K 倒 ▶ K ミ ▶ K ミ ▶

Let $N(S, S^c)$ be the number of non-ordered pairs $u\in S, v\in S^c:=C_{\max}\setminus S$ such that $u\in \Lambda_n(v)$, $N(S,S)$ be the number of non-ordered pairs $u, v \in S$ such that $u \in \Lambda_n(v)$. Let

$$
N(S) = N(S, S^c) + N(S, S).
$$

Then $L(S, S^c)$ is independent to $L(S, S)$, and

$$
L(S, S^c) \sim b(N(S, S^c), p_n), \quad L(S, S) \sim b(N(S, S), p_n),
$$

 $L(S) \sim b(N(S), p_n)$.

 $\mathcal{A} \oplus \mathcal{P}$ $\mathcal{A} \oplus \mathcal{P}$ $\mathcal{A} \oplus \mathcal{P}$

[Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 글

 OQ

Large deviation inequality for binomial distribution.

Lemma 7:Suppose $Z \sim b(n, p)$. Then

 $\mathbb{P}(Z \geq zn) \leq \exp(-I(z)n), z > p; \ \mathbb{P}(Z \leq zn) \leq \exp(-I(z)n), z < p,$

where $I(z)$ is the common rate function defined by

$$
I(z) := z \lg \frac{zq}{(1-z)p} - \lg \frac{q}{1-z}, \ p \neq z \in (0,1).
$$

Especially for small p , the above inequalities can be rewritten as

$$
\mathbb{P}(Z \ge zpn) \le \exp(-\gamma(z)pn) \text{ for } z > 1, \text{ and}
$$

$$
\mathbb{P}(Z \le zpn) \le \exp(-\frac{1}{2}\gamma(z)pn) \text{ for } 0 < z < 1,
$$

with $\gamma(z) = z \lg z - z + 1$.

Now, let

$$
\mathcal{B}_3=\mathcal{B}_3^{>b}\cup\mathcal{B}_3^{
$$

Where $\mathcal{B}_{3}^{>K}$ is the set of S in \mathcal{B}_{3} such that $c(S)\geq |S|/\lg^{b}n$ and $\mathcal{B}_3^{< b} = \mathcal{B}_3 \setminus \mathcal{B}_3^{> b}.$

By the large deviation inequality, we have

$$
\lim_{n \to \infty} \mathbb{P}_{\epsilon} \left(L(S) \le |S| \lg n, \ \forall \ S \in \mathcal{B}_3 \right) = 1.
$$

Where \mathbb{P}_{ϵ} is the conditional probability function that the three items of the geometry of \bar{G}_n hold. This implies

$$
\lim_{n \to \infty} \mathbb{P}_{\epsilon} \left\{ \frac{e(S, S^c)}{\text{Vol}(S)} \ge \frac{2/3}{\lg^{b+1} n}, \ \forall \ S \in \mathcal{B}_3^{>b} \right\} = 1.
$$

 $A \cap B$ $A \cap B$ $B \cap A$ $B \cap B$

 Ω

[Introduction](#page-2-0) [Results](#page-14-0) [On the proofs](#page-18-0) [References](#page-39-0) [Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

Now, let's choose ϵ small enough such that

$$
\frac{1-\epsilon}{(1+\epsilon)\tilde{\theta}(r)}\Gamma = \frac{(1-\epsilon)[(2\beta)^d - (2\alpha)^d]}{(1+\epsilon)} > 1/2.
$$

For any $S \in \mathcal{B}_3$, if $a|C_{\text{max}}| \leq |S| \leq |C_{\text{max}}|/2$, then

$$
N(S, S^c) = \sum_{u \in S} \sum_{v \in S^c \cap \Lambda_n(u)} 1 \geq |S| \left(\min_{u \in S} |\Lambda_n(u)| - |S| \right)
$$

\n
$$
\geq |S| \left(\frac{1 - \epsilon}{(1 + \epsilon)\theta(r)} \Gamma |C_{\text{max}}| - |S| \right)
$$

\n
$$
\geq a |C_{\text{max}}| \left(\frac{1 - \epsilon}{(1 + \epsilon)\theta(r)} \Gamma |C_{\text{max}}| - a |C_{\text{max}}| \right)
$$

\n
$$
\geq a \left(\frac{1 - 2\epsilon}{(1 + \epsilon)\theta(r)} \Gamma \right) |C_{\text{max}}|^2.
$$

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Time of Random Walk on Poisson Geometry Small Wo

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 $2Q$

目

[Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

 $\langle \langle \Box \rangle \rangle$ $\langle \langle \Box \rangle \rangle$ $\langle \langle \Box \rangle \rangle$

 $2Q$

目

On the other hand, if $a|C_{\rm max}|\leq |S^c|\leq |C_{\rm max}|/2$, then

$$
N(S, S^c) = N(S^c, S) = \sum_{u \in S^c} \sum_{v \in S \cap \Lambda_n(u)} 1 \ge |S^c| \left(\min_{u \in S^c} |\Lambda_n(u)| - |S^c| \right)
$$

$$
\ge a |C_{\max}| \left(\frac{1 - \epsilon}{(1 + \epsilon)\theta(r)} \Gamma |C_{\max}| - a |C_{\max}| \right)
$$

$$
\ge a \left(\frac{1 - 2\epsilon}{(1 + \epsilon)\theta(r)} \Gamma \right) |C_{\max}|^2.
$$

So

$$
N(S) \le (1+\epsilon)\Gamma n^d |S| \le (1+\epsilon)\Gamma n^d (1-a)|C_{\text{max}}|
$$

\n
$$
\le \frac{(1+\epsilon)\Gamma(1-a)}{(1-\epsilon)\theta(r)}|C_{\text{max}}|^2 \le \frac{(1+\epsilon)\Gamma}{(1-\epsilon)\theta(r)}|C_{\text{max}}|^2
$$

\n
$$
\le \frac{1}{a} \cdot \frac{(1+\epsilon)^2}{(1-\epsilon)(1-2\epsilon)} N(S, S^c).
$$

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Time of Random Walk on Poisson Geometry Small Wo

[Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 글

 Ω

Let $f(\epsilon) = (1-\epsilon)(1-2\epsilon)/(1+\epsilon)^2$, then

 $N(S, S^c) \ge f(\epsilon) a N(S).$

By the large deviation inequality, we have

 $\mathbb{P}_{\epsilon} (L(S, S^{c}) \geq f(\epsilon) a L(S) / 4)$ $\geq \mathbb{P}_{\epsilon}(L(S, S^c) \geq \frac{1}{2})$ $\frac{1}{2}f(\epsilon)aN(S)p_n$ and $L(S) \leq 2N(S)p_n$) $\geq 1 - \exp(-\frac{1}{4})$ $\frac{1}{4}\sigma\gamma(1/2)f(\epsilon)(1-\epsilon)\Gamma|S|\lg^{-(2\zeta+1)}n)$ $-\exp(-\frac{1}{2})$ $\frac{1}{2}\sigma\gamma(2)(1-\epsilon)\Gamma|S|\lg^{-\zeta}n)$ $\geq 1 - \exp \left(-C(\sigma, \epsilon) |S| \lg^{-(2\zeta+1)} n\right).$

On the other hand, by the large deviation inequality, we have

$$
\mathbb{P}_{\epsilon} (L(S) \ge \mu |S|) \ge \mathbb{P} \left(Z_2(S) \ge \frac{2\tau}{\sigma(1-\epsilon)\Gamma} N_2(S) p_n \right) \ge 1 - \exp \left(-O \left(|S| \lg^{-\zeta} n \right) \right).
$$

Where $\mu = \mu(n) = \tau \lg^{-\zeta} n$ with $2\tau/\sigma(1-\epsilon)\Gamma < 1$, $N_2(S)=\frac{1}{2}(1-\epsilon)\Gamma n^d|S|$ and

 $Z_2(S) \sim b(N_2(S), p_n)$.

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Time of Random Walk on Poisson Geometry Small Wo

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 글

[Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ..

目

 $2Q$

Note that $L(S, S^c) \ge f(\epsilon) a L(S)/4$ and $L(S) \ge \mu |S|$ imply that

$$
\frac{e(S, S^c)}{\text{Vol}(S)} \ge \frac{L(S, S^c)}{|S|\Delta(\bar{G}_n) + 2L(S)} \ge \frac{f(\epsilon)aL(S)/4}{|S|\lg n/2 + 2L(S)}
$$

$$
\geq \begin{cases} \frac{\tau \lg^{-\zeta} n f(\epsilon) a |S|/4}{|S| \lg n/2 + 2|S|} \geq \frac{C_6''}{\lg^{2(\zeta + 1)} n}, & \text{if } L(S) \leq |S|; \\ \frac{f(\epsilon) a L(S)/4}{L(S) \lg n/2 + 2L(S)} \geq \frac{C_6'''}{\lg^{\zeta + 2} n}, & \text{if } |S| \leq L(S). \end{cases}
$$

Thus, for any $S \in \mathcal{B}_3$

$$
\mathbb{P}_{\epsilon}\left(\frac{e(S,S^{c})}{\textup{Vol}(S)} \geq \frac{C''_6}{\lg^{2(\zeta+1)} n}\right) \geq 1 - \exp\left(-C(\sigma,\epsilon) |S| \lg^{-(2\zeta+1)} n\right).
$$

[Maximum degree and isoperimetric constant](#page-18-0) [Lower bound of the mixing time](#page-20-0) [upper bound of the mixing time](#page-21-0) [Bound the conductance from below](#page-24-0)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 $2Q$

Finally, for any $a|C_{\rm max}|\leq s\leq (1-a)|C_{\rm max}|$, let $\mathcal{B}_{3,s}^{ denote the$ set of $S \in \mathcal{B}_3^{< b}$ with $|S| = s.$ For any $1 \leq j \leq s/\lg^b n =: j_s,$ let $\mathcal{B}_{3,s,j}^{ denote the set of $S \in \mathcal{B}_{3,s}^{ such that $c(S) = j$. Then$$

$$
|\mathcal{B}_{3,s,j}^{< b}| \leq \binom{|C_{\max}|}{j} \binom{s-1}{j-1} \leq {\binom{|C_{\max}|}{j}} \binom{s}{j}
$$

$$
\leq {\binom{|C_{\max}|}{j_s}} {\binom{s}{j_s}} \leq {\left(\frac{|C_{\max}|e}{j_s}\right)}^{j_s} \cdot {\left(\frac{se}{j_s}\right)}^{j_s}
$$

$$
\leq \exp{\left(j_s \left{\frac{1g}{\left(\frac{|C_{\max}|}{s}\right)} + 2\lg{\left(\frac{s}{j_s}\right)} + 2\right\}\right)}
$$

$$
\leq \exp\left(D\lg\lg n \cdot s\lg^{-b} n\right).
$$

Then

$$
|\mathcal{B}_{3,s}^{&}| \leq s \cdot \exp\left(D \lg \lg n \cdot s \lg^{-b} n\right).
$$

Provided $b = 2\zeta + 1 + \nu$ with $\nu > 0$, we have

$$
\lim_{n \to \infty} \mathbb{P}_{\epsilon} \left(\frac{e(S, S^c)}{\text{Vol}(S)} \ge \frac{C'_7}{\lg^{2(\zeta + 1)} n}, \ \forall \ S \in \mathcal{B}_3^{< b} \right) = 1.
$$

Thus, we finish the proof of the lemma.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end$

 $2QQ$

References:

- F D. Aldous and P. Diaconis (1986) Shuffling cards and stopping times, Amer. Math. Monthly 93, No.5, pp 333-348
- **N**. Alon and V. D. Milman (1985) λ_1 , isoperimetric inequality for graphs, and superconcentrators, Journal of Combinatorial Theory, Series B, 38, pp 73-88
- 譶 B. Bollobás and F. Chung (1988) The dimeter of a cycle plus a random matching, SIAM J. Discrete Math. 1, pp 328-333
- B. Bollobás and O. Riordan (2004) The diameter of a scale-free random graph, Combinatorica 24, pp 5-34
- 晶 A. Berman and X. D. Zhang (2000) Lower bounds for the eigenvalues of Laplacian matrices, Linear Algebra and its Applications, 316, pp 13-20 **K ロ ⊁ K 倒 ≯ K 目 ≯ K 目 ≯**

 Ω

- R. Durrett (2007) Random graph dynamics, Cambridge 量 university press, Cambridge, New York.
- G. R. Grimmett (1999) Percolation, 2nd Edition, Springer, 歸 New York.
- \blacksquare F. Karinthy (1929) Chains, in Everything is Different, Budapest.
- 靠 S. Milgram (1967) The small world problem, Psych. Today, 2, pp 60-67.
- 譶 R. Meester and R. Roy (1995) Continuum percolation, Cambridge University Press, Cambridge.
- 量 M. E. J. Newman and D. J. Watts (1999) Renormalization group analysis of the small-world network model, Phys. Lett. A 263, pp 341-346

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

- H M. D. Penrose and A. Pisztora (1996) Large deviations for discrete and continuous percolation, Adv. Appl. Prob. Vol. 28, pp 29-52
- A. Sinclair and M. Jerrum (1989) Approximate counting, uniform generation and rapidly mixing Markov chains, Inf. Comput. 82, pp 93-133
- **J.** Travers and S. Milgram (1969) An experimental study of the small world problem, Sociometry, 32, pp 425-443.
- **D.** J. Watts and S. H. Strogatz (1998) Collective dynamics of 'small-world' networks, Nature 393, pp 440-442

 $4\Box$ \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow

 Ω

Thanks for your attention!

Xian-Yuan Wu School of Mathematical Sciences, Capital Normal University, Time of Random Walk on Poisson Geometry Small Wo

K ロ ▶ K 倒 ▶ K ミ ▶ K ミ ▶

 $2QQ$