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Introduction

Framework

Let M be a d-dimensional connected complete Riemannian
manifold, and x ∈ M a fixed reference point. Let Px denote the
distribution of Brownian motion X· starting at x . Thus, Px is a
probability measure on the canonical Path space:

Wx(M) := {γ ∈ C ([0, 1];M)|γ(0) = x}

Cameron-Martin space

H : =

{
h ∈ C ([0, 1];Rd)

∣∣∣h is absolutely continuous,

h0 = 0, ‖ h ‖H=

∫ 1

0
|h′s |2ds <∞

}



Horizontal lift

Let Ut be the horizontal lift of X·; that is,

dUt =
d∑

i=1

Hi (Ut) ◦ dB i
t , t ≥ 0,

where U0 is an othornormal basis of TxM, B1
t , · · · ,Bd

t are
independent one dimensional Brownian motions, {Hi}di=1 is the
standard othornormal basis of horizontal vector fields.



Cylindrical function

FCb = bounded Lipschitz cylindrical functions on Wx(M),

F ∈ FCb ⇐⇒ ∃ 0 6 t1 < · · · < tn 6 1 and f ∈ CLip
0 (Mn)

F (γ) = f (γt1 , · · · , γtn), γ ∈Wx(M).

Define

ρ(γ) := supt∈[0,1] dM(γt , x),BR := {γ ∈Wx(M)|ρ(γ) 6 R},

FCb,loc = ”local” bounded Lipschitz cylindrical functions on
Wx(M),

FCb,loc :=
{
Fl(ρ)

∣∣∣F ∈ FCb, l ∈ C∞0 (R)
}
.



Gradient operator

For any F ∈ FCb with F (γ) := f (γt1 , · · · , γtn) and any h ∈ H, let

DhF (γ) :=
n∑

i=1

〈∇i f (γ),Utihti 〉,

where ∇i is the (distributional) gradient operator in the i-th
component. Then D0F (γ) ∈ H, γ ∈Wx(M), is well-defined via
〈D0F (γ), h〉H = DhF (γ), h ∈ H. Define

E(F ,G ) :=

∫
Wx (M)

〈D0F ,D0G 〉HdPx , F ,G ∈ FCb.



Integration by parts formula(IPF)

Let RicUt : Rd → Rd . Assume E
∫ 1

0 ‖RicUt‖2dt <∞. We have∫
Wx (M)

FDhGdPx =

∫
Wx (M)

GD∗hFdPx , F ,G ∈ FCb,

where

D∗h = −Dh +

∫ 1

0

〈
ḣt +

1

2
RicUtht , dBt

〉
Importance:(IPF)⇒ (E ,FCb) is closable in L2(Wx(M);Px), and
its closure (E ,D(E)) is a local conservative quaasi-regular Dirichlet
form on L2(Px).



Functional Inequalities on Path Spaces

Known results(Path):

I (Fang, CRASP94): M Compact +Clark-Ocone Formula ⇒
Poincaré inequality (Logarithmic Sobolev inequality)

I (Aida-Elworthy, CRASP95): M Compact +Gradient
Brownnian systems ⇒ Logarithmic Sobolev inequality

I (Hsu, CMP97): |Ricc| ≤ C+ Bismut formula+Markovian
property ⇒ Logarithmic Sobolev inequality

I (Wang, IMRS04): M Noncompact+ Some unbounded
curvature ⇒ Weak Poincare inequality



To state our main results, we need some preparations. Let M be a
connected Riemannian Manifold. Let K ,K1 be nonnegative and
increasing functions such that

I |Ricy | ≤ K (ρ(y)), y ∈ M,

I Ric(X ,X ) ≥ −K1(ρ(y)), y ∈ M,X ∈ TyM, |X | = 1

I K̃ (R) := sup
{
‖Ric(y)‖TyM : x ∈ M, dM(y , x) ≤ R

}
,

I K̃1(R) := infv∈TyM, |v |=1

{
〈Ric(y)v , v〉TyM : y ∈ M,

dM(y , x) ≤ R
}
.

Define
τR := inf{t ≥ 0 : ρ(Xt) ≥ R},

where Xt = π(Ut).



Let Φt,s(γ) ∈ L(Rn → Rn) be the solution of the following linear
ODE,

dΦt,s(γ)

ds
= −1

2
Ric]U·(γ)

(
γ(s)

)
Φt,s(γ), Φt,t = Id, t ≤ s ≤ 1,

Define:

(
B(γ)

1
2 h
)
(t) := h(t)+

1

2

∫ t

0

(
Φr (γ)∗

)−1
∫ 1

r
Φs(γ)∗Ric]U·(γ)

(
(γ(s))

)
h′(s)ds, h ∈ H

EB(F ,G ) :=

∫
Wx (M)

〈B1/2D0F ,B1/2D0G 〉H0dPx ,

F ,G ∈ Y := {F ∈ FCb : D0F ∈ D(B1/2)}.



Theorem A(Chen-Wu) Assume that M is complete and stoch.
complete. Then (EB,FCb,loc) is closable on (Wx(M), L2(Px)) and
its closure (EB,D(EB)) is a local conservative quasi-regular
Dirichlet form on L2(Px). Moreover, the following log-Sobolev
inequality holds for (EB,D(EB)),

EntPx (F 2) ≤ 2EB(F ,F ), F ∈ FCb,loc .

In particular, the following weighted log-Sobolev inequality also
holds,

EntPx (F 2) ≤
∫
Wx (M)

(
4 + K (γ)2 exp−K1(γ)

)
‖DF‖2

HdPx .



Theorem B(Chen-Wu) If

lim
R→∞

1√
Px(ρ > R)

∫ ∞
R

ds√
4 + exp−K̃1(s) K̃ (s)2

=∞, (1)

then the following weak log-Sooblev inequality holds,

EntPx (F 2) ≤ α(r)E(F ,F ) + r‖F‖2
∞, F ∈ FC∞b , 0 < r < r0,

for some r0 > 0 with

α(r) := inf
R∈Λr

{
2
(
4 + K̃ (R)2 exp−K̃1(R)

)}
<∞, r > 0,

where Λr :={
R > 0 : inf

R1∈(0,R)

{
2Px(ρ > R1)( ∫ R

R1

ds√
4+exp−K̃1(s) K̃(s)2

)2
+3Px(ρ > R1)1/2

}
≤ r

}
,



Example: Suppose

K̃ (s) ≤ c1(1 + sδ1), K̃1(s) ≥ −c2 − δ2 log(1 + s), s > 0,

for some positive constants c1, c2, δ1, δ2.
(1) If 2δ1 + δ2 < 1, then the following super Poincaré inequality
holds,

Px(F 2) ≤ rE(F ,F ) + β(r)Px(|F |)2, F ∈ D(E), r > 0,

where β(r) = exp
(
c3

(
1 + r

− 1
1−2δ1−δ2

))
for some c3 > 0.

(2) If 2δ1 + δ2 ≤ 1, then the following Poincaré inequality

Px(F 2) ≤ c4E(F ,F ) + Px(F )2, F ∈ D(E),

holds for some c4 > 0.



In order to prove that Theorem A, firstly, we prove the
quasi-regularity of D.-F. (EB,D(EB)). In the following, we shall
provide a more general result.
Let B : L(Wx(M)×H)→ H be a measurable operator.

I (A1) For a.s. γ ∈Wx(M),B(γ) : H→ H densely defined
self-adjoint with the domain D(B(γ))

I (A2) For every v ∈ L∞loc(Wx(M)→ Rn;Px),

(t ∧ ·)v(γ) ∈ D(B(γ)
1
2 ) a.s.. For any R > 1,

DφR(γ) ∈ D(B(γ)
1
2 ) a.s. and C (R) > 0 s.t.∫

BR

‖B
1
2 Ψt,v‖2

HdPx ≤ C (R)||v1BR
||2L∞(Wx (M)→Rn;Px ),∫

BR

∥∥B 1
2 (DφR)

∥∥2

HdPx ≤ C (R),

I (A3) For every R > 0,∃ ε(R) > 0 s.t.

B(γ) > ε(R)Id, γ ∈ BR



Theorem C(Chen-Wu) Assume (A1), (A2) and (A3). Then
(EB,FCb,loc) is closable on (Wx(M), L2(Px)) and its closure
(EB,D(EB)) is a local conservative quasi-regular Dirichlet form on
L2(Px).

Remark:

(1) Driver-Röckner(92,M=compact, B = Id); Elworthy-Ma(97,
M=compact); Löbus(04,B = nonrandom, M=Compact);
Wang-Wu(08, B > εId);

(2) Wang F. Y.-Wu.(08) showed that Theorem C holds under
IPF, B ≥ εId for some ε > 0 and∫

Wx (x)
‖B

1
2 Ψt,v‖2

HdPx ≤ C ||v1BR
||2L∞(Wx (M)→Rn;Px ).



Sketch of Proof of Theorem C

We only show that (E ,FCb) is closable.
Taking a sequence of operators {Lk}k≥1 s.t. Lk converges to L.
Let gk ∈ C∞0 (M) such that gk |{dM≤k} = 1. Let Lk := g2

k L and
Mk := {y ∈ M : gk(y) > 0}. Consider the metric

〈·, ·〉k := g−2
k 〈·, ·〉

on Mk . Then (Mk , 〈·, ·〉k) is a complete Riemannian manifold and

sup
Mk

(
‖Ric(k)‖k + ‖∇(k)Z (k)‖k

)
<∞.



Let Pk
x be the distribution of the Lk -diffusion process on Mk .

According to the construction of Lk , we known that

Ek(F ,F ) :=

∫
Wx (Mk )

〈DkF ,DkF 〉HdPk
x , F ∈ FCb(Mk)

is closable, where Dk is the (closed) gradient operator on L2(Pk
x ).

Finally, by the approximation procedure, it is not difficulty to show
that (E ,FCb) is closable.



Functional Inequalities on Loop Spaces

Define:
W (M) := C ([0, 1];M)

Wx ,y (M) := {γ ∈Wx(M) : γ(1) = y}.

Let Px ,y be the Brownian bridge measure on Wx ,y (M). In
particular, for any F ∈ FC∞0 with F (γ) := f (γt1 , · · · , γtn)∫

Wx,y (M)
FdPx ,y =

∫
Mn

f (z1, · · · , zn)pt1(x , z1)pt2−t1(z1, z2) · · ·

ptn−tn−1(zn−1, zn)p1−tn(zn, y)
n∏
i

dzi/p1(x , y),

here pt(x , y) is the heat kernel of 1
2 ∆ on M.



Let H0 := {h ∈ H : h1 = 0}. Then there exist DF (γ) ∈ H,
D0F (γ) ∈ H0 such that 〈D0F (γ), h〉H0 = DhF (γ). Let

E(F ,G ) :=

∫
Wx,y (M)

〈D0F ,D0G 〉H0dPx ,y , F ,G ∈ FC∞0 .

Note that (E ,FCb) is closable and its closure (E ,D(E)) is a
quasi-regular Dirichlet Form under some reasonable
conditions(Compact Manifold or Hyperbolic space).



Known results(Loop):

I M = Rn, EntPx,y (F 2) 6 2
∫
Wx,y (M) ‖ DF ‖

2
H0

dPx ,y .

I (Gross, JFA91) M=Compact Lie group,

EntPx,y (F 2) 6 C

∫
Wx,y (M)

‖ DF ‖2
H0

+(c1|B(1)|+ c2)F 2dPx ,y .

I (Gong-Ma, JFA98) M=Compact manifold,
∇ = Levi − Civitaconnection,

EntPx,y (F 2) 6 C

∫
Wx,y (M)

‖ DF ‖2
H0

+VF 2dPx ,y ,

where V is Lp(Px ,y )-integrable for any p > 0.

I (Gong-Röckner-Wu, JFA01) M=Compact manifold,
∇ = torsionskewsymmetricconnection,



I (Aida, JFA00) M=Hyperbolic space,

EntPx,y (F 2) 6 C

∫
Wx,y (M)

V ‖ DF ‖2
H0

dPx ,y ,

where aV is exponential integrable for some enough small
constant a > 0.

I (Chen-Li-Wu, JFA10) M=Hyperbolic space, Poincaré
inequality holds:

VarPx,y (F ) 6 C

∫
Wx,y (M)

V ‖ DF ‖2
H0

dPx ,y .

I (Chen-Li-Wu, PTRF11) M=Compact and Ric > 0, weak
Poincaré inequality holds:

VarPx,x (F ) 6
1

sα

∫
Wx,x (M)

‖ DF ‖2
H0

dPx ,x+s‖F‖2
∞, s ∈ (0, s0).



Remarks: Actually, by the martingale representation theorem, we
have

F = EPx,y (F ) +

∫ 1

0
〈HF

t , dβt〉,

where

HF
t = EPx,y

[ d
dt

DF (t) +
DF (t)

1− t
+ F

∫ 1
t Asdβs

1− t
|Ft

]
As = IRd −

1− s

2
RicUs + HessUsLogp1−s(xs , y).



Let G = F 2and Gt be a right continuous version of
EPx,y [G |Ft ], 0 6 t 6 1, then dGt = 〈HG

t , dβt〉. Applying Ito’s
formula we obtain,

d(GtLogGt) = (1 + LogGt)dGt +
|HG

t |2

2Gt
dt

= 〈(1 + LogGt)H
G
t , dβt〉+

|HG
t |2

2Gt
dt.

Thus

EntPx,y (G ) =
1

2
EPx,y

[ ∫ 1

0

|HG
t |2

2Gt
dt.

]



I (Eberle, JMPA02, Counterexample) M=Compact manifold
which contains a non-trivial closed geodesic ζ such that the
curvature is constant and strictly negative in a neighbourhood
of ζ, (PI) does not hold.

I Example. Suppose that dim(M) = 2, and M contains an
open subset U that is isometric to the surface of revolution in
R3 given as the image of the map g : (−A,A)× R→ R3 :

g(s, φ) = (R cosh s coshφ,R cosh s sinφ,

∫ s

0
(1−R2 sinh2 t)1/2dt)

for some R,A, > 0 with sinhA < 1/R.



Free Loop:

Let µ be a probability measure on M such that
dµ(x) = v(x)dx , v ≥ 0, v ∈W 1,2(dx). Define dPµ = Px ,xdµ and

EPµ(F ,G ) :=

∫
W (M)

〈∇F ,∇G 〉H0dPµ.

Assumptions: For all x , y ∈ M and t > 0

(A1) |pt(x , y)| 6 1

ft
exp−C1

d(x,y)2

t

(A2) |∇x log pt(x , y)| 6 C
[d(x , y)

t
+

1√
t

]
,

here C1,C are positive constants and f ∈ C ((0,∞)).



(A3) Ricz > −K (ρo(z)2 + 1),

for some positive constants K .
(A4) There exists a bounded closed neighborhood W0 ⊂ M of x
such that

sup
y∈W0

∫ 1

0
Ey |RicUs |2dsdy <∞,



Theorem D(Chen-Li-Wu) Under conditions (A1), (A2), (A3) and
(A4), Assume ∃ ε > 0 s.t. ∀ n, x ∈ M∫

Bn

∫ 1

0
Ex |RicUs |2dsdx <∞,

∫ 1

0
Ex ,x |RicUs |2(1+ε)ds <∞.

Then for any vector field Y on M,
hs(γ) := Y (γ0) + s(U−1

1 (γ)− I )Y (γ0) + ys , y ∈ H0, we have

EPµ(DhF ) = EPµ(FD∗h1), F ∈ FC0.

where

D∗h1 = −div(Y ) + 〈Y ,∇ log v) + D0,∗
y 1

−
〈∫ u

0

[
h′ − 1

2
RicU((JB))shs

]
dbs +

∫ u

0

[
h′ − 1

2
RicŨ((JB))s

hs
]
dbs ,

Y (x)

〉
− 〈∇xp1(x , x),Y (x)〉.



WPI–Free:

Theorem E(Chen-Li-Wu) Assume M is compact and
Ric > 0, v ∈W 2,1(dx). If

Varµ(f ) ≤ λ(t)µ(|∇f |2) + t‖f ‖2
∞, t ∈ (0, t0).

Then the following weak Poincaré inequality holds,

VarPµ(F ) ≤ Φ(r)EPµ(F ,F ) + r‖F‖2
∞, F ∈ FC∞b , r ∈ (0, r0)

where

Φ(r) =
3δC 1+δ(1 + λ(r/3))

r δ
, r ∈ (0, r0)

for small enough positive number δ and some constants C , r0 > 0.



PI–Free:

Theorem E(Chen-Li-Wu) Assume M = hyperbolic and µ
satisfies (PI). Then the following Poincaré inequality holds:

VarPµ(F )) ≤ C2EPµ(F ,F )

holds for some constant C1 > 0.
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Summary

I M is complete and stoch. complete and under some
conditions w.r.t. B, (EB,D(EB)) is a quasi-regular D.-F.;

I Under some unbounded curvature conditions, Super
Poincare inequality and Poincare inequality may be derived
respectively.

I Under some conditions on M and initial distribution, we
obtain (IPF) on loop and free loop spaces respective.

I we construct (PI) and (WPI) on free loop spaces over
hyperbolic and some compact manifolds respective.

The End

Thank you for your attention!
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