Functional Inequalities on path and loop spaces over Riemannian manifolds

Bo Wu based on the joint work with Xin Chen and Xuemei Li

School of Mathematical Sciences, Fudan University

9th Workshop on Markov Processes and Related Topics (SWJTU and BNU)

July 6-13, 2013, E'mei Mountain

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

Functional Inequalities on Path Spaces

Functional Inequalities on Loop Spaces

・ロト・日本・モト・モート ヨー うへで

Main references

Introduction

Framework

Let M be a d-dimensional connected complete Riemannian manifold, and $x \in M$ a fixed reference point. Let \mathbb{P}_x denote the distribution of Brownian motion X. starting at x. Thus, \mathbb{P}_x is a probability measure on the canonical **Path space**:

$$W_x(M) := \{\gamma \in C([0,1];M) | \gamma(0) = x\}$$

Cameron-Martin space

$$\begin{split} \mathbb{H} &:= \left\{ \left. h \in C([0,1];\mathbb{R}^d) \right| h \text{ is absolutely continuous}, \\ & h_0 = 0, \parallel h \parallel_{\mathbb{H}} = \int_0^1 |h_s'|^2 \mathrm{d} s < \infty \right\} \end{split}$$

Horizontal lift

Let U_t be the horizontal lift of X.; that is,

$$\mathrm{d} U_t = \sum_{i=1}^d H_i(U_t) \circ \mathrm{d} B^i_t, \quad t \ge 0,$$

where U_0 is an othornormal basis of $T_x M$, B_t^1, \dots, B_t^d are independent one dimensional Brownian motions, $\{H_i\}_{i=1}^d$ is the standard othornormal basis of horizontal vector fields.

(日) (日) (日) (日) (日) (日) (日) (日)

Cylindrical function

$$\begin{split} \mathcal{F}C_b &= \text{bounded Lipschitz cylindrical functions on } W_x(M), \\ \mathcal{F} &\in \mathcal{F}C_b \iff \exists \ 0 \leqslant t_1 < \cdots < t_n \leqslant 1 \text{ and } f \in C_0^{Lip}(M^n) \\ \mathcal{F}(\gamma) &= f(\gamma_{t_1}, \cdots, \gamma_{t_n}), \quad \gamma \in W_x(M). \end{split}$$

Define

$$\begin{split} \rho(\gamma) &:= \sup_{t \in [0,1]} d_M(\gamma_t, x), B_R := \{ \gamma \in W_x(M) | \rho(\gamma) \leqslant R \}, \\ \mathcal{F}C_{b,loc} &= \text{``local'' bounded Lipschitz cylindrical functions on} \\ W_x(M), \end{split}$$

$$\mathcal{F}C_{b,loc} := \Big\{ Fl(\rho) \Big| F \in \mathcal{F}C_b, \ l \in C_0^{\infty}(\mathbb{R}) \Big\}.$$

Gradient operator

For any $F \in \mathcal{FC}_b$ with $F(\gamma) := f(\gamma_{t_1}, \cdots, \gamma_{t_n})$ and any $h \in \mathbb{H}$, let

$$D_h F(\gamma) := \sum_{i=1}^n \langle \nabla_i f(\gamma), U_{t_i} h_{t_i} \rangle,$$

where ∇_i is the (distributional) gradient operator in the *i*-th component. Then $D^0F(\gamma) \in \mathbb{H}, \gamma \in W_x(M)$, is well-defined via $\langle D^0F(\gamma), h \rangle_{\mathbb{H}} = D_hF(\gamma), h \in \mathbb{H}$. Define

$$\mathcal{E}(F,G) := \int_{W_x(M)} \langle D^0 F, D^0 G \rangle_{\mathbb{H}} d\mathbb{P}_x, \quad F, G \in \mathcal{F}C_b.$$

Integration by parts formula(IPF)

Let $\operatorname{Ric}_{U_t} : \mathbb{R}^d \to \mathbb{R}^d$. Assume $\mathbb{E} \int_0^1 \|\operatorname{Ric}_{U_t}\|^2 dt < \infty$. We have

$$\int_{W_x(M)} FD_h G d\mathbb{P}_x = \int_{W_x(M)} GD_h^* F d\mathbb{P}_x, \quad F, G \in \mathcal{F}C_b,$$

where

$$D_h^* = -D_h + \int_0^1 \left\langle \dot{h}_t + rac{1}{2} extsf{Ric}_{U_t} h_t, extsf{d}B_t
ight
angle$$

Importance:(**IPF**) \Rightarrow (\mathcal{E} , $\mathcal{F}C_b$) is closable in $L^2(W_x(M); \mathbb{P}_x)$, and its closure (\mathcal{E} , $\mathcal{D}(\mathcal{E})$) is a local conservative quaasi-regular Dirichlet form on $L^2(\mathbb{P}_x)$.

Functional Inequalities on Path Spaces

Known results(Path):

- ► (Fang, CRASP94): *M* Compact +Clark-Ocone Formula ⇒ Poincaré inequality (Logarithmic Sobolev inequality)
- ► (Aida-Elworthy, CRASP95): *M* Compact +Gradient Brownnian systems ⇒ Logarithmic Sobolev inequality
- ► (Hsu, CMP97): |Ricc| ≤ C+ Bismut formula+Markovian property ⇒ Logarithmic Sobolev inequality
- ► (Wang, IMRS04): *M* Noncompact+ Some unbounded curvature ⇒ Weak Poincare inequality

To state our main results, we need some preparations. Let M be a connected Riemannian Manifold. Let K, K_1 be nonnegative and increasing functions such that

Define

$$\tau_R := \inf\{t \ge 0 : \rho(X_t) \ge R\},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $X_t = \pi(U_t)$.

Let $\Phi_{t,s}(\gamma) \in L(\mathbb{R}^n \to \mathbb{R}^n)$ be the solution of the following linear ODE,

$$\frac{\mathsf{d}\Phi_{t,s}(\gamma)}{\mathsf{d}s} = -\frac{1}{2}\mathsf{Ric}^{\sharp}_{U_{\cdot}(\gamma)}(\gamma(s))\Phi_{t,s}(\gamma), \ \ \Phi_{t,t} = \mathsf{Id}, \ t \leq s \leq 1,$$

Define:

$$\begin{split} \big(\mathbf{B}(\gamma)^{\frac{1}{2}}h\big)(t) &:= h(t) + \\ \frac{1}{2} \int_0^t \big(\Phi_r(\gamma)^*\big)^{-1} \int_r^1 \Phi_s(\gamma)^* \operatorname{Ric}_{U.(\gamma)}^\sharp \big((\gamma(s))\big) h'(s) ds, \ h \in \mathbb{H} \\ \mathcal{E}_{\mathbf{B}}(F,G) &:= \int_{W_x(M)} \langle \mathbf{B}^{1/2} D^0 F, \mathbf{B}^{1/2} D^0 G \rangle_{\mathbb{H}_0} d\mathbb{P}_x, \\ F, G \in Y &:= \{F \in \mathcal{F}C_b : D^0 F \in \mathcal{D}(\mathbf{B}^{1/2})\}. \end{split}$$

Theorem A(Chen-Wu) Assume that M is complete and stoch. complete. Then $(\mathcal{E}_{\mathbf{B}}, \mathcal{F}C_{b,loc})$ is closable on $(W_x(M), L^2(\mathbb{P}_x))$ and its closure $(\mathcal{E}_{\mathbf{B}}, \mathcal{D}(\mathcal{E}_{\mathbf{B}}))$ is a local conservative quasi-regular Dirichlet form on $L^2(\mathbb{P}_x)$. Moreover, the following log-Sobolev inequality holds for $(\mathcal{E}_{\mathbf{B}}, \mathcal{D}(\mathcal{E}_{\mathbf{B}}))$,

$$\operatorname{Ent}_{\mathbb{P}_{x}}(F^{2}) \leq 2\mathcal{E}_{\mathsf{B}}(F,F), \quad F \in \mathcal{F}C_{b,loc}.$$

In particular, the following weighted log-Sobolev inequality also holds,

$$\mathbf{Ent}_{\mathbb{P}_{x}}(F^{2}) \leq \int_{W_{x}(M)} \left(4 + K(\gamma)^{2} \exp^{-K_{1}(\gamma)}\right) \|DF\|_{\mathbb{H}}^{2} \mathrm{d}\mathbb{P}_{x}.$$

(日) (同) (三) (三) (三) (○) (○)

Theorem B(Chen-Wu) If

$$\lim_{R \to \infty} \frac{1}{\sqrt{\mathbb{P}_{x}(\rho > R)}} \int_{R}^{\infty} \frac{\mathrm{d}s}{\sqrt{4 + \exp^{-\tilde{K}_{1}(s)} \tilde{K}(s)^{2}}} = \infty, \quad (1)$$

then the following weak log-Sooblev inequality holds,

$$\mathsf{Ent}_{\mathbb{P}_{x}}(F^{2}) \leq \alpha(r)\mathcal{E}(F,F) + r\|F\|_{\infty}^{2}, \ \ F \in \mathcal{F}C_{b}^{\infty}, 0 < r < r_{0},$$

for some $r_0 > 0$ with

$$\alpha(r) := \inf_{R \in \Lambda_r} \left\{ 2 \left(4 + \tilde{K}(R)^2 \exp^{-\tilde{K}_1(R)} \right) \right\} < \infty, \quad r > 0,$$

where $\Lambda_r :=$

$$\bigg\{R > 0: \inf_{R_1 \in (0,R)} \bigg\{ \frac{2\mathbb{P}_x(\rho > R_1)}{\big(\int_{R_1}^R \frac{\mathrm{d}s}{\sqrt{4 + \exp^{-\tilde{K}_1(s)}\tilde{K}(s)^2}}\big)^2} + 3\mathbb{P}_x(\rho > R_1)^{1/2} \bigg\} \le r \bigg\},$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Example: Suppose

$$ilde{\mathcal{K}}(s) \leq c_1(1+s^{\delta_1}), \hspace{1em} ilde{\mathcal{K}}_1(s) \geq -c_2 - \delta_2 \log(1+s), \hspace{1em} s > 0,$$

for some positive constants $c_1, c_2, \delta_1, \delta_2$. (1) If $2\delta_1 + \delta_2 < 1$, then the following super Poincaré inequality holds,

$$\mathbb{P}_x(F^2) \leq r\mathcal{E}(F,F) + eta(r)\mathbb{P}_x(|F|)^2, \quad F \in \mathcal{D}(\mathcal{E}), \ r > 0,$$

where $\beta(r) = \exp\left(c_3\left(1 + r^{-\frac{1}{1-2\delta_1-\delta_2}}\right)\right)$ for some $c_3 > 0$. (2) If $2\delta_1 + \delta_2 \leq 1$, then the following Poincaré inequality

$$\mathbb{P}_x(F^2) \leq c_4 \mathcal{E}(F,F) + \mathbb{P}_x(F)^2, \quad F \in \mathcal{D}(\mathcal{E}),$$

holds for some $c_4 > 0$.

In order to prove that **Theorem A**, firstly, we prove the quasi-regularity of D.-F. $(\mathcal{E}_B, \mathcal{D}(\mathcal{E}_B))$. In the following, we shall provide a more general result.

Let $\mathbf{B}: L(W_{x}(M) \times \mathbb{H}) \to \mathbb{H}$ be a measurable operator.

▶ (A1) For a.s. $\gamma \in W_x(M), \mathbf{B}(\gamma) : \mathbb{H} \to \mathbb{H}$ densely defined self-adjoint with the domain $\mathcal{D}(\mathbf{B}(\gamma))$

► (A2) For every
$$v \in L^{\infty}_{loc}(W_x(M) \to \mathbb{R}^n; \mathbb{P}_x)$$
,
 $(t \land \cdot)v(\gamma) \in \mathcal{D}(\mathbf{B}(\gamma)^{\frac{1}{2}})$ a.s.. For any $R > 1$,
 $D\phi_R(\gamma) \in \mathcal{D}(\mathbf{B}(\gamma)^{\frac{1}{2}})$ a.s. and $C(R) > 0$ s.t.

$$\begin{split} &\int_{B_R} \|\mathbf{B}^{\frac{1}{2}} \Psi_{t,v}\|_{\mathbb{H}}^2 \mathrm{d}\mathbb{P}_x \leq C(R) \|v \mathbf{1}_{B_R}\|_{L^{\infty}(W_x(M) \to \mathbb{R}^n; \mathbb{P}_x)}^2, \\ &\int_{B_R} \|\mathbf{B}^{\frac{1}{2}}(D\phi_R)\|_{\mathbb{H}}^2 \mathrm{d}\mathbb{P}_x \leq C(R), \end{split}$$

• (A3) For every $R > 0, \exists \epsilon(R) > 0$ s.t.

 $\mathbf{B}(\gamma) \ge \varepsilon(R) \mathbf{Id}, \quad \gamma \in B_R$

Theorem C(Chen-Wu) Assume (A1), (A2) and (A3). Then $(\mathcal{E}_{\mathbf{B}}, \mathcal{F}C_{b,loc})$ is closable on $(W_x(M), L^2(\mathbb{P}_x))$ and its closure $(\mathcal{E}_{\mathbf{B}}, \mathcal{D}(\mathcal{E}_{\mathbf{B}}))$ is a local conservative quasi-regular Dirichlet form on $L^2(\mathbb{P}_x)$.

Remark:

(1) Driver-Röckner(92,M=compact, $\mathbf{B} = \mathbf{Id}$); Elworthy-Ma(97, M=compact); Löbus(04, $\mathbf{B} = nonrandom$, M=Compact); Wang-Wu(08, $\mathbf{B} > \varepsilon Id$);

(2) Wang F. Y.-Wu.(08) showed that **Theorem C** holds under IPF, $B \ge \varepsilon Id$ for some $\varepsilon > 0$ and

$$\int_{W_x(x)} \|\mathbf{B}^{\frac{1}{2}}\Psi_{t,v}\|_{\mathbb{H}}^2 d\mathbb{P}_x \leq C ||v\mathbf{1}_{B_R}||_{L^{\infty}(W_x(M)\to\mathbb{R}^n;\mathbb{P}_x)}^2.$$

Sketch of Proof of Theorem C

We only show that $(\mathcal{E}, \mathcal{F}C_b)$ is closable. Taking a sequence of operators $\{L_k\}_{k\geq 1}$ s.t. L_k converges to L. Let $g_k \in C_0^{\infty}(M)$ such that $g_k|_{\{d_M \leq k\}} = 1$. Let $L_k := g_k^2 L$ and $M_k := \{y \in M : g_k(y) > 0\}$. Consider the metric

$$\langle \cdot, \cdot \rangle_k := g_k^{-2} \langle \cdot, \cdot \rangle$$

on M_k . Then $(M_k, \langle \cdot, \cdot \rangle_k)$ is a complete Riemannian manifold and

$$\sup_{M_k} \left(\|\mathbf{Ric}^{(k)}\|_k + \|\nabla^{(k)}Z^{(k)}\|_k \right) < \infty.$$

Let \mathbb{P}_{x}^{k} be the distribution of the L_{k} -diffusion process on M_{k} . According to the construction of L_{k} , we known that

$$\mathcal{E}_k(F,F) := \int_{W_x(M_k)} \langle D_k F, D_k F \rangle_{\mathbb{H}} \mathrm{d}\mathbb{P}^k_x, \ F \in \mathcal{F}C_b(M_k)$$

is closable, where D_k is the (closed) gradient operator on $L^2(\mathbb{P}^k_x)$. Finally, by the approximation procedure, it is not difficulty to show that $(\mathcal{E}, \mathcal{F}C_b)$ is closable.

Functional Inequalities on Loop Spaces

Define:

$$W(M) := C([0, 1]; M)$$

 $W_{x,y}(M) := \{ \gamma \in W_x(M) : \gamma(1) = y \}.$

Let $\mathbb{P}_{x,y}$ be the Brownian bridge measure on $W_{x,y}(M)$. In particular, for any $F \in \mathcal{F}C_0^{\infty}$ with $F(\gamma) := f(\gamma_{t_1}, \cdots, \gamma_{t_n})$

$$\int_{W_{x,y}(M)} F d\mathbb{P}_{x,y} = \int_{M^n} f(z_1, \cdots, z_n) p_{t_1}(x, z_1) p_{t_2-t_1}(z_1, z_2) \cdots$$
$$p_{t_n-t_{n-1}}(z_{n-1}, z_n) p_{1-t_n}(z_n, y) \prod_i^n dz_i / p_1(x, y),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

here $p_t(x, y)$ is the heat kernel of $\frac{1}{2}\Delta$ on M.

Let $\mathbb{H}_0 := \{h \in \mathbb{H} : h_1 = 0\}$. Then there exist $DF(\gamma) \in \mathbb{H}$, $D^0F(\gamma) \in \mathbb{H}_0$ such that $\langle D^0F(\gamma), h \rangle_{\mathbb{H}_0} = D_hF(\gamma)$. Let

$$\mathcal{E}(F,G) := \int_{W_{x,y}(M)} \langle D^0 F, D^0 G \rangle_{\mathbb{H}_0} \mathrm{d}\mathbb{P}_{x,y}, \quad F, G \in \mathcal{F}C_0^{\infty}.$$

Note that $(\mathcal{E}, \mathcal{F}C_b)$ is closable and its closure $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is a quasi-regular Dirichlet Form under some reasonable conditions(Compact Manifold or Hyperbolic space).

Known results(Loop):

- ► $M = \mathbb{R}^n$, $\operatorname{Ent}_{\mathbb{P}_{x,y}}(F^2) \leqslant 2 \int_{W_{x,y}(M)} \| DF \|_{\mathbb{H}_0}^2 d\mathbb{P}_{x,y}$.
- ► (Gross, JFA91) M=Compact Lie group,

$$\operatorname{Ent}_{\mathbb{P}_{x,y}}(F^2) \leqslant C \int_{W_{x,y}(M)} \| DF \|_{\mathbb{H}_0}^2 + (c_1|B(1)| + c_2)F^2 d\mathbb{P}_{x,y}.$$

(Gong-Ma, JFA98) M=Compact manifold,
 ∇ = Levi − Civitaconnection,

$$\mathsf{Ent}_{\mathbb{P}_{x,y}}(F^2) \leqslant C \int_{W_{x,y}(M)} \| DF \|_{\mathbb{H}_0}^2 + VF^2 d\mathbb{P}_{x,y},$$

where V is $L^{p}(\mathbb{P}_{x,y})$ -integrable for any p > 0.

▶ (Gong-Röckner-Wu, JFA01) M=Compact manifold,
 ∇ = torsionskewsymmetricconnection,

(Aida, JFA00) M=Hyperbolic space,

$$\mathsf{Ent}_{\mathbb{P}_{x,y}}(F^2) \leqslant C \int_{W_{x,y}(M)} V \parallel DF \parallel^2_{\mathbb{H}_0} d\mathbb{P}_{x,y},$$

where aV is exponential integrable for some enough small constant a > 0.

 (Chen-Li-Wu, JFA10) M=Hyperbolic space, Poincaré inequality holds:

$$\operatorname{Var}_{\mathbb{P}_{x,y}}(F) \leqslant C \int_{W_{x,y}(M)} V \parallel DF \parallel^{2}_{\mathbb{H}_{0}} \mathrm{d}\mathbb{P}_{x,y}.$$

 (Chen-Li-Wu, PTRF11) M=Compact and Ric > 0, weak Poincaré inequality holds:

$$\mathsf{Var}_{\mathbb{P}_{\mathsf{x},\mathsf{x}}}(F) \leqslant \frac{1}{s^{\alpha}} \int_{W_{\mathsf{x},\mathsf{x}}(M)} \parallel DF \parallel^2_{\mathbb{H}_0} \mathrm{d}\mathbb{P}_{\mathsf{x},\mathsf{x}} + s \|F\|_{\infty}^2, \quad s \in (0, s_0).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks: Actually, by the martingale representation theorem, we have

$$\mathcal{F} = \mathbb{E}_{\mathbb{P}_{x,y}}(\mathcal{F}) + \int_0^1 \langle H_t^{\mathcal{F}}, d\beta_t \rangle,$$

where

$$\begin{aligned} H_t^F &= \mathbb{E}_{\mathbb{P}_{x,y}} \Big[\frac{d}{dt} DF(t) + \frac{DF(t)}{1-t} + F \frac{\int_t^1 A_s d\beta_s}{1-t} |\mathcal{F}_t \Big] \\ A_s &= I_{\mathbb{R}^d} - \frac{1-s}{2} \mathbf{Ric}_{U_s} + Hess_{U_s} \mathbf{Log} p_{1-s}(x_s, y). \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let $G = F^2$ and G_t be a right continuous version of $\mathbb{E}_{\mathbb{P}_{x,y}}[G|\mathcal{F}_t], 0 \leq t \leq 1$, then $dG_t = \langle H_t^G, d\beta_t \rangle$. Applying Ito's formula we obtain,

$$egin{aligned} &d(G_t \mathbf{Log} G_t) = (1 + \mathbf{Log} G_t) dG_t + rac{|H_t^G|^2}{2G_t} dt \ &= \langle (1 + \mathbf{Log} G_t) H_t^G, deta_t
angle + rac{|H_t^G|^2}{2G_t} dt. \end{aligned}$$

Thus

$$\mathsf{Ent}_{\mathbb{P}_{x,y}}(G) = \frac{1}{2} \mathbb{E}_{\mathbb{P}_{x,y}} \left[\int_0^1 \frac{|H_t^G|^2}{2G_t} dt \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- (Eberle, JMPA02, Counterexample) M=Compact manifold which contains a non-trivial closed geodesic ζ such that the curvature is constant and strictly negative in a neighbourhood of ζ , (**PI**) does not hold.
- Example. Suppose that dim(M) = 2, and M contains an open subset U that is isometric to the surface of revolution in R³ given as the image of the map g : (−A, A) × R → R³ :

$$g(s,\phi)=(R\cosh s\cosh \phi,R\cosh s\sin \phi,\int_0^s(1\!-\!R^2\sinh^2 t)^{1/2}dt)$$

for some R, A, > 0 with sinh A < 1/R.

Free Loop:

Let μ be a probability measure on M such that $d\mu(x) = v(x)dx, v \ge 0, v \in W^{1,2}(dx)$. Define $d\mathbb{P}_{\mu} = \mathbb{P}_{x,x}d\mu$ and $\mathbb{E}_{\mathbb{P}}(E, G) := \int (\nabla E \nabla G) d\mathbb{P}$

$$\mathbb{E}_{\mathbb{P}_{\mu}}(F,G) := \int_{W(M)} \langle
abla F,
abla G
angle_{\mathbb{H}_{0}} d\mathbb{P}_{\mu}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assumptions: For all $x, y \in M$ and t > 0

(A1)
$$|p_t(x,y)| \leq \frac{1}{f_t} \exp^{-C_1 \frac{d(x,y)^2}{t}}$$

(A2)
$$|\nabla_x \log p_t(x,y)| \leq C \Big[\frac{d(x,y)}{t} + \frac{1}{\sqrt{t}} \Big],$$

here C_1, C are positive constants and $f \in C((0, \infty))$.

(A3) $\underline{\operatorname{Ric}}_{z} \geq -K(\rho_{o}(z)^{2}+1),$

for some positive constants K.

(A4) There exists a bounded closed neighborhood $W_0 \subset M$ of x such that

$$\sup_{y\in \mathcal{W}_0}\int_0^1\mathbb{E}_y|\text{\bf Ric}_{\mathit{U}_s}|^2\mathrm{d}s\mathrm{d}y<\infty,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem D(Chen-Li-Wu) Under conditions (A1), (A2), (A3) and (A4), Assume $\exists \varepsilon > 0$ s.t. $\forall n, x \in M$

$$\int_{B_n}\int_0^1 \mathbb{E}_x |\mathbf{Ric}_{U_s}|^2 \mathrm{d} s \mathrm{d} x < \infty, \quad \int_0^1 \mathbb{E}_{x,x} |\mathbf{Ric}_{U_s}|^{2(1+\varepsilon)} \mathrm{d} s < \infty.$$

Then for any vector field Y on M, $h_s(\gamma) := Y(\gamma_0) + s(U_1^{-1}(\gamma) - I)Y(\gamma_0) + y_s, y \in \mathbb{H}_0$, we have

$$\mathbb{E}_{\mathbb{P}_{\mu}}(D_h F) = \mathbb{E}_{\mathbb{P}_{\mu}}(FD_h^*1), \quad F \in \mathcal{F}C_0.$$

where

$$\begin{split} D_h^* 1 &= -\operatorname{div}(Y) + \langle Y, \nabla \log v \rangle + D_y^{0,*} 1 \\ &- \left\langle \int_0^u \left[h' - \frac{1}{2} \operatorname{Ric}_{U((\mathbf{J}B))_s} h_s \right] \mathrm{d}b_s + \int_0^u \left[h' - \frac{1}{2} \operatorname{Ric}_{\widetilde{U}((\mathbf{J}B))_s} h_s \right] \mathrm{d}b_s, \\ &Y(x) \right\rangle - \langle \nabla_x p_1(x, x), Y(x) \rangle. \end{split}$$

WPI-Free:

Theorem E(Chen-Li-Wu) Assume M is compact and **Ric** $> 0, v \in W^{2,1}(dx)$. If

$$\mathsf{Var}_\mu(f) \leq \lambda(t) \mu(|
abla f|^2) + t \|f\|_\infty^2, \quad t \in (0,t_0).$$

Then the following weak Poincaré inequality holds,

$$\mathsf{Var}_{\mathbb{P}_{\mu}}(F) \leq \Phi(r) \mathbb{E}_{\mathbb{P}_{\mu}}(F,F) + r \|F\|_{\infty}^{2}, \quad F \in \mathcal{F}C_{b}^{\infty}, r \in (0,r_{0})$$

where

$$\Phi(r)=rac{3^{\delta}C^{1+\delta}(1+\lambda(r/3))}{r^{\delta}},\quad r\in(0,r_0)$$

for small enough positive number δ and some constants C, $r_0 > 0$.

(日) (日) (日) (日) (日) (日) (日) (日)

PI–Free:

Theorem E(Chen-Li-Wu) Assume M = hyperbolic and μ satisfies (PI). Then the following Poincaré inequality holds:

$$\operatorname{Var}_{\mathbb{P}_{\mu}}(F)) \leq C_2 \mathbb{E}_{\mathbb{P}_{\mu}}(F,F)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

holds for some constant $C_1 > 0$.

Main references

- (Aida, JFA00) Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spaces
- (Eberle, JMPA02) Absence of spectral gaps on a class of loop spaces
- (Eberle, IDAQ03) Spectral gaps on discretized loop spaces
- (Gong-Ma, JFA98) The log-Sobolev inequality on loop space over a compact Riemannian manifold

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 (Gross, JFA91) Logarithmic Sobolev inequalities on loop groups

Summary

- ► *M* is complete and stoch. complete and under some conditions w.r.t. **B**, (*E*_B, *D*(*E*_B)) is a **quasi-regular** D.-F.;
- Under some unbounded curvature conditions, Super
 Poincare inequality and Poincare inequality may be derived respectively.
- Under some conditions on M and initial distribution, we obtain (IPF) on loop and free loop spaces respective.
- we construct (PI) and (WPI) on free loop spaces over hyperbolic and some compact manifolds respective.

The End

Thank you for your attention!