On total progeny of multitype Galton-Watson process and the first passage time of random walk on lattice

Huaming Wang

Department of Mathematics, Anhui Normal **University**

国学思想与大学数学

- 。《易经·八卦》与概率论
- 。"微积分"与"阴阳学说"

。"道"与"无穷"

[WJ] 王华明, 纪媛媛: 国学思想与大学数学[J], Pure Mathematics 理 论数学, 2013, 3, 201-206

古典概型与易经六十四卦的形成过程。

Figure: 太极示意图

¹ [Motivation](#page-6-0)

[The main results](#page-10-0)

[Sketch of proofs](#page-19-0)

An example

Let $\{X_n\}$ be a simple random walk:

$$
P(X_{n+1} = x + 1 | X_n = x) = p,
$$

\n
$$
P(X_{n+1} = x - 1 | X_n = x) = 1 - p.
$$

Define $T = \inf\{n \ge 0 : X_n = 1\}.$

$$
P(T = 2n + 1) = \frac{1}{2n+1} \binom{2n+1}{n+1} p^{n+1} (1-p)^n, \ n \ge 0.
$$

Probability generating function of T :

$$
\zeta(s) := E(s^T) = \frac{1 - \sqrt{1 - 4pqs^2}}{2qs}, \ |s| < 1.
$$

Some more general RW

1. RW with stay

$$
P(X_{n+1} = x + 1 | X_n = x) = p,
$$

\n
$$
P(X_{n+1} = x - 1 | X_n = x) = q, \quad p+q+r = 1.
$$

\n
$$
P(X_{n+1} = x | X_n = x) = r.
$$

2. (2,1) RW

$$
P(X_{n+1} = x - l | X_n = x) = q_l, l = 1, 2;
$$

$$
P(X_{n+1} = x + 1 | X_n = x) = p, p + q_1 + q_2 = 1.
$$

3. (L,R) RW

$$
P(X_{n+1} = X_n + l | X_n, ..., X_0) = p_l, l \in \{-L, R\}/\{0\},\
$$

where $\sum_l p_l = 1$.

Question

For the above random walk, define

$$
T = \inf\{n \ge 0 : X_n > 0\},\
$$

$$
\zeta(s) = E(s^T), \ |s| < 1.
$$

Question: $\zeta(s) = ? P(T = n) = ?$

Hint: Using the branching structure hidden in the path of random walk.

For nearest simple RW, define for $i \leq 0$,

$$
U_i = \# \{ 0 \le n < T : X_n = i + 1, X_{n+1} = i \}.
$$

 ${U_i}$ is a G-W process and

$$
T = 1 + 2 \sum_{i \le 0} U_i.
$$

T is a linear functional of the total progeny W of a Galton-Watson Process.

To study the distribution of T , it is enough to study W.

Nearest simple $RW \leftrightarrow$ single type G-W process.

RW with bounded jumps \leftrightarrow multitype G-W process.

Our goal:

(a) Study the p.g.f. of the total progeny of multitype G-W process

(b) Give the p.g.f. of T for some non nearest RW and estimate the tail probability $P(T > n)$.

Notations

$$
\mathbb{Z}_{+} = \{0, 1, 2, \ldots\}.
$$
\n
$$
p_{i}(\cdot), \ i = 1, \ldots, L \text{ are probability measures on } \mathbb{Z}_{+}^{L}.
$$
\n
$$
\{Z_{n}\} \text{ is a multipt type G-W process with offspring distribution}
$$
\n
$$
P(Z_{n+1} = (n^{(1)}, \ldots, n^{(L)}) \mid Z_{n} = \mathbf{e}_{i}) = p_{i} (n^{(1)}, \ldots, n^{(L)}) , \ i = 1, \ldots, L.
$$
\n
$$
\phi^{(i)}(s^{(1)}, \ldots, s^{(L)}) = E\left(\left(s^{(1)}\right)^{Z_{1}^{(1)}} \cdots \left(s^{(L)}\right)^{Z_{1}^{(L)}} \mid Z_{0} = \mathbf{e}_{i}\right), i = 1, \ldots, L.
$$
\n
$$
Y_{n} = \sum_{i=0}^{n} Z_{i} : \text{ the total progeny of the first } n \text{ generation.}
$$
\n
$$
G^{(i)}(0) = (L)_{n} = \sum_{i=0}^{n} \left(\left(\begin{array}{cc} 1 \end{array}\right)^{Y_{n}^{(1)}} \left(\left(\begin{array}{cc} 1 \end{array}\right)^{Y_{n}^{(L)}} \mid Z_{n}\right)\right)
$$

$$
G_n^{(i)}(s^{(1)},...,s^{(L)}) = E\left(\left(s^{(1)}\right)^{Y_n^{(1)}} \cdots \left(s^{(L)}\right)^{Y_n^{(L)}} \middle| Z_0 = \mathbf{e}_i\right),
$$

$$
|s^{(l)}| < 1, 1 \le l \le L.
$$

Let $\pi^{(i)} = P(Z_n = \mathbf{0} \text{ for some } n | Z_0 = \mathbf{e}_i)$, being the extinction probabilities.

Introduce

$$
s = (s^{(1)}, ..., s^{(L)}),
$$

\n
$$
\phi(s) = (\phi^{(1)}(s), ..., \phi^{(L)}(s)),
$$

\n
$$
G_n(s) = (G_n^{(1)}(s), ..., G_n^{(L)}(s)),
$$

\n
$$
\pi = (\pi^{(1)}, ..., \pi^{(L)}),
$$

\n
$$
1 = (1, ..., 1).
$$

The following theorem gives the p.g.f. of the total progeny of a critical or subcritical multitype G-W process. For the single type case, see Feller (1968) and Dwass (1969).

Theorem 1 (p.g.f. of the total progeny)

Suppose that the branching process $\{Z_n\}$ is extinct, that is

$$
\boldsymbol{\pi} = (\pi^{(1)}, ..., \pi^{(L)}) = (1, ..., 1).
$$

Then the limit

$$
\boldsymbol{\rho}(\mathbf{s}) := \lim_{n \to \infty} \mathbf{G}_n(\mathbf{s})
$$

exists and for fixed s, $\rho(s)$ is the **unique** solution of equation

$$
\mathbf{u} = \mathbf{s}\boldsymbol{\phi}(\mathbf{u}).
$$

Moreover, $\rho(s)$ is an honest probability generating function.

Examples

Example 1

Let ${Z_n}_{n>0}$ be a 2-type branching process with offspring distributions

$$
P(Z_{n+1} = (a, b)|Z_n = \mathbf{e}_1) = \frac{(a+b)!}{a!b!}q^a r^b p, \ a, b \ge 0,
$$

$$
P(Z_{n+1} = \mathbf{0}|Z_n = \mathbf{e}_2) = 1,
$$

with $p, q, r > 0$, $p + q + r = 1$. Let $Y_n = \sum_{i=0}^{n} Z_i$ and $Y = \lim_{n \to \infty} Y_n$. If $q \leq p$, then $P(Y < \infty) = 1$ and the p.g.f. of Y

$$
\rho(\mathbf{s}) = (\rho^{(1)}(\mathbf{s}), \rho^{(2)}(\mathbf{s})) = \left(\frac{1 - rs^{(2)} - \sqrt{(1 - rs^{(2)})^2 - 4pqs^{(1)}}}{2q}, s^{(2)}\right).
$$

Moreover, if $p = q = \frac{1-r}{2}$ (**Critical**) and $P(Z_0 = e_1) = 1$ then

$$
\lim_{n \to \infty} \sqrt{n} P(|Y| > n) = \frac{1}{\sqrt{\pi}} \sqrt{\frac{1+r}{1-r}}.
$$

Example 2

If we replace the offspring distribution of Example 1 by

$$
P(Z_{n+1} = (a, b) | Z_n = \mathbf{e}_1) = \frac{(a+b)!}{a!b!} q^a r^b p,
$$

$$
P(Z_{n+1} = (a+1, b) | Z_n = \mathbf{e}_2) = \frac{(a+b)!}{a!b!} q^a r^b p, \ a, b \ge 0,
$$

then $\rho^{(1)}(\mathbf{u})$ is the smallest real solution of

$$
r\frac{u^{(2)}}{u^{(1)}}\left(\rho^{(1)}\right)^3 - q\left(\rho^{(1)}\right)^2 - \rho^{(1)} + pu^{(1)} = 0
$$

and
$$
\rho^{(2)}(\mathbf{u}) = \left(\rho^{(1)}\right)^2 \frac{u^{(2)}}{u^{(1)}}.
$$

Remark 1

The 2-type G-W process in Example 1 could be got by decomposing the path of RW with stay, while the one in Example 2 describes the branching structure with in (2,1) RW.

Therefore, by using the conclusions in Example 1 and 2, one could derive the probability generating functions of the first passage time T of the corresponding random walk.

The following theorem gives the p.g.f. and the tail probability estimate of the first passage time T of random walk with stay.

Theorem 2 (Random walk with stay)

Suppose that $\{X_n\}$ is a random walk with stay and that $q \leq p$. Let T be its first passage time of position 1. Then

$$
E(u^{T}) = \frac{1 - ru - \sqrt{(1 - ru)^{2} - 4pqu^{2}}}{2qu}, |u| < 1.
$$

Moreover if $p = q = \frac{1-r}{2}$ (Implying the walk is recurrent) then

$$
\lim_{n \to \infty} \sqrt{n} P(T \ge n) = \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{1 - r}}.
$$

For (2,1) RW which transient to the right or recurrent, we have

Theorem 3 $((2,1)$ random walk)

Suppose that $\{X_n\}$ is a (2-1) random walk and that $p - q_1 - 2q_2 \ge 0$, (implying $\limsup_{n\to\infty} X_n = \infty$). Let $h(u)$ be the probability generating function of the first passage time T. Then $h(s)$ is the smallest real solution of equation

$$
q_2sh^3 + q_1sh^2 - h + ps = 0, |s| < 1.
$$
 (1)

Notes:

The p.g.f. of T could be calculated by path decomposition up to the first step of the walk. In Theorem 2 and 3, we illustrate how to solve the problems of random walk with bounded jumps by means of branching processes.

Theorem 1 (p.g.f. of the total progeny)

Suppose that the branching process $\{Z_n\}$ is extinct, that is

$$
\boldsymbol{\pi} = (\pi^{(1)}, ..., \pi^{(L)}) = (1, ..., 1).
$$

Then the limit

$$
\boldsymbol{\rho}(\mathbf{s}) := \lim_{n \to \infty} \mathbf{G}_n(\mathbf{s})
$$

exists and for fixed s, $\rho(s)$ is the unique solution of equation

$$
\mathbf{u} = \mathbf{s}\boldsymbol{\phi}(\mathbf{u}).
$$

Moreover, $\rho(s)$ is an honest probability generating function.

Sketch proof of Theorem 1: By induction,

$$
G_{n+1}^{(i)}(\mathbf{s}) = s^{(i)}\phi^{(i)}(\mathbf{G}_n(\mathbf{s})).
$$

For $0 \ll s \ll 1$, $G_1(s) = s\phi(s) \ll s = G_0(s)$.

Again by induction, $\{G_n(s)\}\$ is monotone decreasing in n.

The limit $\rho(s) := \lim_{n \to \infty} G_n(s)$ exists and $\rho(s)$ satisfies equation

$$
\rho(\mathbf{s}) = \mathbf{s}\phi(\rho(\mathbf{s})).\tag{2}
$$

Fixing $0 \ll s \ll 1$, define $F : [0, 1]^L \mapsto [0, 1]^L$ by

 $\mathbf{F}(\mathbf{u}) = \mathbf{s}\phi(\mathbf{u}).$

A version of fixed point theorem (See Smith and Stuart [\[8\]](#page-31-0).) yields that **F** has a unique fixed point in $[0, 1]^L$.

Proofs

Therefore there exists a unique $\mathbf{u} \in [0,1]^L$ such that

 $\mathbf{u} = \mathbf{s}\boldsymbol{\phi}(\mathbf{u}).$

Then $\rho(s)$ is the unique solution of

 $\mathbf{u} = \mathbf{s}\boldsymbol{\phi}(\mathbf{u}).$

$$
\rho(1)=1\phi(1)=1.
$$

 $\rho(s)$ is an honest p.g.f. function. Indeed, it is the p.f.g. of

$$
Y = \sum_{i=0}^{\infty} Y_n.
$$

Theorem 2 (Random walk with stay)

Suppose that $\{X_n\}$ is a random walk with stay and that $q \leq p$. Let T be its first passage time of position 1. Then

$$
E(u^{T}) = \frac{1 - ru - \sqrt{(1 - ru)^{2} - 4pqu^{2}}}{2qu}, |u| < 1.
$$

Moreover if $p = q = \frac{1-r}{2}$ (Implying the walk is recurrent) then

$$
\lim_{n \to \infty} \sqrt{n} P(T \ge n) = \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{1 - r}}.
$$

For RW with stay, let

$$
\left(U_1^{(1)}, U_1^{(2)}\right) = (1, 0),\tag{3}
$$

and for $i \leq 0$ define

$$
U_i^{(1)} = \#\{0 \le n < T_1 : X_n = i, X_{n+1} = i - 1\},
$$
\n
$$
U_i^{(2)} = \#\{0 \le n < T_1 : X_n = i, X_{n+1} = i\} \tag{4}
$$

counting the number of steps by the walk from i to $i - 1$ and the steps from i to i itself respectively.

The branching structure for random walk with stay could be found in Wang [\[10\]](#page-31-1) and Zeitouni [\[11\]](#page-31-2).

Theorem A:Branching structure for RW with stay

Let $\{X_n\}$ be a random walk with stay. If $q \leq p$, then $\left\{\left(U_n^{(1)}, U_n^{(2)}\right)\right\}$ $n \leq 1$ defined in [\(3\)](#page-23-0) and [\(4\)](#page-23-1) forms a 2-type branching process. Its offspring distributions are

$$
P\left(\left(U_i^{(1)}, U_i^{(2)}\right) = (a, b)\middle| \left(U_{i+1}^{(1)}, U_{i+1}^{(2)}\right) = (1, 0)\right) = \frac{(a+b)!}{a!b!}q^a r^b p,
$$

$$
P\left(\left(U_i^{(1)}, U_i^{(2)}\right) = (0, 0)\middle| \left(U_{i+1}^{(1)}, U_{i+1}^{(2)}\right) = (0, 1)\right) = 1.
$$

Moreover the hitting time T could be expressed by the branching process as

$$
T = 1 + \sum_{i \leq 0} 2U_i^{(1)} + U_i^{(2)} = \sum_{i \leq 0} (U_i^{(1)}, U_i^{(2)}) \begin{pmatrix} 2 \\ 1 \end{pmatrix}.
$$

Proof of Theorem 2:

Let $\{Z_n\}$ be the 2-type branching process in Example 1, $Y = \sum_{n=0}^{\infty} Z_n$. Then the p.g.f. of Y

$$
\rho(\mathbf{s}) = (\rho^{(1)}(\mathbf{s}), \rho^{(2)}(\mathbf{s})) = \left(\frac{1 - rs^{(2)} - \sqrt{(1 - rs^{(2)})^2 - 4pqs^{(1)}}}{2q}, s^{(2)}\right).
$$

Comparing the branching process $\{Z_n\}$ in Theorem 1 and $\{(U_n^{(1)}, U_n^{(2)})\}_{n\leq 1}$ in Theorem A, if $P(Z_0 = e_1) = 1$ then T has the same distribution with

$$
1 + \sum_{n=1}^{\infty} 2Z_n^{(1)} + Z_n^{(2)} = \sum_{n=0}^{\infty} 2Z_n^{(1)} + Z_n^{(2)} - 1 = 2Y^{(1)} + Y^{(2)} - 1.
$$

Proof of Theorem 2

Letting $\eta(u) := E(u^{T+1}),$ then

$$
\eta(u) = E(u^{2Y^{(1)}}u^{Y^{(2)}}) = \rho^{(1)}(u^2, u) = \frac{1 - ru - \sqrt{(1 - ru)^2 - (1 - r)^2 u^2}}{1 - r}
$$

Define $\alpha_n = P(T \ge n)$ and let $\alpha(u) = \sum_{n=0}^{\infty} \alpha_n u^n$. Some calculation yields

$$
\alpha(u) = \frac{1 - \eta(u)}{1 - u} = \frac{1}{1 - r} \sqrt{\frac{1 - (2r - 1)u}{1 - u}} - \frac{r}{1 - r}.
$$

By some subtle estimation, we could prove that

$$
\lim_{n \to \infty} \sqrt{n} \alpha_n = \frac{1}{1-r} \left(\frac{2}{\sqrt{\pi}} - \frac{1}{\sqrt{\pi}} \left(2 - \sqrt{1 - (2r - 1)} \right) \right) = \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{1-r}}.
$$

.

Next, consider (2-1) random walk. Let $T = \inf\{n > 0 : X_n = 1\}$. Define, for $-\infty < i \leq 0$,

$$
U_i^{(1)} = \#\{0 < k < T_1 : X_{k-1} > i, X_k = i\}
$$
\n
$$
U_i^{(2)} = \#\{0 < k < T_1 : X_{k-1} > i, X_k = i - 1\}
$$
\n
$$
(5)
$$

and set

$$
\left(U_1^{(1)}, U_1^{(2)}\right) = (1, 0). \tag{6}
$$

Then we have the following theorem.

Theorem B (Hong and Wang [\[4\]](#page-30-0))

Let $\{X_n\}$ is a (2-1) random walk. Suppose that $E(X_1) = p - q_1 2q_2 \ge 0.$ Then $\left\{ \left(U_i^{(1)}, U_i^{(2)} \right) \right\}$ defined in [\(5\)](#page-27-0) and [\(6\)](#page-27-1) forms a 2-type $i\leq 1$ branching process with offspring distributions

$$
P\left((U_{i-1}^{(1)}, U_{i-1}^{(2)}) = (a, b) \middle| (U_i^{(1)}, U_i^{(2)}) = (1, 0) \right) = \frac{(a+b)!}{a!b!} q_1^a q_2^b p,
$$

$$
P\left((U_{i-1}^{(1)}, U_{i-1}^{(2)}) = (a+1, b) \middle| (U_i^{(1)}, U_i^{(2)}) = (0, 1) \right) = \frac{(a+b)!}{a!b!} q_1^a q_2^b p,
$$

and that

$$
T = 1 + \sum_{i \le 0} 2U_i^{(1)} + U_i^{(2)}.
$$

With the branching structure for (2,1) RW in hand, using the some argument as in the proof of Theorem 2, we can easily carry out the proof of Theorem 3.

Remark 2: about (L,R) RW

The branching structure of (L,R) RW was revealed in Hong and Wang [\[5\]](#page-30-1). However, it evolved a $(1 + ... + L) \times (1 + ... R)$ -type branching process. By a similar method one could use the branching structure to give the probability generating function of T. Of course, in this general case, the root for equation $\mathbf{u} = \mathbf{s}\phi(\mathbf{u})$ will be very complicated.

- [1] Dwass, M. (1968). A theorem about infinitely divisible distribution. Z. Wahrscheinlichkeitsth. 9, 287-289.
- [2] Dwass, M. (1969). The total progeny in a branching process and a related random walk. J. Appl. Prob. 6, 682-628.
- [3] Feller, W. (1968). An introduction to probability theory and its application. Vol. 2, 3rd edition. Wiley, New York.
- [4] Hong, W.M. and Wang, H.M. (2013). Intrinsic branching structure within (L-1) random walk in random environment and its applications. Infin. Dimens. Anal. Quantum. Probab. Relat. Top. $16(1).$
- [5] Hong, W. M. and Wang, H.M. (2010). Intrinsic branching structure within random walk on Z . To appear in Theory of probability and its applications, See also arXiv:1012.0636.

Reference

- [6] Hong, W. M. and Zhang, L. (2010). Branching structure for the transient (1,R)-random walk in random environment and its applications. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 13, pp. 589-618.
- [7] Kesten, H., Kozlov, M.V., and Spitzer, F. (1975). A limit law for random walk in a random environment. Compositio Math. 30, pp. 145-168.
- [8] Smith, H. L. and Stuart, C. A. (1980). A uniqueness theorem for fixed points. Proc. Amer. Math. Soc. Vol. 79, No. 2, 237-240.
- [9] Strook, D.W. (2005). An introduction to Markov processes. Springer verlag.
- [10] Wang, H. M. (2012). Mean and variance of first passage time of non-homogeneous random walk. Front. Math. China, Vol. 7, No.3, 551-559.
- [11] Zeitouni, O. (2004). Random walks in random environment. L-NM 1837, J. Picard (Ed.), pp. 189-312, Springer-Verlag Berlin Heidelberg.

Thanks a lot 非常感谢

hmking@mail.ahnu.edu.cn