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An example

Let {Xn} be a simple random walk:

P (Xn+1 = x+ 1|Xn = x) = p,

P (Xn+1 = x− 1|Xn = x) = 1− p.

Define T = inf{n ≥ 0 : Xn = 1}.

P (T = 2n+ 1) =
1

2n+ 1

(
2n+ 1
n+ 1

)
pn+1(1− p)n, n ≥ 0.

Probability generating function of T :

ζ(s) := E(sT ) =
1−

√
1− 4pqs2

2qs
, |s| < 1.



Some more general RW

1. RW with stay

P (Xn+1 = x+ 1|Xn = x) = p,

P (Xn+1 = x− 1|Xn = x) = q, p+ q + r = 1.

P (Xn+1 = x |Xn = x) = r.

2. (2,1) RW

P (Xn+1 = x− l|Xn = x) = ql, l = 1, 2;

P (Xn+1 = x+ 1|Xn = x) = p, p+ q1 + q2 = 1.

3. (L,R) RW

P (Xn+1 = Xn + l|Xn, ..., X0) = pl, l ∈ {−L,R}/{0},

where
∑

l pl = 1.



Question

For the above random walk, define

T = inf{n ≥ 0 : Xn > 0},
ζ(s) = E(sT ), |s| < 1.

Question: ζ(s) =? P (T = n) =?

Hint: Using the branching structure hidden in the path of
random walk.

For nearest simple RW, define for i ≤ 0,

Ui = #{0 ≤ n < T : Xn = i+ 1, Xn+1 = i}.

{Ui} is a G-W process and

T = 1 + 2
∑
i≤0

Ui.



Basic idea

T is a linear functional of the total progeny W of a Galton-
Watson Process.

To study the distribution of T, it is enough to study W.

Nearest simple RW↔ single type G-W process.

RW with bounded jumps↔multitype G-W process.

Our goal:

(a) Study the p.g.f. of the total progeny of multitype G-W
process

(b) Give the p.g.f. of T for some non nearest RW and esti-
mate the tail probability P (T > n).



Notations

Z+ = {0, 1, 2, ...}.
pi(·), i = 1, ..., L are probability measures on ZL

+.

{Zn} is a multitype G-W process with offspring distribution

P (Zn+1 =
(
n(1), ..., n(L)

)
|Zn = ei) = pi

(
n(1), ..., n(L)

)
, i = 1, ..., L.

φ(i)(s(1), ..., s(L)) = E

((
s(1)
)Z(1)

1

· · ·
(
s(L)

)Z(L)
1
∣∣∣Z0 = ei

)
, i = 1, ..., L.

Yn =

n∑
i=0

Zi : the total progeny of the first n generation.

G(i)
n (s(1), ..., s(L)) = E

((
s(1)
)Y (1)

n

· · ·
(
s(L)

)Y (L)
n
∣∣∣Z0 = ei

)
,

|s(l)| < 1, 1 ≤ l ≤ L.



Notations

Let π(i) = P (Zn = 0 for some n|Z0 = ei), being the extinc-
tion probabilities.

Introduce

s = (s(1), ..., s(L)),

φ(s) = (φ(1)(s), ..., φ(L)(s)),

Gn(s) = (G(1)
n (s), ..., G(L)

n (s)),

π = (π(1), ..., π(L)),

1 = (1, ..., 1).



The main results—p.g.f. for the total progeny

The following theorem gives the p.g.f. of the total progeny of a critical
or subcritical multitype G-W process. For the single type case, see
Feller (1968) and Dwass (1969).

Theorem 1 (p.g.f. of the total progeny)

Suppose that the branching process {Zn} is extinct, that is

π = (π(1), ..., π(L)) = (1, ..., 1).

Then the limit
ρ(s) := lim

n→∞
Gn(s)

exists and for fixed s, ρ(s) is the unique solution of equation

u = sφ(u).

Moreover, ρ(s) is an honest probability generating function.



Examples

Example 1

Let {Zn}n≥0 be a 2-type branching process with offspring distributions

P (Zn+1 = (a, b)|Zn = e1) =
(a+ b)!

a!b!
qarbp, a, b ≥ 0,

P (Zn+1 = 0|Zn = e2) = 1,

with p, q, r > 0, p+ q+ r = 1. Let Yn =
∑n

i=0 Zi and Y = limn→∞ Yn.
If q ≤ p, then P (Y <∞) = 1 and the p.g.f. of Y

ρ(s) = (ρ(1)(s), ρ(2)(s)) =

(
1− rs(2) −

√(
1− rs(2)

)2 − 4pqs(1)

2q
, s(2)

)
.

Moreover, if p = q = 1−r
2 (Critical) and P (Z0 = e1) = 1 then

lim
n→∞

√
nP (|Y | > n) =

1√
π

√
1 + r

1− r
.



Examples

Example 2

If we replace the offspring distribution of Example 1 by

P (Zn+1 = (a, b)|Zn = e1) =
(a+ b)!

a!b!
qarbp,

P (Zn+1 = (a+ 1, b)|Zn = e2) =
(a+ b)!

a!b!
qarbp, a, b ≥ 0,

then ρ(1)(u) is the smallest real solution of

r
u(2)

u(1)

(
ρ(1)

)3
− q

(
ρ(1)

)2
− ρ(1) + pu(1) = 0

and ρ(2)(u) =
(
ρ(1)

)2 u(2)

u(1) .



A remark

Remark 1
The 2-type G-W process in Example 1 could be got by decomposing
the path of RW with stay, while the one in Example 2 describes the
branching structure with in (2,1) RW.
Therefore, by using the conclusions in Example 1 and 2, one could
derive the probability generating functions of the first passage time T
of the corresponding random walk.



Results for random walk with stay

The following theorem gives the p.g.f. and the tail probability estimate
of the first passage time T of random walk with stay.

Theorem 2 (Random walk with stay)

Suppose that {Xn} is a random walk with stay and that q ≤ p. Let T
be its first passage time of position 1. Then

E(uT ) =
1− ru−

√
(1− ru)

2 − 4pqu2

2qu
, |u| < 1.

Moreover if p = q = 1−r
2 (Implying the walk is recurrent) then

lim
n→∞

√
nP (T ≥ n) =

√
2

π

1√
1− r

.



Results for (2,1) random walk

For (2,1) RW which transient to the right or recurrent, we have

Theorem 3 ((2,1) random walk )

Suppose that {Xn} is a (2-1) random walk and that p− q1 − 2q2 ≥ 0,
(implying lim supn→∞Xn = ∞). Let h(u) be the probability gener-
ating function of the first passage time T. Then h(s) is the smallest real
solution of equation

q2sh
3 + q1sh

2 − h+ ps = 0, |s| < 1. (1)



Notes

Notes:

The p.g.f. of T could be calculated by path de-
composition up to the first step of the walk.
In Theorem 2 and 3, we illustrate how to solve the
problems of random walk with bounded jumps by
means of branching processes.



Proofs

Theorem 1 (p.g.f. of the total progeny)

Suppose that the branching process {Zn} is extinct, that is

π = (π(1), ..., π(L)) = (1, ..., 1).

Then the limit
ρ(s) := lim

n→∞
Gn(s)

exists and for fixed s, ρ(s) is the unique solution of equation

u = sφ(u).

Moreover, ρ(s) is an honest probability generating function.



Proofs

Sketch proof of Theorem 1: By induction,

G
(i)
n+1(s) = s(i)φ(i)(Gn(s)).

For 0� s� 1, G1(s) = sφ(s)� s = G0(s).

Again by induction, {Gn(s)} is monotone decreasing in n.

The limit ρ(s) := limn→∞Gn(s) exists and ρ(s) satisfies equation

ρ(s) = sφ(ρ(s)). (2)

Fixing 0� s� 1, define F : [0, 1]L 7→ [0, 1]L by

F(u) = sφ(u).

A version of fixed point theorem (See Smith and Stuart [8].) yields that
F has a unique fixed point in [0, 1]L.



Proofs

Therefore there exists a unique u ∈ [0, 1]L such that

u = sφ(u).

Then ρ(s) is the unique solution of

u = sφ(u).

ρ(1) = 1φ(1) = 1.

ρ(s) is an honest p.g.f. function. Indeed, it is the p.f.g. of

Y =

∞∑
i=0

Yn.



Results for random walk with stay

Theorem 2 (Random walk with stay)

Suppose that {Xn} is a random walk with stay and that q ≤ p. Let T
be its first passage time of position 1. Then

E(uT ) =
1− ru−

√
(1− ru)

2 − 4pqu2

2qu
, |u| < 1.

Moreover if p = q = 1−r
2 (Implying the walk is recurrent) then

lim
n→∞

√
nP (T ≥ n) =

√
2

π

1√
1− r

.



Branching structure for RW

For RW with stay, let (
U

(1)
1 , U

(2)
1

)
= (1, 0), (3)

and for i ≤ 0 define

U
(1)
i = #{0 ≤ n < T1 : Xn = i,Xn+1 = i− 1},

U
(2)
i = #{0 ≤ n < T1 : Xn = i,Xn+1 = i}

(4)

counting the number of steps by the walk from i to i− 1 and the steps
from i to i itself respectively.

The branching structure for random walk with stay could be found in
Wang [10] and Zeitouni [11].



Branching structure for RW

Theorem A:Branching structure for RW with stay

Let {Xn} be a random walk with stay. If q ≤ p, then
{(
U

(1)
n , U

(2)
n

)}
n≤1

defined in (3) and (4) forms a 2-type branching process. Its offspring
distributions are

P
((
U

(1)
i , U

(2)
i

)
= (a, b)

∣∣∣ (U (1)
i+1, U

(2)
i+1

)
= (1, 0)

)
=

(a+ b)!

a!b!
qarbp,

P
((
U

(1)
i , U

(2)
i

)
= (0, 0)

∣∣∣ (U (1)
i+1, U

(2)
i+1

)
= (0, 1)

)
= 1.

Moreover the hitting time T could be expressed by the branching pro-
cess as

T = 1 +
∑
i≤0

2U
(1)
i + U

(2)
i =

∑
i≤0

(U
(1)
i , U

(2)
i )

(
2
1

)
.



Sketch proof of Theorem 2

Proof of Theorem 2:

Let {Zn} be the 2-type branching process in Example 1, Y =
∑∞

n=0 Zn.
Then the p.g.f. of Y

ρ(s) = (ρ(1)(s), ρ(2)(s)) =

(
1− rs(2) −

√(
1− rs(2)

)2 − 4pqs(1)

2q
, s(2)

)
.

Comparing the branching process {Zn} in Theorem 1 and {(U (1)
n , U

(2)
n )}n≤1

in Theorem A, if P (Z0 = e1) = 1 then T has the same distribution with

1 +

∞∑
n=1

2Z(1)
n + Z(2)

n =

∞∑
n=0

2Z(1)
n + Z(2)

n − 1 = 2Y (1) + Y (2) − 1.



Proof of Theorem 2

Letting η(u) := E(uT+1), then

η(u) = E(u2Y
(1)

uY
(2)

) = ρ(1)(u2, u) =
1− ru−

√
(1− ru)2 − (1− r)2u2

1− r
.

Define αn = P (T ≥ n) and let α(u) =
∑∞

n=0 αnu
n. Some calculation

yields

α(u) =
1− η(u)

1− u
=

1

1− r

√
1− (2r − 1)u

1− u
− r

1− r
.

By some subtle estimation, we could prove that

lim
n→∞

√
nαn =

1

1− r

( 2√
π
− 1√

π

(
2−

√
1− (2r − 1)

))
=

√
2

π

1√
1− r

.



Branching structure of (2,1) RW

Next, consider (2-1) random walk. Let T = inf[n > 0 : Xn = 1]. Define,
for −∞ < i ≤ 0,

U
(1)
i = #{0 < k < T1 : Xk−1 > i,Xk = i}

U
(2)
i = #{0 < k < T1 : Xk−1 > i,Xk = i− 1}

(5)

and set (
U

(1)
1 , U

(2)
1

)
= (1, 0). (6)



Branching structure of (2,1) RW

Then we have the following theorem.

Theorem B (Hong and Wang [4])

Let {Xn} is a (2-1) random walk. Suppose that E(X1) = p − q1 −
2q2 ≥ 0. Then

{(
U

(1)
i , U

(2)
i

)}
i≤1

defined in (5) and (6) forms a 2-type

branching process with offspring distributions

P
(

(U
(1)
i−1, U

(2)
i−1) = (a, b)

∣∣∣(U (1)
i , U

(2)
i ) = (1, 0)

)
=

(a+ b)!

a!b!
qa1q

b
2p,

P
(

(U
(1)
i−1, U

(2)
i−1) = (a+ 1, b)

∣∣∣(U (1)
i , U

(2)
i ) = (0, 1)

)
=

(a+ b)!

a!b!
qa1q

b
2p,

and that
T = 1 +

∑
i≤0

2U
(1)
i + U

(2)
i .



A remark on (L, R) RW

With the branching structure for (2,1) RW in hand, using the some
argument as in the proof of Theorem 2, we can easily carry out the
proof of Theorem 3.

Remark 2: about (L,R) RW

The branching structure of (L,R) RW was revealed in Hong and Wang
[5]. However, it evolved a (1 + ... + L) × (1 + ...R)-type branching
process. By a similar method one could use the branching structure to
give the probability generating function of T. Of course, in this general
case, the root for equation u = sφ(u) will be very complicated.
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