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What is the switching diffusion?

It is a two-component process (X(t),Λ(t)), where (X(t)) describes the

continuous dynamics, and (Λ(t)) describes the random switching device.

The first component (X(t)) satisfies the following SDE

dX(t) = σ(X(t),Λ(t))dB(t) + b(X(t),Λ(t))dt, (1)

with X(0) = x ∈ Rd.

the second component (Λ(t)) is a continuous time Markov chain with

a finite state space S := {1, 2, . . . ,m0}, m0 > 1, such that

P{Λ(t+ δ) = l|Λ(t) = k} =

qklδ + o(δ), if k 6= l,

1 + qkkδ + o(δ), if k = l
(2)

provided δ ↓ 0. The Q-matrix (qij) is irreducible and conservative.
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Diffusion process in a fixed environment

For k ∈ S, let (X(k)(t)) be a process satisfying the SDE:

dX(k)(t) = σ(X(k)(t), k)dB(t) + b(X(k)(t), k)dt,

with X(k)(0) = x ∈ Rd. Then (X(k)(t)) is called the corresponding diffusion

of (X(t),Λ(t)) in the fixed environment k.

As (Λ(t)) is a Q-process in a finite state space with an irreducible Q-

matrix, the recurrent property of the process (X(t),Λ(t)) is the same

as that of (X(t)), which is obviously connected with the recurrent

property of (X(k)(t)), k ∈ S.

Some important phenomena can occur when the environment is ran-

dom.
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R. Pinsky, M. Scheutzow, 1992

Take S = {0, 1}. They constructed examples on [0,∞)× S with reflection

at 0 such that

1 (X(0)(t)) and (X(1)(t)) are positive recurrent, but (X(t),Λ(t)) is tran-

sient.

2 (X(0)(t)) and (X(1)(t)) are transient, but (X(t),Λ(t)) is positive re-

current.

The role of (Λ(t)) is important.
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Consider the geometric Brownian motion in a random environment:

dX(t) = µΛ(t)X(t)dt+ σΛ(t)X(t)dB(t), X(0) = x > 0,

where (Λ(t)) is a Q-process in the state space S = {0, 1}, its Q-matrix(
−λ0 λ0

λ1 −λ1

)
, where λ0, λ1 are two positive constants. µ0, µ1, σ0, σ1 are

constants.

If we use this process to model stock price, the states 0 and 1 will represent

respectively the “ bull ” market and the “ bear ” market.

Theorem

Set ∆0 = µ0 − 1
2σ

2
0, ∆1 = µ1 − 1

2σ
2
1.

(i) If λ0∆1 + λ1∆0 > 0, then the process (Xt,Λt) is transient.

(ii) If λ0∆1 + λ1∆0 < 0, then the process (Xt,Λt) is positive recurrent.
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The semigroup Pt corresponding to the Markov process (X(t),Λ(t))

is defined by

Ptf(x, k) = Ex,kf(X(t),Λ(t))

for bounded measurable f on Rd × S.

Suppose that ∃ ! stationary distribution π for (X(t),Λ(t)).

The process (X(t),Λ(t)) is called strongly ergodic, if there exists an

ε > 0 such that

sup
x∈Rd, k∈S

‖P(t, (x, k), ·)− π‖var = O(e−εt), as t→∞. (3)
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Define

α(γ) = sup
{
ε ≥ 0; sup

x∈Rd,k∈S
‖P(t, (x, k), ·)− π‖var ≤ γe−εt, ∀ t ≥ 0

}
.

Set α = α(∞) = lim
γ→∞

α(γ). If α > 0, the process (X(t),Λ(t)) is

strongly ergodic.

Let (X(t),Λ(t), Y (t),Λ′(t)) be a coupling process, and

let T = inf{t ≥ 0; (X(t),Λ(t)) = (Y (t),Λ′(t))} be the coupling time.

Theorem (Yong-Hua, Mao, ’02,’06)

If ∃ λ > 0 such that

M := sup
{
Ex,k,y,l[eλT ]; x, y ∈ Rd, k, l ∈ S

}
<∞,

then α ≥ α(2M) ≥ λ > 0.
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One dimensional case

Let (X(t),Λ(t)) be a regime-switching diffusion process on [0,∞)×S with

reflection at 0, where S = {1, 2, . . . ,m0} for some fixed m0 > 1. Its

corresponding diffusion in each fixed environment k ∈ S is also denoted by

(X(k)(t)). Recall that Q-matrix of (Λ(t)) is assumed to be irreducible.

Theorem

If for each k ∈ S, the process (X(k)(t)) is strongly ergodic, then

(X(t),Λ(t)) is strongly ergodic.

Is the converse of this theorem true ?
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One dimensional case: Example

(X(t)) satisfies the following SDE:

dX(t) = b(X(t),Λ(t))dt+ dB(t),

where b(x, 0) = b0(x) = 1
2 , and b(x, 1) = b1(x) = −x2

2 .

The Q-matrix of (Λ(t)) is

(
−q1 q1

q2 −q2

)
.

dX(k)(t) = bk(X
(k)(t))dt+ dB(t).

Then (X(0)(t)) is not ergodic, and (X(1)(t)) is strongly ergodic.

We can find q1, q2 > 0 such that (X(t),Λ(t)) is strongly ergodic.
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Suppose that there is another switching diffusion (Y (t),Λ′(t)) on Rd×
S such that (X(t),Λ(t)) and (Y (t),Λ′(t)) admit the same transition

probability, then (X(t),Λ(t), Y (t),Λ′(t)) constitutes a coupling pro-

cess.

Its infinitesimal generator

A f(x, k, y, l)=Lk,lf(x, k, y, l) +Qf(x, k, y, l), x, y∈Rd, k, l∈S,

for f ∈C2(Rd×S×Rd×S).
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Here

Lk,lf(x, y) =
1

2

2d∑
i,j=1

aij(x, k, y, l)
∂2f

∂zi∂zj
(x, y) +

2d∑
i=1

bi(x, k, y, l)
∂f

∂zi
(x, y), ,

for f ∈ C2(Rd×Rd) where zi = xi for 1 ≤ i ≤ d; zi = yi−d for d < i ≤ 2d,

and

(
aij(x, k, y, l)

)
=

(
a(x, k) c(x, k, y, l)

c(x, k, y, l)∗ a(y, l)

)
;
(
bi(x, k, y, l)

)
=

(
b(x, k)

b(y, l)

)
.

C∗ denotes the transpose of matrix C. The matrix c(x, k, y, l) is a d× d-

matrix such that (aij(x, k, y, l)) is positive definite for each x, y ∈ Rd,

k, l ∈ S.

Q =
(
q(k,l)(m,n)

)
is a coupling operator of the q-matrix (qkm).
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Assumptions:

1 The coupling process is non-explosive.

2 q(k,k)(m,n) = 0 for m 6= n, k ∈ S and
(
q(k,l)(m,n)

)
is irreducible.

Necessary notations

Ak(x, y) = a(x, k) + a(y, k)− 2c(x, k, y, k),

Bk(x, y) =

d∑
i=1

(bi(x, k)− bi(y, k))(xi − yi),

Ãk(x, y) =
( d∑
i,j=1

(
Ak(x, y)

)
ij

(xi − yi)(xj − yj)
)/
|x− y|2, x 6= y.
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Let γ̃(r, k), γ(r, k), α∗(r, k) and α∗(r, k) be continuous on (0,∞)×S sat-

isfying

γ̃(r, k) ≥ sup
|x−y|=r

∑d
i=1

(
Ak(x, y)

)
ii
− Ãk(x, y) + 2Bk(x, y)

Ãk(x, y)
, r > 0,

γ(r, k) ≤ inf
|x−y|=r

∑d
i=1

(
Ak(x, y)

)
ii
− Ãk(x, y) + 2Bk(x, y)

Ãk(x, y)
, r > 0,

α∗(r, k) ≤ inf
|x−y|=r

{Ãk(x, y)} ≤ sup
|x−y|=r

{Ãk(x, y)} ≤ α∗(r, k), r > 0, k ∈ S.

Set

I(s, k) =

∫ s

1

γ̃(u, k)

u
du, s > 0, I(s, k) =

∫ s

1

γ(u, k)

u
du, s > 0, k ∈ S.
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Criterion on success of coupling

Theorem

If for each k ∈ S

δk :=

∫ ∞
0

e−Ī(s,k)
(∫ ∞

s

eĪ(u,k)

α∗(u, k)
du
)

ds <∞,

then the coupling
(
X(t),Λ(t), Y (t),Λ′(t)

)
starting at every (x, k, y, l) in

Rd × S × Rd × S is successful.
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Proposition

If

δk :=

∫ ∞
0

e−Ī(s,k)
(∫ ∞

s

eĪ(u,k)

α(u, k)
du
)

ds <∞,

then for every 0 < λ < θ̃e−2Θ̃δ, it holds

sup
x,k,y,k

Ex,k,y,k
[
eλT

]
≤
(
1− λ θ̃−1e2Θ̃δ

)−1
.

Here Θ̃ = maxk∈S q(k,k) = maxk∈S
∑

j 6=k q(k,k)(j,j), θ̃ = mink∈S q(k,k),

δ = maxk∈S δk.
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Strong ergodicity in multidimensional case

Theorem

If there exists a coupling process (X(t),Λ(t), Y (t),Λ′(t)) in the previous

form. If for each k ∈ S

δk :=

∫ ∞
0

e−Ī(s,k)
(∫ ∞

s

2λeĪ(u,k)

α∗(u, k)
du
)

ds <∞,

then the process (X(t),Λ(t)) is strongly ergodic.
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The End

Thank you for your attention!
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