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Introduction

Some notations:
e Q C R": a bounded convex domain of diameter D = diam(%2);
o V:Q — R a convex potential;

@ L =—A+ V: the Schrodinger operator on €2 with Dirichlet
boundary condition;

@ Eigenvalues of L: \g < A1 < X2 < ..., limjoo A = 400
e Eigenfunctions of L: ¢q, ¢1, P2, ..., dilsa = 0.
¢o and )\g are called the ground state and ground state energy,
respectively. ¢g is strictly positive in Q.

Q
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Introduction

Fundamental Gap Conjecture (van den Berg, 1983):
The spectral gap of L satisfies

372
A1 — Ao 2 D7 (1)

Consider the one dimensional case Q = (— g ) c R! and

= 0. Then the operator is given by L = — :2, and

Eigenvalues \; | Eigenfunctions ¢;

| — s mt
i=0 52 cos 5
. 472 2nt
i=1 Dz sin 5%

. 2
Therefore the spectral gap is 3Di2.

5/36



Introduction

Known results

In one dimension:

@ Ashbaugh & Benguria (1989): If V is symmetric and
single-well (not necessarily convex), then the conjecture holds;

@ Lavine (1994): The conjecture holds if V' is convex.

symmetric, non-convex convex
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Introduction

Known results

In higher dimensions:

@ Singer, Wong, Yau & Yau (1985): the gap A\; — Ao > 452;

e Qi Huang Yu & Jia Qing Zhong (1986): on a compact
manifold, the first nontrivial eigenvalue > ”—22

@ Jun Ling (2005): the gap > % D2 + a where
o = —sup V?(log ¢p);

@ Mu-Fa Chen & Feng-Yu Wang (1994, 1997): coupling method
yields variational formula for the first nontrivial eigenvalue;
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Introduction

Complete solution

Andrews & Clutterbuck (JAMS, 2011): The gap conjecture holds.
Basic idea: compare the spectral gap with one dimensional case.

Let V e Cl([ — 5, %] ) be an even function, such that

Vx,y e, x#y,

<W(x)—vv<y),X‘y>zzv<'x2y‘) (2)

Ix -yl

The function V is called a modulus of convexity of V.
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Introduction

Remark 2

R |

(i) If the sign > is replaced by <, then V is called a modulus of
concavity of V.

(if) If V' is convex, then we can choose V = 0.

(iii) Fix any x € Q and 0 € R" with |§| = 1. For t > 0 such that
x +t0 € Q, (2) implies

(VV(x + t0) — VV(x),6) > 2v’<;)

Note that V is even, hence V/'(0) = 0. Dividing both sides by t
and letting t — 0 yield

([V2V(x)]6,6) > V"(0).
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Introduction

Log-concavity estimate of ground state

Consider the one dimensional Schrédinger operator [ = —j—; +V
on [ — 2, D], satisfying the Dirichlet boundary condition.

Denote the corresponding objects by adding a tilde, e.g. \; and
oi, i =0,1,2,....

Theorem 3 (Andrews & Clutterbuck, JAMS, 2011, Theorem 1.5)

Assume that V is a modulus of convexity of V, i.e. (2) holds,
then log ¢g is a modulus of concavity of log ¢g. More precisely,

Vx,y €eQx#y,

(Vlog do(x) — Vlog do(y), £ — 1) < 2log qz"so)’('x - ')- ®)
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Introduction

Remarks on Theorem 3

(i) Recall that when V is convex, then V = 0.

In this case, L = — t2 has the ground state ¢o(t) = cos &, thus
(loggo) (t) = —FtanF, te (- 5, 5).

The log-concavity estimate (3) becomes

<Vlog¢>o() Vlogcbo(y)’ §|><_2gt (!X2—DY|>.

(ii) Brascamp & Lieb (JFA, 1976) proved a weaker result: if V is
convex, then the ground state ¢ is log-concave.
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Introduction

Spectral gap comparison theorem

Theorem 5 (Andrews & Clutterbuck, JAMS, 2011, Theorem 1.3)

IfV is a mgdulu§ of convexity of V, i.e. (2) holds, then
A — o> A1 — Ao

Ingredients of the proof:

(i) the ground state transform: For i = 0,1, let

U,'(t,X) = e_Aitqbi(X) and v = el = e_(Al_AO)tﬂ_
to o

Then v(t, ) € C*(£2) and
0
a% = Av + 2(V log ¢o, Vv);
(ii) sharp log-concavity estimate of ground state ¢g (Theorem 3);
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Introduction

(i) estimate of the modulus of continuity:
(60 V(t.9) < GOt b= y1) = Go 3L (),

Recall that v(t, x) — v(t,y) = e"M1=20)t(SL(x) — ZL(y)),
hence Vt > 0 and x,y € Q,

—(A1—Xo)t 1 $1 > —(5\1—5\0)t@ _
(0= 5a00) < ety

which implies A\; — A\g > 5\1 — 5\0. O

Our purpose: give a probabilistic proof to the gap conjecture by
using the coupling by reflection.
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Introduction

Coupling by reflection

The coupling by reflection (also called mirror coupling) was
introduced by Lindvall & Rogers (Ann Probab, 1986), see also
M.F. Chen &. S.F. Li (Ann Probab, 1989).

Reason for introducing it: to make two multi-dimensional
Brownian motions meet in finite time.

Basic idea:
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Introduction

Introduce the matrix

*

(x—y)x—vy)

M =I,-2
(X’y) n lx—y|2

, X,y eR" x#y,

which corresponds to the reflection mapping w.r.t. the hyperplane
passing through the origin and perpendicular to the vector x — y.

A

x—y)(x—y)* 4
2 ALY
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Introduction

Given a smooth vector field b : R” — R" and an n-dimensional
Brownian motion B;. Consider the diffusion (X;):>0 defined by

dX; = V2dB; + b(X;)dt, X = x.

The coupling by reflection is given by

dY: = \/EM(Xt; Yy)dB: + b(Ye)dt, Yo=y.

Define the coupling time 7 = inf{t > 0: Y; = X;}.
Lindvall & Rogers (Ann Probab, 1986, Example 5) proved that if

(x —y, b(x) — b(y)) <0,

then 7 < +00 as.
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Log-concavity estimate of ground state

Equations for log ¢

In order to estimate the log-concavity of ¢g, we observe that

—A¢o + Voo = Aooo.

Hence
Alog ¢ + |V log dol® = V — Ao.

Differentiating the equation leads to
A(V log ¢o) + 2(V log ¢o, V(V log ¢0)) = V'V, (4)
or equivalently, in component form,

A(0;log ¢o) + 2(V log go, V(9;log ¢o)) = 9;V, 1<i<n.
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Log-concavity estimate of ground state

Conservative diffusion

The above equations suggest us to consider the following SDE
dX; = V2dB; + 2V log ¢o(X;) dt, Xo = x € Q. (5)

where B; is an n-dimensional standard Brownian motion.

The diffusion (X¢)¢>0 is conservative, that is, starting from a point
x € Q, the process X; will not arrive at the boundary 092.

e Eric Carlen (Commun. Math. Phys., 1984),
P.A. Meyer & W.A. Zheng (Séminaire de probabilités, 1985);
@ We can also consider the one dimensional process paq(Xt),
where pgq :  — R is the distance function to the boundary.
Using the properties of the drift 2V log ¢g = 2%, we can
prove ppa(X¢) > 0as. Vit > 0.
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Log-concavity estimate of ground state

Some notations

Consider
dY; = V2 M(X, Yi)dB: + 2V log do(Yy)dt, Yo=y € Q. (6)
For 1,6 > 0, define stopping times (by convention: inf () = c0)

Ty = inf{t > 0:|X; — Y¢| =1},

o5 = inf{t >0: ,OaQ(Xt) AN paQ(Yt) = 5}.
Asn — 0, 7, T 7=inf{t >0: X; = Y;}: the coupling times.
Set Yy = X; for 7 < t < 400.

As § — 0, a.s. g5 T o0 since X; and Y; do not hit the boundary
09).
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Log-concavity estimate of ground state

In order to prove the log-concavity estimate

(Viogonl) - Tiogonly). =2 ) < = wan (*351). @)

we consider the processes

ar = Viog ¢o(Xt) — Vlog do(Yt),

g= ez Ve
[ Xt — Yil
Fi = <0[t7/6t>‘

Then CI(Xt — Yt) = 2\/§ﬂt<ﬁt; dBt> + 20£t dt and

Fo— <Vlog do(x) — Vlog ¢go(y), %>
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Log-concavity estimate of ground state

Two lemmas

Assume that the potential V : Q — R is convex. Then for
t < Ty N\ Os,
dFy > (B, dM),

where M; is a vector-valued local martingale.

The proof follows from [t&'s formula, the properties of log ¢g and
of the coupling by reflection: by equations (5) and (6),

d(X: — Y:) = 2v2 3:(Bt, dBy) + 2a dt.

Hence
X — Ys

d’Xt - Yt| - <m,d(xt - Yt)> - 2\/§</Bt,dBt> +2Ftdt

22/36



Log-concavity estimate of ground state

Two lemmas

Let dpo(t) =cos ™, t € [ — 2, 2] be the first Dirichlet

. . b .
eigenfunction of the operator —j? on the interval [ — 2, 2].

Define ¢p(t) = (log §p,)'(t) = ~ftan . t € (— 5. 3).
Since 1p(t) explodes at t = i%, we take D; > D and consider
épr.0» Uy = (log dpyo)’. Then ¥p, € C2°[0,2] and it satisfies

Yp, + 2tp,bp, = 0.

Set & = | Xt — Yi|/2. We have for t < 1, A 05,

dop, (&) = V29, (&:)(Be, dBe) + ¥, (&) [Fe — 2¢p, (&¢)] dt.
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Log-concavity estimate of ground state

Log-concavity estimate of the ground state

Theorem 8 (Modulus of log-concavity)

Assume that the potential function V : Q — R is convex. Then for
all x,y € Q with x # y, it holds

(Vlog do(x) — Vlog (). ; — §|> < —%” tan (”";; y’).

Sketch of proof. Fix n >0, § >0 and D; > D. Lemmas 6 and 7
lead to

d[Fe — 2Up, (&)] > dMe — 290, (&) [Fe — 24p, (&)] dt,

in which d, is the martingale part.

24/ 36



Log-concavity estimate of ground state

Sketch of proof

The above inequality is equivalent to

d{ [Fe-20,(£)] exp [ /0 tzwbl(»ss)ds} } > exp [ /0 t2wb1(€s)d5]d/\7lt-

Integrating from 0 to t A 7, A 05 and taking expectation on both
sides give us

FO - 21/}D1 (50) S E{ [Ft/\Tn/\O'(; - 21/)D1 (gt/\Tn/\O'(; )]
tATHN\O§
<eo| [ 20| @

Brascamp & Lieb (JFA, 1976): if V is convex, then the ground
state ¢ is log-concave. Hence Fiar, o <0 as.
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Log-concavity estimate of ground state

Sketch of proof

tATHNO §
Fo—21p, (&) < _2E{le(£t/\Tn/\05)eXp [/o 27%1(55)(15} }

Notice the following facts:

e Lindvall & Rogers (Ann. Probab., 1986): the log-concavity of
the drift V log ¢¢ implies the coupling (X;, Y;) is successful,
ie., ) T 7 <400 as.

@ p, is a bounded function on [0, D/2].

° ¢’Dl(z) = —g—jz sec2(g—j) <0 for z € [0, D/2], thus
exp [fot/m’/\a“ 29, (&) ds] <1 forall t > 0.
Letting t T oo and 4,7 | 0, the dominated convergence theorem

yields

Fo — 20, (&) < —2 E{m (&) exp [ /0 "oy (&) ds} } _o.
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Log-concavity estimate of ground state

If we do not use the results of Brascamp & Lieb (JFA, 1976) and
Lindvall & Rogers (Ann. Probab., 1986), then we need some
estimates on the ground state ¢y.

There exists 59 > 0 and Cy > 0, such that V x € 05,2,

V2 log ¢o(x) < —
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Log-concavity estimate of ground state

Using the above lemma, we can prove

Lemma 10 (see also J. Wolfson, arXiv:1212.1669)

Fix any e > 0.
(i) Near-diagonal estimate. There is 1 > 0 such that for all
x,y € Q with |x — y| < m, it holds

(Viog do(x) ~ Viogdoy), £ — 1) <<

(ii) Near-boundary estimate. Let 11 > 0 be given as above. There
is 81 > 0 small enough such that if 6 < 61 and x € 9580, y € Q
with |x — y| > m1, it holds

— )
(V log do(x) — Vlog do(y), ﬁ} <—Glog2 + G

for some constants Cy, C, > 0.

28 /36



Log-concavity estimate of ground state

Alternative proof of Theorem 8

Let € > 0 and 71 > 0 be given as in Lemma 10. Take sufficiently
small 62 < 61. Applying (8) with n; and §, gives

FO - 2wD1 (50) <E < [Ft/\ﬂ,l Nos, — 21,[}D1 (61’/\7'7]1 Nos, )}

X exp [ / T g (6) ds} )
0

Letting t — oo,

Fo — 27»DD1 (50) < E([FTnlA052 - 2¢D1(§Tn1/\052 )]

Ty NOs,
% exp [ /0 20/, (&) ds] ) -

By Lemma 10 we can prove
F7'771/\0'52 - 2'¢D1 (67'7]1/\0'52) S 25.
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Proof of the fundamental gap conjecture

Simple preparation

Recall the coupling processes (X:)r>0 and (Y¢)r>o0

dX; = V2dB; + 2V log ¢o(X:) dt, Xo =x € Q.
dY; = V2 M(Xy, Yi)dB: 4+ 2V log ¢o(Y:)dt, Yo=y € Q.

We still denote by & = | X; — Y:|/2 which satisfies
dft == \[</Bt,dBt> + Ft dt

<V2(B:,dBy) — D <ﬂ£t> t. (9)
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Proof of the fundamental gap conjecture

We have for all t > 0,

. (T 3m2t\ . (7wx—y| 32t
— < B — < S ———
IEsm(D) _exp( D2 >S|n< D < exp D2

Sketch of proof. By Itd's formula and (9),

dsm( &) :%co <Wft>d§t 7;2 sin (”&)dgt dé;

< fz%cos (”&> (Be, dBy) — 31 i <7T£t)dt

D? D

Denote by M, the martingale part. Then

2 26\ .
d [exp (3;;) sin (?)} < exp (322>th.
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Proof of the fundamental gap conjecture

Integrating from 0 to t A 7, A 05 and taking expectation yield

2(t Ao _
E[exp <37r ( /2)72—77 h Ué)) sin (mgtAD"A 5” <'sin <7T|X2D y|>

Letting 6 and n tend to O gives us

fon () () s (7557

Recall that £ = 0 almost surely for t > 7; thus we have

el (570 (757 | =20 ()0 (7))

which leads to the desired result. O
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Proof of the fundamental gap conjecture

Theorem 12 (Fundamental gap conjecture)

If the potential V' of the Schrédinger operagor L=—-A+4+Vis
convex, then the spectral gap A\1 — Ao > 3;3%.

Proof. Recall that the ground state transform

v = ::iéiié =: e~ (M=)t solves
0
(TZ = Av + 2(V log ¢g, Vv).

Hence by (5) and (6),
V(t,X) = EVO(Xt)7 V(t7y) = IE‘/O(\/t‘)'
Since vp = % is Lipschitz continuous on Q with a constant K > 0,

[v(t,x) — v(t,y)| < Elw(X:) — vo(Y:)| < KE|X;: — Yi| = 2KEE;.
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Proof of the fundamental gap conjecture

Next sin “—DZ > %Z for z € [0, %] hence

(e = vie)| < KDEsin (T52) < KD (- 221).

where the last inequality is due to Lemma 11.

Noting that v(t,x) — v(t,y) = e~ M1=2)t(y5(x) — vo(y)), we
obtain

2
e—()\l—)\O)t‘VO(X) - VO(y)’ < KDexp ( - 3;2t>

forall t > 0 and x, y, € Q. Since vy = % is not constant, we

conclude that )
3
Mg T
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Proof of the fundamental gap conjecture

Thank you for your attention!
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