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Poisson’s equation

Let {Φ0,Φ1,Φ2, . . .} be a discrete-time Markov chain.

Poisson’s equation:
(I − P)x = g

where

P is the transition matrix P ≥ 0, P1 = 1,

g is a given vector indexed by the state space

Assume

denumerable state space, irreducible, positive recurrent

πtg = 0. w.l.g.
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Link with Central limit theorem

Define Sn = 1
n

∑
0≤t≤n−1 gΦt

Strong Law of Large Number:

Sn → πtg a.s. for n→∞

Central limit theorem:

√
n(Sn − πtg)⇒ N(0, σ2

g ) for n→∞

where σ2
g =

∑
i πi (2hi ḡi − ḡ 2

i )

(I − P)h = ḡ ḡ = g − (πtg)1
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Link with perturbation

We need P is aperiodic.
Take perturbation E : matrix s.t. Q = P + E is stochastic, irreducible, positive
recurrent, . . .

Define α to be the stationary probability vector of Q

If E is sufficiently small,

αt = πt
∑
n≥0

(ED)n

where D :=
∑

n≥0(Pn − 1πt) is the deviation matrix such that

(I − P)D = I − 1πt πtD = 0
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Finite state space is easy

Poisson’s equation

(I − P)x = g

P stochastic, irreducible, finite size: x is unique, up to an additive constant

x = (I − P)#g + c1

(I − P)# is the group inverse of (I − P)

c is an arbitrary constant

actually, πtg = 0 otherwise system doesn’t make sense
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Groupe inverses and deviation matrix

Groupe inverse of A (unique when it exists):

(1) AA#A = A, A#AA# = A#

(2) AA# = A#A

- For properties and computation:
Campbell and Meyer, Generalized Inverses of Linear Transformations, 1979

- Irreducible finite MC: (I − P)# exists and is unique solution to

(I − P)(I − P)# = I − 1πt, πt(I − P)# = 0

Deviation matrix: (in addition, P is non-periodic)

D :=
∑
n≥0

(Pn − 1πt) = (I − P)#.
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Constructive solution

GLynn and Meyn (1996): Assume πt|g | <∞

(i) Take j to be an arbitrary state and T to be its first return time

One solution of the Poisson equation (I − P)x = g is given by

xi = E[
∑

0≤n<T

gΦn |Φ0 = i ]

xj = 0.

(ii) (uniqueness:) solutions are given up to an arbitrary constant.

Comments of (i):

It is not convenient to consider single state j for matrix-analytic models.
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Censoring — a.k.a. Schur complementation

Take subset of states A, T first return time to A,

P =

[
PAA PAB

PBA PBB

]
NB =

∑
n≥0

Pn
BB

βi = E[
∑

0≤n<T

gΦn |Φ0 = i ]

Dendievel, Latouche and Liu (2013):

Theorem 1: One solution is given by

xA = β
A

+ (PAA + PABNBPBA)xA

xB = β
B

+ NBPBAxA

Schur complementation, same as censoring for stationary distribution.
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Deviation matrix D =
∑

n≥0(Pn − 1πt)

The deviation matrix exits (i.e. the series converges) if and only if
E[T 2(j)|Φ0 = j ] <∞

Bhulai and Spieksma (2003)

Assume P is geometrically ergodic.

(i) D is the unique solution of

(I − P)D = I − 1πt, πtD = 0

(ii) A solution of (I − P)x = g , with πtg = 0, πt|g | <∞, is

x = Dg + c1, where c is arbitrary.

In this way, D is just like (I − P)#.
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QBDs

QBDs are Markov chains on a two-dimensional state space

(n, ϕ) : n = 0, 1, 2, . . . ; ϕ = 1, 2, . . . ,M

here M <∞.

Often,

n is length of a queue, named the level,

ϕ may be many different things, named the phase.
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Transition graph (such as it is)
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Transition matrix

Block-structured transition matrix:

P =



A∗ A1 0 0 · · ·
A−1 A0 A1 0

0 A−1 A0 A1

. . .

0 0 A−1 A0

. . .
...

. . .
. . .

. . .


Transition probabilities:

(A1)ij probability to go up from (n, i) to (n + 1, j)
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Transition matrix

Block-structured transition matrix:

P =



A∗ A1 0 0 · · ·
A−1 A0 A1 0

0 A−1 A0 A1

. . .

0 0 A−1 A0

. . .
...

. . .
. . .

. . .


Transition probabilities:

(A−1)ij probability to go down from (n, i) to (n − 1, j)
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Transition matrix

Block-structured transition matrix:

P =



A∗ A1 0 0 · · ·
A−1 A0 A1 0

0 A−1 A0 A1

. . .

0 0 A−1 A0

. . .
...

. . .
. . .

. . .


Transition probabilities:

(A0)ij probability to stay in level n, (n, i) to (n, j), n 6= 0
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Transition matrix

Block-structured transition matrix:

P =



A∗ A1 0 0 · · ·
A−1 A0 A1 0

0 A−1 A0 A1

. . .

0 0 A−1 A0

. . .
...

. . .
. . .

. . .


Transition probabilities:

(A∗)ij probability to remain in level 0, (0, i) to (0, j)
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matrices for QBDs

Analysis makes extensive use of matrices

Gij = P[T <∞,ΦT = (0, j)|Φ0 = (1, i)],

Rij = E[
∑

0≤t<T

1[Φt = (1, j)]|Φ0 = (0, i)],

U = A0 + A1G

T is the first return time to level 0.

Computing matrices G and R.

Latouche-Ramaswami’s Algorithm (1993) is powerful.
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QBDs

Our focus:

Look for “constructive” solution to

(I − P)x = g ,

where P is the transition matrix of an irreducible, aperiodic and positive
recurrent QBD.

Deviation matrix for QBDs — Yuanyuan Liu 9th workshop— July 6, 2013 16 / 27



Markov chains: Finite state space Markov chains: Infinite state space Properties of QBDs Solving Poisson’s equation for QBDs Illustration

Solution 1: through the first return time

Let A = `(0) denote the level 0 and B = E\A. Using Theorem 1, we have:

Dendievel, Latouche and Liu (2013)

Theorem 2. A solution of the Poisson’s equation for a QBD is given by

h0 = (I − P∗)# [y0 − (πg)τ0] + 1,

hn = yn − (πg) τn + G nh0, n ≥ 1,

where P∗ = B + A1G , and yn, τn are obtained by

τ0 = 1 + A1τ1,

τn =
[
(I − G n)(I − G)# + n1ν>

]
(I − U)−1(I − R)−11, n ≥ 1,

y0 = g0 + A1y1,

yn =
n−1∑
i=0

G i (I − U)−1

∑
l≥0

R lgn−i+l

 , n ≥ 1,

where ν> is the invariant probability row vector of the stochastic matrix G .
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Solution 2: through the deviation matrix

Let C = I − 1πt. Look for the deviation matrix by solving

(I − P)X = C

i.e. X = D.
Details are a bit messy, focus on the structure.

I − A∗ −A1 0 . . .

−A−1 I − A0 −A1

0 −A−1 I − A0

...
. . .




X0

X1

X2

...

 =


C0

C1

C2

...
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Schur complementation


I − A∗ −A1 0 . . .

−A−1 I − A0 −A1

0 −A−1 I − A0

...
. . .




X0

X1

X2

...

 =


C0

C1

C2

...


Gaussian elimination:

I − A0 −A1

−A−1 I − A0

. . .


X1

X2

...

 =

C1

C2

...

+

A−1

0
...

X0

Isolate
[
X1 X2 . . .

]
and inject in first equation
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Schur complementation (contd)

I − A0 −A1

−A−1 I − A0

. . .


X1

X2

...

 =

C1

C2

...

+

A−1

0
...

X0

Need W such that

W

I − A0 −A1

−A−1 I − A0

. . .

 = I

Or W =
∑

n≥0 H
n,

H =

 A0 A1

A−1 A0

. . .
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W : the matrix of the expected sojourn times

W(n,i)(k,j) is expected number of visits to (k, j) before level zero, starting from
(n, i). A bit calculation yields

Wnk =


G n−kW kk , n > k,
W nnR

k−n, n < k,∑n−1
ν=0G

ν(I − U)−1Rν , n = k.

Probability explanation of the first case: n > k

n → n − 1 → · · · → k
G G G

(a) go down n − k levels from n to k and

(b) start counting

Wnk = G n−kW kk
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Schur complementation (end)


I − A∗ −A1 0 . . .

−A−1 I − A0 −A1

0 −A−1 I − A0

...
. . .




X0

X1

X2

...

 =


C0

C1

C2

...


First equation becomes

(I − P∗)X0 =
∑
i≥0

R iCi ,

where P∗ = B + A1G is the transition matrix of the censored Markov chain.
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The expression of the deviation matrix

For deviation matrix, let C = I − 1πt (in (I − P)X = C).

Dendievel, Latouche and Liu (2013)

Theorem 3. The deviation matrix D is given by D = (I − 1πt)K , where

K0k = (I − P∗)# (I − τ 0π
t
0)Rk k ≥ 0

Kn0 = −τ nπ
t
0 + G nK00 n ≥ 1

Knk = Wnk − τ nπ
t
k + G nK0k n, k ≥ 1,

One solution of the Poisson equation is given by x = Dg + c1.
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Illustration

Assume QBD is a queueing system, level = number of customers.

Define

m`,j =
1

L

∑
n≥0

(E[Yn|Y0 = `, ϕ0 = j ]− L)

where L is stationary expected number of customers.

One has

m =
1

L
Dγ withγ

n
= n1.

Special form of γ allows for further simplification and makes it possible to
compute m with finite computations.
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PH/M/1 queue

Example: PH/M/1 queue, services are exponential, interarrival times are
PH(τ ,T ) with

τ =
[
0.1127 0.8873

]
,

T =

[
−0.2254 0

0 −1.7746

]
.

Service rate = 1.2.

Traffic coefficient = 0.8333.
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PH/M/1 queue (Contd)
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