Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

The deviation matrix, Poisson's equation, and Quasi-birth-death processes (QBDs)

Yuanyuan Liu

Institute of Probability and Statistics, School of Mathematics and Statistics, Central South University

the Ninth Workshop on Markov Processes and Related Topics SWJTU and BNU, July 6-13, 2013

Joint work with Sarah Dendievel and Guy Latouche

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

The deviation matrix, Poisson's equation, and Quasi-birth-death processes (QBDs)

Yuanyuan Liu

Institute of Probability and Statistics, School of Mathematics and Statistics, Central South University

the Ninth Workshop on Markov Processes and Related Topics SWJTU and BNU, July 6-13, 2013

Joint work with Sarah Dendievel and Guy Latouche

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			0	

Poisson's equation

Let $\{\Phi_0,\Phi_1,\Phi_2,\ldots\}$ be a discrete-time Markov chain.

Poisson's equation:

$$(I - P)\underline{\mathbf{x}} = \underline{g}$$

where

- P is the transition matrix $P \ge 0$, $P\underline{1} = \underline{1}$,
- g is a given vector indexed by the state space

Assume

• denumerable state space, irreducible, positive recurrent

•
$$\underline{\pi}^{\mathrm{t}}\underline{g} = 0.$$
 w.l.g.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

Link with Central limit theorem

Define
$$S_n = \frac{1}{n} \sum_{0 \le t \le n-1} \frac{g_{\Phi_t}}{g_{\Phi_t}}$$

Strong Law of Large Number:

$$S_n \to \underline{\pi}^{\mathrm{t}} \underline{g}$$
 a.s. for $n \to \infty$

Central limit theorem:

$$\sqrt{n}(S_n - \underline{\pi}^{\mathrm{t}}\underline{g}) \Rightarrow N(0, \sigma_g^2) \quad \text{for } n \to \infty$$

where

$$\sigma_g^2 = \sum_i \pi_i (2\mathbf{h}_i \bar{\mathbf{g}}_i - \bar{\mathbf{g}}_i^2)$$

$$(I - P)\underline{h} = \underline{\overline{g}} \qquad \underline{\overline{g}} = \underline{g} - (\underline{\pi}^{\mathrm{t}}\underline{g})\underline{1}$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			0	

Link with perturbation

We need P is aperiodic.

Take perturbation E: matrix s.t. Q = P + E is stochastic, irreducible, positive recurrent, . . .

Define $\underline{\alpha}$ to be the stationary probability vector of Q

If *E* is sufficiently small,

$$\underline{\alpha}^{\mathrm{t}} = \underline{\pi}^{\mathrm{t}} \sum_{n \ge 0} (\boldsymbol{\mathsf{ED}})^n$$

where $\mathcal{D} := \sum_{n>0} (\mathcal{P}^n - \underline{1}\pi^t)$ is the deviation matrix such that

$$(I-P)\mathcal{D} = I - \underline{1}\pi^{\mathrm{t}} \qquad \underline{\pi}^{\mathrm{t}}\mathcal{D} = \underline{0}$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

Outline

- 2 Markov chains: Infinite state space
- O Properties of QBDs
- Solving Poisson's equation for QBDs

Illustration

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
•				

Finite state space is easy

Poisson's equation

$$(I-P)\underline{\mathbf{x}} = \underline{g}$$

P stochastic, irreducible, finite size: \underline{x} is unique, up to an additive constant

$$\underline{x} = (I - P)^{\#} \underline{g} + c \underline{1}$$

- c is an arbitrary constant
- actually, $\underline{\pi}^{\mathrm{t}}g=0$ otherwise system doesn't make sense

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

Groupe inverses and deviation matrix

Groupe inverse of A (unique when it exists):

(1)
$$AA^{\#}A = A$$
, $A^{\#}AA^{\#} = A^{\#}$

(2)
$$AA^{\#} = A^{\#}A$$

- For properties and computation:

Campbell and Meyer, Generalized Inverses of Linear Transformations, 1979

- Irreducible finite MC: $(I - P)^{\#}$ exists and is unique solution to

$$(I-P)(I-P)^{\#} = I - \underline{1}\pi^{t}, \qquad \underline{\pi}^{t}(I-P)^{\#} = \underline{0}$$

Deviation matrix: (in addition, *P* is non-periodic)

$$\mathcal{D} := \sum_{n>0} (\mathcal{P}^n - \underline{1}\underline{\pi}^{\mathrm{t}}) = (\mathcal{I} - \mathcal{P})^{\#}.$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			0	

Constructive solution

GLynn and Meyn (1996): Assume $\underline{\pi}^{\mathrm{t}}|g| < \infty$

(i) Take *j* to be an arbitrary state and *T* to be its first return time One solution of the Poisson equation $(I - P)\underline{x} = g$ is given by

$$x_i = \mathrm{E}[\sum_{0 \le n < T} g_{\Phi_n} | \Phi_0 = i]$$

$$x_j = 0.$$

(ii) (uniqueness:) solutions are given up to an arbitrary constant.

Comments of (i):

It is not convenient to consider single state j for matrix-analytic models.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

Censoring — a.k.a. Schur complementation

Take subset of states A, T first return time to A,

 $P = \begin{bmatrix} P_{AA} & P_{AB} \\ P_{BA} & P_{BB} \end{bmatrix} \qquad \qquad N_B = \sum_{n>0} P_{BB}^n$

$$\beta_i = \mathrm{E}[\sum_{0 \le n < T} g_{\Phi_n} | \Phi_0 = i]$$

Dendievel, Latouche and Liu (2013):

Theorem 1: One solution is given by

$$\underline{x}_{A} = \underline{\beta}_{A} + (P_{AA} + P_{AB}N_{B}P_{BA})\underline{x}_{A}$$

$$\underline{x}_{B} = \underline{\beta}_{B} + N_{B}P_{BA}\underline{x}_{A}$$

Schur complementation, same as censoring for stationary distribution.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			0	

Deviation matrix $\mathcal{D} = \sum_{n \ge 0} (P^n - \underline{1}\underline{\pi}^t)$

The deviation matrix exits (i.e. the series converges) if and only if $E[T^2(j)|\Phi_0 = j] < \infty$

Bhulai and Spieksma (2003)

Assume P is geometrically ergodic.

(i) \mathcal{D} is the unique solution of

$$(I-P)\mathcal{D}=I-\underline{1\pi}^{\mathrm{t}},\qquad \underline{\pi}^{\mathrm{t}}\mathcal{D}=\underline{0}$$

(ii) A solution of $(I - P)\underline{x} = \underline{g}$, with $\underline{\pi}^{t}\underline{g} = 0$, $\underline{\pi}^{t}|\underline{g}| < \infty$, is $\underline{x} = \mathcal{D}\underline{g} + c\underline{1}$, where *c* is arbitrary.

In this way, \mathcal{D} is just like $(I - P)^{\#}$.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
		•		

QBDs

QBDs are Markov chains on a two-dimensional state space

$$(n, \varphi)$$
: $n = 0, 1, 2, ...; \quad \varphi = 1, 2, ..., M$

here $M < \infty$.

Often,

- *n* is length of a queue, named the level,
- φ may be many different things, named the phase.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
		•		

Transition graph (such as it is)

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
		•		

Transition graph (such as it is)

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
		•		

Block-structured transition matrix:

$$P = \begin{bmatrix} A_* & A_1 & 0 & 0 & \cdots \\ A_{-1} & A_0 & A_1 & 0 \\ 0 & A_{-1} & A_0 & A_1 & \ddots \\ 0 & 0 & A_{-1} & A_0 & \ddots \\ \vdots & & \ddots & \ddots & \ddots \end{bmatrix}$$

Transition probabilities:

 $(A_1)_{ij}$ probability to go up from (n, i) to (n+1, j)

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
		•		

Block-structured transition matrix:

$$P = \begin{bmatrix} A_* & A_1 & 0 & 0 & \cdots \\ A_{-1} & A_0 & A_1 & 0 \\ 0 & A_{-1} & A_0 & A_1 & \ddots \\ 0 & 0 & A_{-1} & A_0 & \ddots \\ \vdots & & \ddots & \ddots & \ddots \end{bmatrix}$$

Transition probabilities:

 $(A_{-1})_{ij}$ probability to go down from (n, i) to (n - 1, j)

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
		•		

Block-structured transition matrix:

$$P = \begin{bmatrix} A_* & A_1 & 0 & 0 & \cdots \\ A_{-1} & A_0 & A_1 & 0 \\ 0 & A_{-1} & A_0 & A_1 & \ddots \\ 0 & 0 & A_{-1} & A_0 & \ddots \\ \vdots & & \ddots & \ddots & \ddots \end{bmatrix}$$

Transition probabilities:

 $(A_0)_{ij}$ probability to stay in level n, (n, i) to (n, j), $n \neq 0$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
		•		

Block-structured transition matrix:

$$P = \begin{bmatrix} A_* & A_1 & 0 & 0 & \cdots \\ A_{-1} & A_0 & A_1 & 0 \\ 0 & A_{-1} & A_0 & A_1 & \ddots \\ 0 & 0 & A_{-1} & A_0 & \ddots \\ \vdots & & \ddots & \ddots & \ddots \end{bmatrix}$$

Transition probabilities:

 $(A_*)_{ij}$ probability to remain in level 0, (0, i) to (0, j)

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
		•		

matrices for QBDs

Analysis makes extensive use of matrices

$$\mathsf{G}_{ij} = \mathsf{P}[T < \infty, \Phi_T = (0, j) | \Phi_0 = (1, i)],$$

$$\begin{aligned} & \mathcal{R}_{ij} = \mathrm{E}[\sum_{0 \leq t < T} \mathbb{1}[\Phi_t = (1, j)] | \Phi_0 = (0, i)], \\ & \mathcal{U} = \mathcal{A}_0 + \mathcal{A}_1 \mathcal{G} \end{aligned}$$

T is the first return time to level 0.

Computing matrices G and R.

Latouche-Ramaswami's Algorithm (1993) is powerful.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			0	

QBDs

Our focus:

Look for "constructive" solution to

 $(I-P)\underline{x} = \underline{g},$

where P is the transition matrix of an irreducible, aperiodic and positive recurrent QBD.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

Solution 1: through the first return time

Let $A = \ell(0)$ denote the level 0 and $B = \mathbb{E} \setminus A$. Using Theorem 1, we have:

Dendievel, Latouche and Liu (2013)

Theorem 2. A solution of the Poisson's equation for a QBD is given by

$$\begin{split} \mathbf{h}_0 &= (I - P^*)^{\#} \left[\mathbf{y}_0 - (\pi \mathbf{g}) \tau_0 \right] + \mathbf{1}, \\ \mathbf{h}_n &= \mathbf{y}_n - (\pi \mathbf{g}) \tau_n + G^n \mathbf{h}_0, \quad n \geq 1, \end{split}$$

where $P^* = B + A_1G$, and \mathbf{y}_n , $\boldsymbol{\tau}_n$ are obtained by

$$\begin{aligned} &\tau_0 = \mathbf{1} + A_1 \tau_1, \\ &\tau_n = \left[(I - G^n) (I - G)^\# + n \mathbf{1} \boldsymbol{\nu}^\top \right] (I - U)^{-1} (I - R)^{-1} \mathbf{1}, \quad n \ge 1, \\ &\mathbf{y}_0 = g_0 + A_1 \mathbf{y}_1, \\ &\mathbf{y}_n = \sum_{i=0}^{n-1} G^i (I - U)^{-1} \left[\sum_{l \ge 0} R^l g_{n-i+l} \right], \quad n \ge 1, \end{aligned}$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

Solution 2: through the deviation matrix

Let $C = I - \underline{1} \underline{\pi}^{t}$. Look for the deviation matrix by solving

(I-P)X = C

i.e. $X = \mathcal{D}$.

Details are a bit messy, focus on the structure.

$$\begin{bmatrix} I - A_* & -A_1 & 0 & \dots \\ -A_{-1} & I - A_0 & -A_1 \\ 0 & -A_{-1} & I - A_0 \\ \vdots & & \ddots \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} C_0 \\ C_1 \\ C_2 \\ \vdots \end{bmatrix}$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

Solution 2: through the deviation matrix

Let $C = I - \underline{1} \underline{\pi}^{t}$. Look for the deviation matrix by solving

(I-P)X = C

i.e. $X = \mathcal{D}$.

Details are a bit messy, focus on the structure.

$$\begin{bmatrix} I - A_* & -A_1 & 0 & \dots \\ \hline -A_{-1} & I - A_0 & -A_1 \\ 0 & -A_{-1} & I - A_0 \\ \vdots & & \ddots \end{bmatrix} \begin{bmatrix} X_0 \\ \hline X_1 \\ X_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} C_0 \\ \hline C_1 \\ C_2 \\ \vdots \end{bmatrix}$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

Schur complementation

$$\begin{bmatrix} I - A_* & -A_1 & 0 & \dots \\ -A_{-1} & I - A_0 & -A_1 \\ 0 & -A_{-1} & I - A_0 \\ \vdots & & \ddots \end{bmatrix} \begin{bmatrix} X_0 \\ \overline{X_1} \\ X_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} C_0 \\ \overline{C_1} \\ C_2 \\ \vdots \end{bmatrix}$$

Gaussian elimination:

$$\begin{bmatrix} I - A_0 & -A_1 \\ -A_{-1} & I - A_0 \\ & & \ddots \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ \vdots \end{bmatrix} + \begin{bmatrix} A_{-1} \\ 0 \\ \vdots \\ \vdots \end{bmatrix} X_0$$

Isolate $\begin{bmatrix} X_1 & X_2 & \ldots \end{bmatrix}$ and inject in first equation

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

Schur complementation (contd)

$$\begin{bmatrix} I - A_0 & -A_1 \\ -A_{-1} & I - A_0 \\ & & \ddots \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ \vdots \end{bmatrix} + \begin{bmatrix} A_{-1} \\ 0 \\ \vdots \end{bmatrix} X_0$$

Need W such that

$$W\begin{bmatrix} I - A_0 & -A_1 \\ -A_{-1} & I - A_0 \\ & & \ddots \end{bmatrix} = I$$

Or
$$W = \sum_{n \ge 0} H^n$$
,
$$H = \begin{bmatrix} A_0 & A_1 \\ A_{-1} & A_0 \\ & \ddots \end{bmatrix}$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

W: the matrix of the expected sojourn times

 $W_{(n,i)(k,j)}$ is expected number of visits to (k,j) before level zero, starting from (n, i). A bit calculation yields

$$W_{nk} = \begin{cases} G^{n-k} W_{kk}, & n > k, \\ W_{nn} R^{k-n}, & n < k, \\ \sum_{\nu=0}^{n-1} G^{\nu} (I-U)^{-1} R^{\nu}, & n = k. \end{cases}$$

Probability explanation of the first case: n > k

$$n \rightarrow n-1 \rightarrow \cdots \rightarrow k$$

 $G \qquad G \qquad G$

(a) go down n - k levels from n to k and
(b) start counting

$$W_{nk} = G^{n-k} W_{kk}$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration

W: the matrix of the expected sojourn times

 $W_{(n,i)(k,j)}$ is expected number of visits to (k,j) before level zero, starting from (n, i). A bit calculation yields

$$W_{nk} = \begin{cases} G^{n-k} W_{kk}, & n > k, \\ W_{nn} R^{k-n}, & n < k, \\ \sum_{\nu=0}^{n-1} G^{\nu} (I-U)^{-1} R^{\nu}, & n = k. \end{cases}$$

Probability explanation of the first case: n > k

(a) go down n - k levels from n to k and
(b) start counting

$$W_{nk} = \mathbf{G}^{n-k} \mathbf{W}_{kk}$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			<u>o</u>	
			· •	

Schur complementation (end)

$$\begin{bmatrix} I - A_* & -A_1 & 0 & \dots \\ -A_{-1} & I - A_0 & -A_1 \\ 0 & -A_{-1} & I - A_0 \\ \vdots & & \ddots \end{bmatrix} \begin{bmatrix} X_0 \\ \overline{X_1} \\ X_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} C_0 \\ \overline{C_1} \\ C_2 \\ \vdots \end{bmatrix}$$

First equation becomes

$$(I-P_*)X_0=\sum_{i\geq 0}R^iC_i,$$

where $P_* = B + A_1 G$ is the transition matrix of the censored Markov chain.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			0	

For deviation matrix, let $C = I - \underline{1} \underline{\pi}^{t}$ (in (I - P)X = C).

Dendievel, Latouche and Liu (2013)

Theorem 3. The deviation matrix \mathcal{D} is given by $\mathcal{D} = (I - \underline{1} \underline{\pi}^t) K$, where

$$\mathbf{K}_{0k} = (I - P_*)^{\#} \quad (I - \underline{\tau}_0 \underline{\pi}_0^{\mathrm{t}}) R^k \qquad k \ge 0$$

 $K_{n0} = -\underline{\tau}_n \underline{\pi}_0^{\mathrm{t}} + G^n K_{00} \qquad n \ge 1$

$$K_{nk} = W_{nk} - \underline{\tau}_n \underline{\pi}_k^{\mathrm{t}} + G^n K_{0k} \qquad n, k \ge 1,$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			0	

For deviation matrix, let $C = I - \underline{1} \underline{\pi}^{t}$ (in (I - P)X = C).

Dendievel, Latouche and Liu (2013)

Theorem 3. The deviation matrix \mathcal{D} is given by $\mathcal{D} = (I - \underline{1} \underline{\pi}^t) K$, where

$$\mathbf{K}_{0k} = (I - P_*)^{\#} \quad (I - \underline{\tau}_0 \underline{\pi}_0^{\mathrm{t}}) R^k \qquad k \ge 0$$

 $K_{n0} = -\underline{\tau}_n \underline{\pi}_0^{\mathrm{t}} + G^n K_{00} \qquad n \ge 1$

$$K_{nk} = W_{nk} - \underline{\tau}_n \underline{\pi}_k^{\mathrm{t}} + G^n K_{0k} \qquad n, k \ge 1,$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			0	

For deviation matrix, let $C = I - \underline{1} \underline{\pi}^{t}$ (in (I - P)X = C).

Dendievel, Latouche and Liu (2013)

Theorem 3. The deviation matrix \mathcal{D} is given by $\mathcal{D} = (I - \underline{1} \underline{\pi}^t) K$, where

$$\mathbf{K}_{0k} = (I - P_*)^{\#} \quad (I - \underline{\tau}_0 \underline{\pi}_0^{\mathrm{t}}) R^k \qquad k \ge 0$$

 $K_{n0} = -\underline{\tau}_n \underline{\pi}_0^{\mathrm{t}} + G^n K_{00} \qquad n \ge 1$

$$K_{nk} = W_{nk} - \underline{\tau}_n \underline{\pi}_k^{\mathrm{t}} + G^n K_{0k} \qquad n, k \ge 1,$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
			0	

For deviation matrix, let $C = I - \underline{1} \underline{\pi}^{t}$ (in (I - P)X = C).

Dendievel, Latouche and Liu (2013)

Theorem 3. The deviation matrix \mathcal{D} is given by $\mathcal{D} = (I - \underline{1} \underline{\pi}^t) K$, where

$$\mathbf{K}_{0k} = (I - P_*)^{\#} \quad (I - \underline{\tau}_0 \underline{\pi}_0^{\mathrm{t}}) R^k \qquad k \ge 0$$

$$K_{n0} = -\underline{\tau}_n \underline{\pi}_0^{\mathrm{t}} + G^n K_{00} \qquad n \ge 1$$

$$K_{nk} = W_{nk} - \underline{\tau}_n \underline{\pi}_k^{\mathrm{t}} + G^n K_{0k} \qquad n, k \ge 1,$$

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
				•
			0	

Illustration

Assume QBD is a queueing system, level = number of customers.

Define

$$m_{\ell,j} = \frac{1}{L} \sum_{n \ge 0} (\mathbb{E}[Y_n | Y_0 = \ell, \varphi_0 = j] - L)$$

where L is stationary expected number of customers.

One has

$$\underline{m} = \frac{1}{L} \mathcal{D} \underline{\gamma} \quad \text{with} \underline{\gamma}_n = n \underline{1}.$$

Special form of $\underline{\gamma}$ allows for further simplification and makes it possible to compute \underline{m} with finite computations.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
				•

PH/M/1 queue

Example: PH/M/1 queue, services are exponential, interarrival times are PH($\underline{\tau}, T$) with

$$\underline{\tau} = \begin{bmatrix} 0.1127 & 0.8873 \end{bmatrix},$$
$$T = \begin{bmatrix} -0.2254 & 0\\ 0 & -1.7746 \end{bmatrix}$$

Service rate = 1.2.

Traffic coefficient = 0.8333.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
				•

PH/M/1 queue (Contd)

L = 11.1. Plot of $m_{n,i}$: blue line for phase i = 1; red line for phase i = 2.

Markov chains: Finite state space	Markov chains: Infinite state space	Properties of QBDs	Solving Poisson's equation for QBDs	Illustration
				•

