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Portrait of Werner Heisenberg

Figure : Werner Heisenberg
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Heisenberg as a founder of quantum mechanics

WERNER HEISENBERG (1901 - 1976) was one of the greatest
physicists of the twentieth century. He is best known as a founder
of quantum mechanics, the new physics of the atomic world, and
especially for the uncertainty principle in quantum theory. He is
also known for his controversial role as a leader of Germany’s
nuclear fission research during World War II. After the war he was
active in elementary particle physics and West German science
policy.
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The uncertainty principle

A quantum mechanical principle due to Werner Heisenberg (1927)
states that it is not possible to simultaneously determine the
position and momentum of a particle. It shows that the more
precisely the POSITION is determined, the less precisely the
MOMENTUM is known (and vice versa). The principle is
sometimes known as the Heisenberg uncertainty principle, and can
be stated exactly as

∆x∆p ≥ 1

2
~,

where x is the uncertain position and p is the uncertain
momentum and h = 2π~ is Planck’s constant.
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Basic Notations(1)

µ : mass

ω : frequence

~ : reduced Planck’s constant

h = 2π~ Planck’s constant

P =
~
i

∂

∂x
, the observable momentum (operator)

Q = x · (Qϕ = xϕ), observable position (operator)

A =
1√
2

(√
µω

~
Q+

i√
µω~

P

)
A∗ =

1√
2

(√
µω

~
Q− i√

µω~
P

)
Yuh-Jia Lee National University of Kaohsiung Kaohsiung, TAIWAN 811Heisenberg Inequality in Infinite Dimensions



Background
Mathematical formulation of Heisenberg Uncertainty Principle

Heisenber Uncertainty Principle: general setting
Appendix: Algebraic and Quantum Probability

The number operator and the observable energy operator

H =
1

2µ
P 2 +

µω2

2
Q2, the energy operator

N = AA∗ =
1

ω~
H +

1

2
I, the number operator
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CCR relations

I [P,Q] = PQ−QP = ~
i I

I [A,A∗] = I
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A as an annihilation operator and A∗ as a creation operator

Let ϕλ be the eigenvector of N with eigenvalue λ. Then we have

N(Aϕλ) = (A∗A)Aϕλ

= (AA∗ − I)Aϕλ

= A(A∗A− I)ϕλ

= A(N − I)ϕλ

= (λ− 1)Aϕλ.

Thus either Aϕλ = 0 or Aϕλ is an eigenvector of N with
eigenvalue λ− 1.
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Suppose the latter is the case. We define

ϕλ−1 := Aϕλ.

Then we find that
ϕλ−2 := A2ϕλ

is either 0 or an eigenvector with eigenvalue λ− 2. Continue in
this way we obtain a sequence of vectors

ϕλ−m := Amϕλ (m = 0, 1, 2, . . . ),

which are eigenvectors with eigenvalue (λ−m) as long as
ϕλ−m 6= 0.
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In a similar way we get

N(A∗ϕ) = (λ+ 1)(A∗ϕ).

Hence ϕλ+1 := A∗ϕλ is either 0 or an eigenvector of N with
eigenvalue λ+ 1.
It can be shown that ϕλ+1 6= 0. In fact if ‖A∗ϕλ‖ = 0, we have

‖A∗ϕλ‖2 = 〈A∗ϕλ, A∗ϕλ〉
= 〈ϕλ, AA∗ϕλ〉
= 〈ϕλ, A∗Aϕλ〉+ 〈ϕλ, ϕλ〉
= ‖Aϕλ‖2 + ‖ϕλ‖2

6= 0,

since ϕλ 6= 0.
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Thus ϕλ+1 is always an eigenvector of N with eigenvalue λ+ 1.
Again repeating the above process one obtains a sequence of
vectors ϕλ+n (n = 0, 1, 2, . . . ) which are eigenvectors of N with
eigenvalue λ+ n.
Next we determine when ϕλ−m can be zero. We calculate

〈ϕλ−m, Nϕλ−m〉 = (λ−m)‖ϕλ−m‖2

and
〈ϕλ−m, Nϕλ−m〉 = ‖Aϕλ−m‖2.
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It follows that

λ−m =
‖Aϕλ−m‖2

‖ϕλ−m‖2
≥ 0.

The sequence of eigenvectors ϕλ−m must terminate after finite
number of steps, and therefore there must exist one vector ϕ0 such
that

Aϕ0 = 0.

ϕ0 is an eigenvector of N with eigenvalue zero since

Nϕ0 = A∗Aϕ0 = A∗0 = 0.
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Now we define the normalized vectors

φ0 =
ϕ0

‖ϕ0‖
,

φ1 = C1A
∗φ0,

...

φn = Cn(A∗)nφ0,

...

where Cn are chosen such that ‖φn‖ = 1.
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Thus we have

Nφn = N(Cn(A∗)nφ0 = nφn, ‖φn‖ = 1.

The Cn can be calculated as follows: By the definition of φn, we
have

1 = ‖φn‖2 = 〈(A∗)nφ0, (A∗)nφ0〉|Cn|2,

=
|Cn|2

|Cn−1|2
〈φn−1, AA∗φn−1〉

=
|Cn|2

|Cn−1|2
〈φn−1, (A∗A+ 1)φn−1〉

= n
|Cn|2

|Cn−1|2
〈φn−1, φn−1〉

= n
|Cn|2

|Cn−1|2
;
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hence Cn must be chosen so that

n |Cn|2 = |Cn−1|2 ,

or

Cn =

√
1

n!
.
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Summary

Start with a normalized eigenvector having the property:

Aφ0 = 0.

We obtain a system of orthonormal system {φn} consisting of
eigenvectors of N defined by

φn =
1

n!
(A∗)nφ0

which satisfy

Aφn =
√
nφn−1

A∗φn =
√
n+ 1φn+1.
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Concept of quantum probability

Let {ωn} be a sequence of numbers such that∑
n

ωn = 1, 0 < ωn < 1.

and W a s. a.positive operator with Tr[W ] = 1 such that

W =
∑
n

ωnΛn,

where Λn is a projection onto the eigenspace spanned by φn. W is
referred as the “probability” in the Quantum Probability Theory.
Given an operator A, the expectation or average of A w.r.t. W is
defined by

〈A〉 := trace[AW ].
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From the definition of A and A∗, we have

P =
i
√
µω~(A∗ −A)√

2

Q =

√
~
µω

(
A+A∗√

2

)
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The Pure sate case: W = Λn

〈P 〉 = 0

〈Q〉 = 0

〈P 2〉 = 〈φn, P 2φn〉 = µω~(n+
1

2
)

〈Q2〉 =
~

2µω
(n+

1

2
)

Define
dispA := 〈(A− 〈A〉)2〉 = 〈A2〉 − 〈A〉2

and define
∆A :=

√
dispA
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Then we have

∆P ·∆Q =
√
〈P 2〉

√
〈Q2〉 = ~(n+

1

2
) >

~
2
.
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General case: W any state

〈P 〉 =
∑
n

ωn〈Pφn, φn〉 = 0

〈Q〉 = 0

〈P 2〉 =
∑
n

µωn~(n+
1

2
)

〈Q2〉 =
∑
n

~
2µωn

(n+
1

2
)

Then we have

∆P ·∆Q >
~
2
.

This proves the HUP in the classical setting.

Yuh-Jia Lee National University of Kaohsiung Kaohsiung, TAIWAN 811Heisenberg Inequality in Infinite Dimensions



Background
Mathematical formulation of Heisenberg Uncertainty Principle

Heisenber Uncertainty Principle: general setting
Appendix: Algebraic and Quantum Probability

Let A ∈ L(H,H) and A∗ the adjoint of A. Suppose that the CCR
relation holds:

[A,A∗] = I

Then we have

〈(A−A∗)(A+A∗)〉ϕ,ϕ〉
= 〈(A+A∗)〉ϕ, (A−A∗)ϕ〉
= 〈(AA∗ −A∗A)ϕ,ϕ〉
= 〈[A,A∗]ϕ,ϕ〉
= ‖ϕ‖2

It follows that we have

‖(A∗ −A)ϕ‖‖(A+A∗)ϕ‖ ≥ ‖ϕ‖2.
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Example 1

Consider the Hilbert space H = L2(R, dx). Let

A =
1√
2

(√
µω

~
Q+

i√
µω~

P

)
A∗ =

1√
2

(√
µω

~
Q− i√

µω~
P

)
as given before. Then A+A∗ and A−A∗ can be represented by

A+A∗ =

√
2µω

~
Q

A−A∗ = i

√
2

µω~
P
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Then we have

‖ϕ‖4 ≤ 4

~2
‖Pϕ‖2‖Qϕ‖2

≤ ~2
(∫

R
ϕ′(x)2 dx

)(∫
R

(xϕ(x))2 dx

)
= 4

(∫
R

(xϕ̂(x))2 dx

)(∫
R

(xϕ(x))2 dx

)
.

Finally the HUP becomes(∫
R

(xϕ̂(x))2 dx

)(∫
R

(xϕ(x))2 dx

)
≥ 1

4
‖ϕ‖4.
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Example 2: Gaussian case

Let H = L2(R, µ), where µ is the standard Gaussian measure.
Define Aϕ = ϕ′ for sufficient smooth ϕ. Then we have

〈xϕ, ψ〉 = 〈Aϕ,ψ〉+ 〈ϕ,Aψ〉

so that
〈xϕ, ψ〉 = 〈(A+A∗)ϕ,ψ〉,

where
A∗ϕ = xϕ− ϕ′.

It is easy to see that [A,A∗] = I. Then the HUP read(∫
R
|xϕ(x)− 2ϕ′(x)|2µ(dx)

)(∫
R
|xϕ(x)|2µ(dx)

)
≥ ‖ϕ‖4.
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Next we define the Fourier Wiener transform by

Fϕ(y) =

∫
R
ϕ(
√

2x+ iy)µ(dy).

Then we have
F [xϕ− 2ϕ′](y) = iy · F(y)

and ∫
R
|xϕ(x)− 2ϕ′(x)|2µ(dx) =

∫
R
|F [xϕ− 2ϕ′](y)|2µ(dy)

=

∫
R
|yFϕ(y)|2µ(dy).
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The HUP now becomes

‖ϕ‖4 ≤
(∫

R
|xFϕ(x)|2µ(dx)

)(∫
R
|xϕ(x)|2µ(dx)

)
It is not hard to verify that on L(Rd, µ) the HUP read

‖ϕ‖4 ≤
(∫

Rd
|〈x ,Fϕ(x)〉|2µ(dx)

)(∫
Rd
|〈x , ϕ(x)〉|2µ(dx)

)
It can be show that the equality holds iff ϕ is of the form

ϕ(x) = e
α
2 〈x, uη〉2ϕ(P⊥η x)

for any real number α such that |α| < 1, where η is a non-zero
vector and uη is the normalized vector of η and Pη is the
projection Pη and P⊥η = I − Pη.
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HUP on infinite dimensional spaces

Let (H,B) be an abstract Wiener pair and p1 the abstract Wiener
measure with variance parameter 1. Then the HUP read

‖ϕ‖4 ≤
(∫

B
|〈x ,Fϕ(x)〉|2 p1(dx)

)(∫
B
|〈x , ϕ(x)〉|2 p1(dx)

)
It can be show that the equality holds iff ϕ is of the form

ϕ(x) = e
α
2 〈x, uη〉2ϕ(P⊥η x)

for any real number α such that |α| < 1, where η is a non-zero
vector and uη is the normalized vector of η and Pη is the
projection Pη and P⊥η = I − Pη dimensional space remain true, we
refer the reader to [2].
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General Form of HUP

Let (H,B) be an abstract Wiener space with abstract Wiener
measure p1. For ϕ ∈ L2(p1) and T ∈ L(B,H), we have[∫

B
|Tx|2

H
|ϕ(x)|2p1(dx)

] [∫
B
|Tx|2

H
|Fϕ(x)|2p1(dx)

]
≥ ‖T |H‖

4
HS
‖ϕ‖42.
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Conditions on the HUP equality

Let T ∈ L(B,H) and write T ∗Tx = T̃ ∗Tx =
∑r

j=1 λj
2(x, ej)ej ,

where r is the rank of T and {ej : j = 1, . . . , r} ⊂ B∗ is the
orthonormal set consisting of eigenvalues of T ∗T . Denote by P⊥

T

the projection of B onto the closure of the subspace of H spanned
by {ej : j = 1, . . . , r} and P⊥

T
= I − PT . Then the equality holds

iff r <∞ and f is of the form

f(x) = f(P⊥
T
x) exp

{α
2
|PT x|

2
}
, (3.1)

where |α| < 1
2 .
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Non-Gaussian Cases

Let f be an analytic functional.

(1) In the Gaussian white noise case,

∂t f(x) = Df(x) δt.

(2) In the Poisson white noise case,

∂t f(x) = f(x+ δt)− f(x).

(3) In the Gamma white noise case,

∂t f(x) =

∫ ∞
0

(f(x+ u δt)− f(x)) e−u du.
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Classical Probability Algebraic Probability Remark

Probability measure P ρ (state) ρ(ϕ) =
∫

Ω
ϕ(ω)P (dω)

Sample space (Ω,F , P ) A = L∞(Ω, P ) (A, ρ) (a ∗-algebra)

Event E ∈ F p = 1E ∈ A p = p∗ = p2

Random variable X :
Ω→ R

a = X ∈ L∞(Ω, P ) a = a∗ ∈ A

Expectation E[X] ρ(a)

Probability P (E) ρ(p) = E[1E ]

E[Xm] ρ(am)

Distribution µX µa µa(a
m) = ρ(am)
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LetH be a Hilbert space and let L(H), O(H) and P(H) denote
the spaces of bounded operator H, self-adjoint operator and
orthogonal operators, respectively. L(H), O(H), P(H) are all
∗-algebra.
Let ρ be a positive operator such that trace(ρ) = 1, we call ρ a
state. An one dimensional state is also called a pure state. Then
(H,P(H), ρ) is called a quantum probability space.
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Classical Probability Quantum Probability

Probability measure(P ) Positive operator ρ on H
Event(E) E ∈ P(H) (0 ≤ E ≤ 1)

Impossible event(φ) 0 ∈ P(H)

Certain event(Ω) 1 ∈ P(H)

E1 ⊂ E2 E1 ≤ E2

Ec 1− E⋃
Ei

∨
Ei⋂

Ei
∧
Ei

E1 ∩ E2 = φ E1E2 = 0

P (E) trace[ρE]

Random Variable X X ∈ O(H) (observables)

X =
∑

j xj1Ej X =
∑

j xjE
X
j (xj distinct, EXj ∈

O(H) andEXj (h) = xjh)

f(X) =
∑

j f(xj)1Ej f(X) =
∑

j f(xj)E
X
j
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