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1 Garsia-Rodemich-Rumsey inequality

Let the function W : [0, 00) — [0, o) be non decreasing with
lim W(u) = oo and let the function p : [0, 1] — [0, 1] be continuous

u—oo

and non decreasing with p(0) = 0. Set

V- '(u)= sup v if ¥V(0)<u<oo
v(v)<u
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Let f be a continuous function on [0, 1] and suppose that

// (If(X f(y)|>dxdy§3<oo.



Then for all x, y € [0, 1] we have

y—x|
f(y) — f(x)| < 8 /0 Ty (jf) op(u).
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For example if W(u) = |ulP and p(u) = |u|**"/P, where pa > 1, the
inequality (1) implies the following Sobolev imbedding inequality

1/p
|f(s) — f()] < Cup|t —s|*~1/P (/1 1|f(x)_f(y)|pdxdy> .
0

o |x—ylertt
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The Garsia-Rodemich-Rumsey lemma has been extended to several
parameter or infinite many parameters.

But the parameter space is assumed to have a distance (metric
space) and the Garsia-Rodemich-Rumsey lemma is with respect to
that distance.

This method immediately yields the following result for a fractional
Brownian field W (x) of Hurst parameter H = (H;, - - - , Hg), then for
any g with 8 < H;, i=1,--- ,d, one has

d
(W(y) = W) < LY lyi—xi|*, (2)

i=1

where L is an integrable random variable.



Let W : R? — R be a function of two variables and x and y are two
points in R2. Consider the increment of W along with the rectangle
determined by x = (xq1, %) and y = (y1, y2):

OW = Wy, y2) — W(xi,y2) = W(xe, 1) + W(x1, x2) .

If f(x1, X2) = X1 X2, then 9 f(x) = (X1 — y1)(X2 — y2), which is the area
of the rectangle.
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We are seeking

OW| < Lixi —yi|*xe — ol .
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Lemma
Let (22, F) be a measurable space and let 1 be a positive measure on
(2,F). Letg: Q x [0,1] — R™ be a measurable function such that

/// (QZttS(|§7S)>M(dz)d3dl‘§8<oo.

Then there exist two decreasing sequences {#,k =0,1,---} and
{dk,k=0,1,---} with

1
tk < dk—1 = p_1 <2P(tk—1)> ) k= 1727 T

such that the following inequality holds

|g(z7tk)_g(zvtk*1)| ﬂ
L (s )’“‘(dz)gdfp




4. Applications

Multiparameter Kolmogorov lemma

Let W be a random field on R". Suppose there exist positive
constants «, 8¢ (1 < k < n) and K such that for every x, y in [0, 1]7,

n
E[|Opw(x)|"] < KT 1% — vl
k=1

Then, for every ¢ = (e1,...,¢en) With 0 < ek < Bk (1 < k < n), there
exist a random variable n with En® < K, such that the following
inequality holds almost surely

IO7W(s)| < Cn(w H\tk—skV’W e

for all s,tin [0,1]", where C is a constant defined by

n 2
C = 84" <1 - )
H Bk — oek

k=1
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Fractional Brownian field
Let W* be a fractional Brownian field on [0, 1]” with Hurst parameter

H=(Hi,... Hp).

Then, there exist an integrable random constant C,, 4, ... 4, such that
for every x, y in [0, 1]”

n
1T 1 =yl
k=1

log <ﬁ Xk — yk|>

k=1

ByWH ()| < Coty,e Hy \l



Comparison with a work of Ayache and Xiao

Ayache, A. and Xiao, Y. proved

For fractional Brownian field W* on R”, there exist a random variable
A1 = A¢(w) > 0 of finite moments of any order and an event Q; of
probability 1 such that for any w € Qf,

[WH(s,w) = WH(t, )|
sup " —
ste.1m 2o 1S — §/log (B +[s; — §~7)

~ A1 (w)
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Indeed, our estimate gives the increment along an edge of the
n-dimensional rectangle [si, t] X - -+ X [Sp, tn]

!WH(S1,-~- ,Sn)— WH(S1,--~ ,Sn717tn)|
n—1 n—1 1/2
< Aq(w) <H S’ZK> log [ T s«
k=1 k=1

Similarly, we can obtain analogue estimates along any edge of the
n-dimensional rectangle [s1, t] X - -+ X [Sp, t5]. The increment along
the diagonal is majorized by the total increments along all the edges
connecting s and t. Hence, this argument yields the following estimate

1S — ta] log |sn — t]|'/2.

1/2

Hk‘ 1/2.

log [ [ s

J#k

|sk—1| ™| log |sk — ]|

WH(s) — WH(t)‘ < AW (H st’>

k=1 \j#k




stochastic partial differential equation

Consider the following one dimensional stochastic partial differential
equation

ot —

{"’“;AU+W 0<t<T,yeR
(3)

u(0,y)=0 yER,
where Au = aa—;u, W is space time standard Brownian sheet, and

R
W_BtayW'
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u—1Au+ W 0<t<T,yeR
@)
u(0,y)=0 yER,
where Au = aa—;u, W is space time standard Brownian sheet, and
. 2
W= 55, W.

It is known that u(t, y) is Hlder continuous of exponent }- for time
parameter and 15 for space parameter. Namely, for any « < 1/4 and
any 5 < 1/2, there is a random constant C,_ s such that

u(t,y) — u(s,x)| < Cas (It = s|* +x = yI7) .



We are interested in the joint Holder continuity of the solution u(t, y).
We need the following simple technical lemma.



We are interested in the joint Holder continuity of the solution u(t, y).
We need the following simple technical lemma.

stochastic partial differential equations

For every « in [0, 1/4], there is an integrable random constant C,
such that for all (s, x), (t, y) in [0, 1]?

|U(tvy) - U(t, X) - U(S, y) + U(S, X)|
< Calt— s[4 x — yP*/llog (|t - s||x — y])|
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