Pruning of CRT subtrees

Hui HE (何 辉)

Beijing Normal University

July 10, 2013@E'meishan

Hui He (BNU)

Pruning of CRT subtrees

July 10, 2013@E'meishan 1 / 33

• Characterization of super-critical Lévy tree:

Duquesne and Winkel (2007):

CRT as an almost sure limit of supercritical Galton-Watson trees.

Abraham and Delmas (2012): Change of measure.

 Scaling limits of tree-valued processes: Discrete GW trees → subtrees of CRTs → CRTs.

Abraham and Delmas (2012): Change of measure.

 Scaling limits of tree-valued processes: Discrete GW trees → subtrees of CRTs → CRTs.

Abraham and Delmas (2012): Change of measure.

 Scaling limits of tree-valued processes: Discrete GW trees → subtrees of CRTs → CRTs.

Abraham and Delmas (2012):

Change of measure.

Scaling limits of tree-valued processes:
 Discrete GW trees → subtrees of CRTs → CRTs.

Abraham and Delmas (2012): Change of measure.

 Scaling limits of tree-valued processes: Discrete GW trees → subtrees of CRTs → CRTs.

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

- Informally, real trees are metric spaces without loops, locally isometric to the real line.
- A bear searching a tree. B=Bear

• A Brownian tree is a tree whose contour function is a reflected BM (Brownian excursion).

• Aldous (1990s):

The continuum random trees I, II, III.

• Le Gall and Le Jan (97); Duquensne and Le Gall (2002):

Lévy continuum random trees and genealogy of (sub)critical branching processes.

- A Brownian tree is a tree whose contour function is a reflected BM (Brownian excursion).
- Aldous (1990s): The continuum random trees I, II, III.
- Le Gall and Le Jan (97); Duquensne and Le Gall (2002): Lévy continuum random trees and genealogy of (sub)critical branching processes.

- A Brownian tree is a tree whose contour function is a reflected BM (Brownian excursion).
- Aldous (1990s):

The continuum random trees I, II, III.

• Le Gall and Le Jan (97); Duquensne and Le Gall (2002):

Lévy continuum random trees and genealogy of (sub)critical branching processes.

ヘロト ヘ部ト ヘミト ヘミト

• Characterization of super-critical Lévy tree.

 Scaling limits of tree-valued processes: pause Discrete GW trees ^d→subtrees of CRTs ^d→CRTs.

- Characterization of super-critical Lévy tree.
- Scaling limits of tree-valued processes: pause Discrete GW trees \xrightarrow{d} subtrees of CRTs \xrightarrow{d} CRTs.

Question: How to construct trees for super-critical branching processes? Convergence and Characterization?

For a branching process *Y*, if

Y is
$$\begin{cases} (\text{sub)critical} & \text{then } \lim_{t \to \infty} Y_t = 0 \text{ a.s.} \\ \text{super-critical} & \text{then } P\{\lim_{t \to \infty} Y_t = \infty\} > 0. \end{cases}$$

Y is $\begin{cases} \text{(sub)critical} & \text{then } \lim_{t \to \infty} Y_t = 0 \text{ a.s.} \\ \text{super-critical} & \text{then } P\{\lim_{t \to \infty} Y_t = \infty\} > 0. \end{cases}$

Y is $\begin{cases} (\text{sub)critical} & \text{then } \lim_{t \to \infty} Y_t = 0 \text{ a.s.} \\ \text{super-critical} & \text{then } P\{\lim_{t \to \infty} Y_t = \infty\} > 0. \end{cases}$

Y is $\begin{cases} (\text{sub)critical} & \text{then } \lim_{t \to \infty} Y_t = 0 \text{ a.s.} \\ \text{super-critical} & \text{then } P\{\lim_{t \to \infty} Y_t = \infty\} > 0. \end{cases}$

Y is
$$\begin{cases} (\text{sub)critical} & \text{then } \lim_{t \to \infty} Y_t = 0 \text{ a.s.} \\ \text{super-critical} & \text{then } P\{\lim_{t \to \infty} Y_t = \infty\} > 0. \end{cases}$$

Duquesne and Winkel (2007):

CRT as an almost sure limit of increasing Galton-Watson trees.

Abraham and Delmas (2012):

Connect to subcritical trees via change of meansure.

Main result: The limit tree in DW07 satisfies the Girsanov transformation introduced in AD12.

Duquesne and Winkel (2007):

CRT as an almost sure limit of increasing Galton-Watson trees.

Abraham and Delmas (2012):

Connect to subcritical trees via change of meansure.

Main result: The limit tree in DW07 satisfies the Girsanov transformation introduced in AD12.

Duquesne and Winkel (2007):

CRT as an almost sure limit of increasing Galton-Watson trees.

Abraham and Delmas (2012):

Connect to subcritical trees via change of meansure.

Main result: The limit tree in DW07 satisfies the Girsanov transformation introduced in AD12.

• Abraham and Delmas' definition is the 'right' one;

- Constructing subtrees (Galton-Watson trees);
- Connect subtrees of super-critical trees to subtrees of subcritical trees via a similar change of measure;
- Law of subtrees is the same to the increasing tree-valued process define in Duquensne and Winkel (2007);
- Take limits.

- Abraham and Delmas' definition is the 'right' one;
- Constructing subtrees (Galton-Watson trees);
- Connect subtrees of super-critical trees to subtrees of subcritical trees via a similar change of measure;
- Law of subtrees is the same to the increasing tree-valued process define in Duquensne and Winkel (2007);
- Take limits.

- Abraham and Delmas' definition is the 'right' one;
- Constructing subtrees (Galton-Watson trees);
- Connect subtrees of super-critical trees to subtrees of subcritical trees via a similar change of measure;
- Law of subtrees is the same to the increasing tree-valued process define in Duquensne and Winkel (2007);
- Take limits.

- Abraham and Delmas' definition is the 'right' one;
- Constructing subtrees (Galton-Watson trees);
- Connect subtrees of super-critical trees to subtrees of subcritical trees via a similar change of measure;
- Law of subtrees is the same to the increasing tree-valued process define in Duquensne and Winkel (2007);
- Take limits.

- Abraham and Delmas' definition is the 'right' one;
- Constructing subtrees (Galton-Watson trees);
- Connect subtrees of super-critical trees to subtrees of subcritical trees via a similar change of measure;
- Law of subtrees is the same to the increasing tree-valued process define in Duquensne and Winkel (2007);
- Take limits.

- Denote by T_{θ} the trees with contour functions $X^{\theta} = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$. $(\theta > 0.)$
- By change of measure, Abraham and Delmas (2012) extends the definition of *T_θ* to *θ* < 0.
- Denote by p_{θ} the canonical projection from support of contour functions onto T_{θ} .
- The mass measure on T_{θ} , denoted by \mathbf{m}^{θ} , is the image measure on T_{θ} of the Lebesgue measure by p_{θ} (Concentrate on set of leaves).
- For θ < 0, m^θ can also be defined by Change of measure; see Abraham and Delmas (2012).

- Denote by T_{θ} the trees with contour functions $X^{\theta} = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$. $(\theta > 0.)$
- By change of measure, Abraham and Delmas (2012) extends the definition of *T_θ* to *θ* < 0.
- Denote by p_{θ} the canonical projection from support of contour functions onto T_{θ} .
- The mass measure on T_{θ} , denoted by \mathbf{m}^{θ} , is the image measure on T_{θ} of the Lebesgue measure by p_{θ} (Concentrate on set of leaves).
- For θ < 0, m^θ can also be defined by Change of measure; see Abraham and Delmas (2012).

- Denote by T_{θ} the trees with contour functions $X^{\theta} = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$. $(\theta > 0.)$
- By change of measure, Abraham and Delmas (2012) extends the definition of T_θ to θ < 0.
- Denote by p_{θ} the canonical projection from support of contour functions onto T_{θ} .
- The mass measure on T_{θ} , denoted by \mathbf{m}^{θ} , is the image measure on T_{θ} of the Lebesgue measure by p_{θ} (Concentrate on set of leaves).
- For θ < 0, m^θ can also be defined by Change of measure; see Abraham and Delmas (2012).

- Denote by T_{θ} the trees with contour functions $X^{\theta} = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$. $(\theta > 0.)$
- By change of measure, Abraham and Delmas (2012) extends the definition of T_θ to θ < 0.
- Denote by p_{θ} the canonical projection from support of contour functions onto T_{θ} .
- The mass measure on T_{θ} , denoted by \mathbf{m}^{θ} , is the image measure on T_{θ} of the Lebesgue measure by p_{θ} (Concentrate on set of leaves).
- For θ < 0, m^θ can also be defined by Change of measure; see Abraham and Delmas (2012).

- Denote by T_{θ} the trees with contour functions $X^{\theta} = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$. $(\theta > 0.)$
- By change of measure, Abraham and Delmas (2012) extends the definition of T_θ to θ < 0.
- Denote by p_{θ} the canonical projection from support of contour functions onto T_{θ} .
- The mass measure on T_{θ} , denoted by \mathbf{m}^{θ} , is the image measure on T_{θ} of the Lebesgue measure by p_{θ} (Concentrate on set of leaves).
- For θ < 0, m^θ can also be defined by Change of measure; see Abraham and Delmas (2012).

- Denote by T_{θ} the trees with contour functions $X^{\theta} = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$. $(\theta > 0.)$
- By change of measure, Abraham and Delmas (2012) extends the definition of T_θ to θ < 0.
- Denote by p_{θ} the canonical projection from support of contour functions onto T_{θ} .
- The mass measure on T_{θ} , denoted by \mathbf{m}^{θ} , is the image measure on T_{θ} of the Lebesgue measure by p_{θ} (Concentrate on set of leaves).
- For θ < 0, m^θ can also be defined by Change of measure; see Abraham and Delmas (2012).

Given a tree T_{θ} ($\theta \in \mathbb{R}$), consider a Poisson point measure:

$$P^{\theta}(dt, dx) = \sum_{i \in I^{\theta}} \delta_{(t_i, x_i)}$$

 $R_+ \times T_{\theta}$ with intensity measure $dt \mathbf{m}^{\theta}(dx)$. Define the subtree of *T* by

$$\tau(\theta, \lambda) = \bigcup \{ \llbracket \emptyset, x_i \rrbracket, i \in I^{\theta} \text{ and } t_i \le \lambda \},$$
(1)

for $\lambda > 0$

Given a tree T_{θ} ($\theta \in \mathbb{R}$), consider a Poisson point measure:

$$P^{\theta}(dt, dx) = \sum_{i \in I^{\theta}} \delta_{(t_i, x_i)}$$

 $R_+ \times T_{\theta}$ with intensity measure $dt \mathbf{m}^{\theta}(dx)$. Define the subtree of *T* by

$$\tau(\theta, \lambda) = \bigcup \{ \llbracket \emptyset, x_i \rrbracket, i \in I^{\theta} \text{ and } t_i \le \lambda \},$$
(1)

for $\lambda > 0$

$\tau^{(a)}(\theta,T) = \{ x \in T_{\theta} : d(\emptyset,x) \le a \}.$

Theorem

Define

Law of $\tau^{(a)}(\theta, \lambda)$ *is absolutely continuous w.r.t.* $\tau^{(a)}(-\theta, \lambda)$ *.*

• The proof of the result is based on properties of Poisson random measure and Girsanov transformation for CRTs.

By results on distributions of Galton-Watson real trees and a result in Duquesne and Le Gall (2002), we immediately get

Corollary

 $au(heta,\lambda)$ is a Galton-Watson real tree.

When ψ is (sub)critical, the above result was proved by Duquesne and Le Gall (2002).

Define

$$\tau^{(a)}(\theta,T) = \{ x \in T_{\theta} : d(\emptyset,x) \le a \}.$$

Theorem

Law of $\tau^{(a)}(\theta, \lambda)$ *is absolutely continuous w.r.t.* $\tau^{(a)}(-\theta, \lambda)$ *.*

• The proof of the result is based on properties of Poisson random measure and Girsanov transformation for CRTs.

By results on distributions of Galton-Watson real trees and a result in Duquesne and Le Gall (2002), we immediately get

Corollary

 $au(heta,\lambda)$ is a Galton-Watson real tree.

When ψ is (sub)critical, the above result was proved by Duquesne and Le Gall (2002).

Define

$$\tau^{(a)}(\theta,T) = \{ x \in T_{\theta} : d(\emptyset,x) \le a \}.$$

Theorem

Law of $\tau^{(a)}(\theta, \lambda)$ is absolutely continuous w.r.t. $\tau^{(a)}(-\theta, \lambda)$.

• The proof of the result is based on properties of Poisson random measure and Girsanov transformation for CRTs.

By results on distributions of Galton-Watson real trees and a result in Duquesne and Le Gall (2002), we immediately get

Corollary

 $au(heta,\lambda)$ is a Galton-Watson real tree.

When ψ is (sub)critical, the above result was proved by Duquesne and Le Gall (2002).

Define

$$\tau^{(a)}(\theta,T) = \{ x \in T_{\theta} : d(\emptyset,x) \le a \}.$$

Theorem

Law of $\tau^{(a)}(\theta, \lambda)$ *is absolutely continuous w.r.t.* $\tau^{(a)}(-\theta, \lambda)$ *.*

• The proof of the result is based on properties of Poisson random measure and Girsanov transformation for CRTs.

By results on distributions of Galton-Watson real trees and a result in Duquesne and Le Gall (2002), we immediately get

Corollary

 $\tau(\theta, \lambda)$ is a Galton-Watson real tree.

When ψ is (sub)critical, the above result was proved by Duquesne and Le Gall (2002).

Tree space: Gromov-Hausdorff distance

Q: What is a random tree?(σ -algebra?) Hausdorff distance:*A*, *B*, non-empty, closed subsets of a Polish metric space (*X*, *d*).

 $d_{\mathrm{H}}(A,B) = \inf\{\varepsilon > 0, A \subset B^{\varepsilon} \text{ and } B \subset A^{\varepsilon}\},\$

with $A^{\varepsilon} = \{x \in X, \inf_{y \in A} d(x, y) < \varepsilon\}$, the ε -halo set of A.

Gromov-Hausdorff distance:

Let (X, d, \emptyset) and (X', d', \emptyset') be two compact rooted metric spaces, and define:

$$d_{\mathrm{GH}}(X,X') = \inf_{\Phi,\Phi',Z} \left(d_{\mathrm{H}}^{Z}(\Phi(X),\Phi'(X')) + d^{Z}(\Phi(\emptyset),\Phi'(\emptyset')) \right),$$

where the infimum is taken over all isometric embeddings $\Phi : X \hookrightarrow Z$ and $\Phi' : X' \hookrightarrow Z$ into some common Polish metric space (Z, d^Z)

For X, X', locally compact rooted trees, define

$$d^c_{\mathrm{GH}}(X,X') = \int_0^\infty e^{-r}(1\wedge d_{\mathrm{GH}}(X^{(r)},X'^{(r)}))dr,$$

where $X^{(r)} = \{x \in X : d(\emptyset, x) \le r\}.$

Let \mathbb{T} be the set of (GH-isometry classes of) locally compact rooted trees.

Theorem

(Duquesne and Winkel (2007)) (\mathbb{T}, d_{GH}^c) is a Polish metric space.

For X, X', locally compact rooted trees, define

$$d^c_{\mathrm{GH}}(X,X') = \int_0^\infty e^{-r}(1\wedge d_{\mathrm{GH}}(X^{(r)},X'^{(r)}))dr,$$

where $X^{(r)} = \{x \in X : d(\emptyset, x) \le r\}.$

Let \mathbb{T} be the set of (GH-isometry classes of) locally compact rooted trees.

Theorem

(Duquesne and Winkel (2007)) (\mathbb{T}, d_{GH}^c) is a Polish metric space.

For X, X', locally compact rooted trees, define

$$d^c_{\mathrm{GH}}(X,X') = \int_0^\infty e^{-r}(1\wedge d_{\mathrm{GH}}(X^{(r)},X'^{(r)}))dr,$$

where $X^{(r)} = \{x \in X : d(\emptyset, x) \le r\}.$

Let \mathbb{T} be the set of (GH-isometry classes of) locally compact rooted trees.

Theorem

(Duquesne and Winkel (2007)) (\mathbb{T}, d_{GH}^c) is a Polish metric space.

- Gromov, M. (1999): Metric Structures for Riemannian and non-Riemannian Spaces. Progress in Mathematics.
- Burago, Y., Burago, D., Ivanov, S.(2001): A Course in Metric Geometry, vol. 33. AMS, Boston (Google)

Theorem

$$\lim_{\lambda \to +\infty} d^c_{GH}(T, \tau(\lambda)) = 0 \quad a.e.$$
(2)

- The result recover the main result in Duquesne and Winkel (2007).
- This gives that the limit tree obtained in Duquesne and Winkel (2007) satisfies the definition given in Abraham and Delmas (2012).

- The proof is based on Girsanov transformation (??).
- We first prove that for ψ is (sub)critical

$$\lim_{\Lambda\to+\infty} d^c_{\rm GH}(T,\tau(\lambda)) = 0 \quad ,$$

by approximating contour process by contour functions of $\tau(\lambda)$ and using the fact $d_{\text{GH}}^c(T_f, T_g) \leq 6||f - g||$.

• Then by connections to subcritical trees, we get the desired result for supercritical case.

• Characterization of super-critical Lévy tree.

• Scaling limits of tree-valued processes. Discrete GW trees → subtrees of CRTs → CRTs.

- Characterization of super-critical Lévy tree.
- Scaling limits of tree-valued processes.
 Discrete GW trees ^d→subtrees of CRTs.

- Characterization of super-critical Lévy tree.
- Scaling limits of tree-valued processes. Discrete GW trees → subtrees of CRTs → CRTs.

- At time t_i , there is a drop of sulfuric acid (\hat{m}) falling on the tree at $x_i \in T$.
- We cut the tree at x_i .
- { $t_1 < t_2 < \cdots$, } is a Poisson process and { $x_i, i = 1, 2, \cdots$ } are uniformly distributed on *T*.
- $T(\theta)$ = remaining tree after time θ .
- $T(\theta)$ is tree whose contour function is X_t , where $X_t = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$; see Abraham and Delmas (2012).
- $\{T(\theta) : \theta \ge 0\}$ is a decreasing real tree-valued process.

- At time t_i , there is a drop of sulfuric acid (\hat{m}) falling on the tree at $x_i \in T$.
- We cut the tree at x_i .
- { $t_1 < t_2 < \cdots$, } is a Poisson process and { $x_i, i = 1, 2, \cdots$ } are uniformly distributed on *T*.
- $T(\theta)$ = remaining tree after time θ .
- $T(\theta)$ is tree whose contour function is X_t , where $X_t = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$; see Abraham and Delmas (2012).
- $\{T(\theta) : \theta \ge 0\}$ is a decreasing real tree-valued process.

- At time t_i , there is a drop of sulfuric acid (\hat{m}) falling on the tree at $x_i \in T$.
- We cut the tree at x_i .
- { $t_1 < t_2 < \cdots$, } is a Poisson process and { $x_i, i = 1, 2, \cdots$ } are uniformly distributed on *T*.
- $T(\theta)$ = remaining tree after time θ .
- $T(\theta)$ is tree whose contour function is X_t , where $X_t = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$; see Abraham and Delmas (2012).
- $\{T(\theta) : \theta \ge 0\}$ is a decreasing real tree-valued process.

- At time t_i , there is a drop of sulfuric acid (\hat{m}) falling on the tree at $x_i \in T$.
- We cut the tree at x_i .
- { $t_1 < t_2 < \cdots$, } is a Poisson process and { $x_i, i = 1, 2, \cdots$ } are uniformly distributed on *T*.
- $T(\theta)$ = remaining tree after time θ .
- $T(\theta)$ is tree whose contour function is X_t , where $X_t = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$; see Abraham and Delmas (2012).
- $\{T(\theta) : \theta \ge 0\}$ is a decreasing real tree-valued process.

Given a Brownian tree T

- At time t_i , there is a drop of sulfuric acid (\hat{m}) falling on the tree at $x_i \in T$.
- We cut the tree at x_i .
- { $t_1 < t_2 < \cdots$, } is a Poisson process and { $x_i, i = 1, 2, \cdots$ } are uniformly distributed on *T*.
- $T(\theta)$ = remaining tree after time θ .
- $T(\theta)$ is tree whose contour function is X_t , where $X_t = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$; see Abraham and Delmas (2012).

• $\{T(\theta) : \theta \ge 0\}$ is a decreasing real tree-valued process.

- At time t_i , there is a drop of sulfuric acid (\hat{m}) falling on the tree at $x_i \in T$.
- We cut the tree at x_i .
- { $t_1 < t_2 < \cdots$, } is a Poisson process and { $x_i, i = 1, 2, \cdots$ } are uniformly distributed on *T*.
- $T(\theta)$ = remaining tree after time θ .
- $T(\theta)$ is tree whose contour function is X_t , where $X_t = B_t 2\theta t \inf_{s \le t} (B_s 2\theta s)$; see Abraham and Delmas (2012).
- $\{T(\theta) : \theta \ge 0\}$ is a decreasing real tree-valued process.

Define the subtree process

 $\tau_{\theta}(\lambda) = \tau(0,\lambda) \cap T_{\theta}.$

Proposition

 $\tau_{\theta}(\lambda)$ is a Galton-Watson real tree.

$$\lim_{\lambda \to \infty} \sup_{\theta \ge 0} d^c_{GH}(T_{\theta}, \tau_{\theta}(\lambda)) = 0 \quad a.e.$$

For further applications of above results; work in progress and see you on next workshop.

- R. Abraham, J.-F. Delmas (2012): *A continuum-tree-valued Markov process*, Annals of Probability.
- R. Abraham, J.-F. Delmas and H. He (2012+): *Pruning of CRT-sub-trees*, arXiv:1212.2765.
- T. Duquesne, M. Winkel (2007): *Growth of Lévy forest*, Probab. Theory Relat. Fields.

Thanks!

æ

(日)