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Abstract

Consider the two-dimensional, incompressible Navier-Stokes equations on the torus 72 = [—x, 7]* driven by a degen-
erate noise

dw, = vAwdt + B(Kw,, w)dt + > gi(w,)e:dBi(?). 0

m
i=1

We prove that the semigroup P, generated by the solutions to (1) has asymptotically strong Feller property. More-
over, we also prove that semigroup {P;},>0 is exponentially ergodic in some sense.
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1. Introduction and Notations

This work is motivated by the paper [5], in which, Martin Hairer and Jonathan C. Mattingly considered the
following two-dimensional, incompressible Navier-Stokes equations on the torus 72 = [~ w]? driven by a additive
degenerate noise

dw; = vAw,dt + B(Kw,, w,)dt + QdB(t). 2)

With the asymptotically strong Feller property that they discovered, they proved the uniqueness and existence of the
invariant measure for the semigroup generated by the solution to (2). In this article, we consider stochastic Navier-
Stokes equations as follows

dw, = vAw,dt + B(Kw,, w))dt + Q(w,)dB(t), wl;=0 = wy. 3)
Recall that the Navier-Stokes equations are given by
Ou+ w-Vu=vau—-Vp+§¢, diviu) =0.

where £(x, 1) is the external force field acting on the fluid. Denote H = L2, the space of real-valued square-integrable
functions on the torus with vanishing mean. The vorticity w is defined by w = VAu = dru; —01uy. B(u, w) = —(u-V)w.
For k = (k1, k) € Z*\ {(0,0)}, k*+ = (ka, —k1), wi = {w, 2m) 'e® Y. The operator K is defined in Fourier space by

(Ko = (Ko, 2m) " ™9y = —iwk* /1K
We write Z2 \ {(0,0)} = Zi U Z2, where

72 = (ki k2) € Z* : ky > 0} U {(k,0) € Z* : ky > 0},
72 ={(ki,ky) € 7 : —(ky, ky) € Z3),
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and set, for k € Z2\{(0, 0)},

_ | sin(k-x) ke 72,
Jilx) = { costk-x) keZ2. “)

We also fixaset Zo = {k;:i=1,---,m} € Z*\ {(0,0)}, and let ¢; = S ki € Zo. We denote by {8} the canonical
basis of R™. In this article, the linear map Q(w;) : R™ — H is given by Q(w;)B; = gi(wy)e;, 1 <i<m. gq;: H - R,i =
1,--- ,m are some functions. B(t) = (B{(¢),- - , By(t)) is a standard m-dimension Brownian motion. We denote by P,
the semigroup generated by the the stochastic differential equation given by (3).

Assume @,(B,wp) : C([0,1]; R™) x H — H be the map such that w, = ®,(B, wy) for initial condition wy and noise
realization B. Givena v € leoc(RJf, R™), the Malliavin derivative of the H-valued random variable w; in the direction
v, denoted by D"w; is defined by

OB+ &gV, - ®,(B,
D'w, = lim (B + &V, wp) o WO),

-0 &

where the limit holds almost surely with respect to Wiener measure and V(r) = fot v(s)ds.
Let {J;,}s<: be the derivative flow between times s and t, i.e for every & € H, J; £ is the solution of

{dfs,,g = vad&dt + B(w,, . &)dt + DQ(w)J,,£dB,, )

Jos€ =&,

where B(w;, J&) = B(Kw,, J3&) + B(w,, KJs.£). Jo£ is the effect on w, of an infinitesimal perturbation of the initial
condition in the direction &. DQ is Fréchet derivation of Q.
Observe that D"w, = AoV, where Ag; : L*([s,1],R™) — H:

Ay = f 7,0 Q0w V(rr. ©)

Denote by Hy be the space spanned by {fk 1k e Z2\{(0,0)}, k] < N}.
For a € R and a smooth function w on [—, 7]> with mean 0, denote ||w||, by

2 2 2 -1 (ik-
WIE = Y kPl wr = (w. @) e ), @)
keZ?\{(0,0)}
and [[w|| := |lwllp. If A : R™ — H is a linear map, then

m
IAIP = > 1A,
i=1

for example, [|Qw)II* = X7 gi(w,)*lleill.
If B,v) = (u- Vv, 8 = {(s1,52,53) € R} : ¥ s 2 1,5 # (1,0,0), (0, 1,0), (0,0, 1)}. Then the following relations

are useful. The proof can see [2] or [5] .

(B(u,v),w) = —(B(u,w),v), if V-u=0, ®)
[(B(u, v), w)| < Cllulls, IVll1+5,IWlls;s (51,52, 53) €S, )]
IKWlle = lWlla-1, (10)

||W|I2E < lwlhliwll. (11)

In section 2, we will give some estimations of the solution to (3). In section 3, we proved that the semigroup
generated by the solutions to (1) has asymptotically strong feller property under some conditions, that is there exists
constants 77 > 0,y > 0 and C such that for every t

~ 5 y
VP W)l < Cexp (ST IwlP) (el + €1Vl (12)
2



To prove (12), in [5], they constructed a deterministic equation. But we consider multiplicative noise, so we need to
construct a stochastic partial differential equation. It is more complicated. In section 4, under some conditions, we
prove that semigroup P; generated by the solution to (1) exists unique invariant measure and the semigroup {P;};>¢ is
exponentially ergodic in some sense.

2. Some Properties For Solution

We first give a Lemma which comes from the Lemma A.1 in [9].

Lemma 2.1 Let M(s) be a continuous martingale with quadratic variation [M, M1(s) such that E[M, M] < co. Define
the semi-martingale N(s) = —5[M, M](s) + M(s) for any a > 0. If y 2 0, then for any B > 0 and T > llf

t Y

. es

P{ sup fe‘y("°)dN(s)>—K <K,
1e[T-1.71 Y0 @

Specially,
1 -K
PisupN(@) > —Kp <e ™.
t a
Theorem 2.1 Assume |q;(w;)| < C, 1 < i < m, then there exists a constant C = C(n, v, m) such that

Eexp{sugwnwtn%} < el (13)
>

holds for everyn < ng = Thus the invariant measure for P, exists.

et
Proof: The exists and uniqueness of the solution to (3) can see Appendix C. From It6 formula,

dnllwill® + 2viwillide = 2n¢w,, Q(wi)dBy) + nll Q| dr. (14)
Using the fact that ||w/|| < |lwi|l, oI < C% = 472C%m,
dnllwill® +virllwil*d < 2n¢ws, . Q(wdBy) + Cyndt = vifllwi| 1,

that is,
nd(lwill*e”) < 2ne”(w,, Q(w,)dB,) + C3ne”dt — vie” |lw|*dt.

So,
C% t t
n||wf||2—ne‘”||wO||2—n7 <2p f ey, Q(wy)dBsy — v f eI lwlPds.
0 0

From Lemma 2.1, if n < ng = we get

gc‘éﬂz )
C2

Eexp {SUP (nllwrll2 —ne™|woll” - 77—2)} <2, 15)
>0 )4

here we use the fact that if a random variable X satisfies P(X > C) < % for all C > 0, then EX < 2. So this Theorem
2.1 follows from (15). O

Theorem 2.2 Assume |g;(w,)| < C,1 < i < m, then exists C = C(}, v, m) such that
!
Eexp (n sup([[will* + v f ||w,||%dr—4nzczmt)) < Cexp (rlwol), (16)
>0 0

holds for everyn < ng =

_Vv
8C2n2"



Proof: From (14) and the fact |[w,|| < ||w,l|;, we have

! f ! !
nlw® + v f lw,lItdr —n f IQw)IPdr — gliwoll* < 21 f (w,, Qw,)dB,) = v f lIw,|dr.
0 0 0 0

For |g;| < C,

! ! !
nllwill? + v f I, dr =4 - m - C2t = yihwol < 2n f Wy, Qw,)dB,) — v f Ihw i%dr.
0 0 0

From the Lemma 2.1 and condition n < no = gz,

15
E exp (77 sup (Ilwzll2 + Vf lw,ll{dr — 4n*mC?t — ||WO||2)) <2,
0

>0

from which the theorem 2.2 follows. O
In order to introduce Theorem 2.3, we first give some definitions. Let (X;)o<;<r be a continuous stochastic process
take values in an open interval / C R, defined on a complete probability space (2, ¥, P), and let F = (F;).ej0,r] be a
filtration on this space. Let C([u,v],I) = {f € C([u,v], ), f(u) = x}. As usual, we equip the space Cy([u,v],I),x €
I with uniform topologies.
We say a process {X;, t > 0} has conditional full support(CFS) with respect to the filtration ¥, or briefly F-CFS, if
(a) X'is adapted to F,
(b) for all t € [0, T') and P—almost all w € Q,

supp (Law[(Xi)ueps, 1| Fil(w)) = Cx (1, T1, D).

The next theorem comes from Theorem 3.12 in [11].

Lemma 2.2 (X,)o<;<r be a continuous stochastic process. (Wy)wjo.r) is a Brownian motion, ¢ and  progressive
measurable function from [0, T] x C([0, T1)? to R, and ¢ is a random variable. Define

b= ¢, W, X), k=gt W,X), F =0 (& W, X,: s€[0,1]}, t€[0,T].

If W, is a Brownian motion with respect {¥}c0,),

E [e/‘foT"?z‘“'] <o VYA>0, E [ezfork;zh%ds] < oo, and a7

T
f K*ds < K a.s for some constant 0 < K < oo, (18)
0

then the process

3 !
Z; = §+f hsds+f k,dW,, t €[0,T].
0 0

has CFS.

The next Lemma comes from Lemma 3.1 in [3]. Since we consider Multiplicative Noise, the proof needs little
changes. For the convenience of the reader, we prove it again.

Theorem 2.3 Assume there exists a constant K such that 0 < K < lgi(wol, 1 < i < m. w, is the solution to equation
(1). Fix Cy > 0,Cy > 0, Let By = B(Cyp) and B) = B(Cy) be two arbitrary balls about the origin 0 € H and h be
some positive constant. Then there exists a constant Ty = To(Cy, Cy) > 0O, so that for any T > Ty, there is a constant
p*=p*(T,h,Cy,Cy) >0 with

inf Pw;) {w(f) € By forallt € [T, T +h]} > p* > 0.

w,€Bo

4



Proof: Let v(r) = w(f) — f(f), where f(r) = fo’ O(w,)dB,. Using (3), we see that v(f) satisfies

%:vA(v+f)—(u-V)(v+f), here u, = Kw,.

Taking the L?-inner product with v on the both side of this equation produces,

1d N A
=—[VIP* = —vIVvIf* - f v(X)(u(x) - V) f(x)dx - f v(x) A f(x)dx.
2dt [-m.nl? [~m.m]?

By standard estimate on the nonlinear term (see [2]) and the fact we are on the torus, we have

' f v(0)(u(x) - V) f(x)dx| < Cslvll IVl 1|12 fI.

Since ||Vu|| = ||w|| and w = v + f, the above estimate gives

1d. .,
Ed_t”v” <

A

5 5 A A
V" + Gl - v + FU - Tafll + (WIE- [T £

VI + C3lvIPAafl + CsIvIl A A fl+ vl - 11 & fl.

IA

Use the Poincaré inequality, ||[v||*> < ||[VV]|>, we get

1d
ATHTE —(

v N 4c? N 4 n
== CallAfll)IIVII2 + —1APNAfIP + =1l & A1
2 dt v %

2
Fix any 6 > 0 and define for any T > 0

Q6,T) = {g € C(0,T +hl;H): sup [lags)ll < mins, L}}.
5€[0,T+h] 4C;

If f € O, then exists a constant C4 which is independent of 4, T such that

min | 6, 4 4+min6 v\
T 4C; T4Cs) |

Hence if ||w£)|| < Cy, then given any C; > 0 there exists a T and a ¢ such that ||v(T)|| < C;/2. By possible decreasing of
§,if f € Q', we can assume ||[v(f)|| < C1/2 fort € [T, T +h]. Putting everything together, we have that for approximate
T and ¢,

v C
Iv@)I* < [[VO)II* exp (30 + V—;‘

lwgll < Co, f € Q6. T) = lw®ll < V@Il +If Ol < C1 Ve € [T, T +hl.
Since for any 7 > 0 and 6 > 0, Q' (T, §) is an open set in the supremum topology, we know
P{f, f € Q(T,6)} >0, (19)

(19) comes from Lemma 2.2. So this theorem has been proved. O

3. Asymptotically Strong Feller Property

Let m; be the orthogonal projection onto the span of Hy and 7, = 1 — &;. In the below of this article, we will
assuming Hy C Range(Q) and exists positive constant K such that 0 < K < infj.c.cq, |gi(w;)| almost surely. Thus
o)} = m;Q is invertible and Qz_l bounded on Hy. Assume the span of {e,--- ,e,} contains Hy (that is assume
{k ckeZ?\{(0,0)}, |k < N} C Zo), so Ql‘1 is a well defined and bounded operator from Hy to R”.

A Ll 3 L )10 1L N2
Denote € = max {ZkeZZ\«o,On w2 @E (Srezvoon wm)  + Srezzvoon R)S}-

5



Theorem 3.1 Assume Hy C spaniei,--- ,ey}, and m is the orthogonal projection onto the span of Hy. Assume
[|Dg;(wpll < C, 0 <K< infj..en, 1gi(ws)l and qi(0) = qi(m,0) for any 0 € H, 1 < i < m. Assume there exists positive

constant a, a < *=. N is big enough such that max{-Y22< \FC NS 32C) < N for n = min{ 40;:@ , %}- Then there exists
constants C = C(n, N,v,K,C,m, C)andy =vy(N,v) > 0 such that

~ 5 _
IVPupwo)l < Cexp (Slhwoll) (Il + €IVl (20)

2 2
Remark 3.1 In the proving process we will not use the condition0 < a < = s 1 =min{ 55, o), max{ S \Fc , w/%} <

. .o, . . 2
N. Instead, we will use the condition : assume n, N, m satisfy n < mln{40;—2C2, 80‘7'1262 } and max{Y== WC A/ 32Cz} <N.

80” sz seems unreasonable, but it is necessary in additive case. In Proposition 4. 1 1, [5], it needs
& =1r(QQ0") = YL, \gi|? is smaller than a constant which is independent of N.

The condition n <

There exists some situations which the conditions of Theorem 3.1 are satisfied. For example, m = 4N* +
4N, spanfey,- - ,en} 2 Hy,a = 1/8, max{--"= \FC , EZE <N

Proof: Denote
& =méy & = mle, Bw,u) = B(Kw, u) + B(Ku, w).

Set p; = Jo & — D'w, = Jo,& — Ao,sve, where the definition of Jo & and A,vo, see (5)(6), then p; satisfies the following
equation
dp; = vApdt + B(w,, p)dt + DO(w)p,dB; — Q(w;)v,dt. (21)

For any ¢ € H with ||¢]| = 1, define {; by

{dg“, = =3 (l”dz + DQW)LdB; + 4m*CPmAL dt + m, B(w,, &)dt + vALdt — 87> C?m{!|\ | dt ’ 22)
Ho=¢
with the convention 0/0 = 0. We set the infinitesimal perturbation v by
-1 K l 2,2 2,2 2
vi=Q; F,F = + mB(w,,(,) 4n-C mA{t + VAQ + 8n°C m§,||§t|| 23)

2121

From Appendix A and Appendix B, there exists a unique solution to equation (24) and (29). So equation (22) exists
a unique solution. Also from Appendix A, we know that (23) is meaningful. It clear from (21) and (22) that p, and ¢;
satisfy the same equation, and thus p, = ¢;. Since ¢’ satisfies

I
21111

dil = - dt + ;DQW)LAB, + 4n*CPmALldt — 87 C*m*LIZPdt, &) = €= mt. (24)

from It6 formula,
dIZIP = —\Zdt + llmDQw)IPdt — 87> C*mliZl|idt + 2(L), D QW) dB,) — 167> C2m||{}||*dt. (25)

From

lmDOWIGIP = D IDgwizel? = ) I(DgiwiDei’
i=1 i=1

m

D eI = 42 CP i), (26)

i=1

IA

6



and (25), we have
dEIZP < ~ENldr,

which is

!
EIZIP ~ ENCP < - f E|l¢!lds.
0

Since (ElIZ/I)* < ENIZI, ElGIP = EIZIH?,

EllgD® - Elgl* < ~ fo BN,
From the above inequality, we known that as t > 2,
Ell¢/|| = 0.
Since " satisfy the following equation
d¢t = vAZtdt + i, B(wy, £)dt + m,DQ(w,)dB,.

. \/ﬂc"Q 3202 . 2 2N2 . A
by Lemma 3.4, if max{T, 1/T} <N,np< mm{40;—2€2, m}, then there exists constants C5,y such that

1 A 2 _
ENC < BIZP)2 < CrenMol e v > 0.

We next need to get control over the size of perturbation v. Since v is adapted to the Wiener path,

¢ 2 ¢ ¢
(IE‘ f v(s)dB(s)) < f Elv(s)|’ds < C; f E||F|/*ds.
0 0 0

27

(28)

(29)

(30)

€1V}

From the definition of F;, ||m;B(u, w)|| < Co - ||ull - |w|| for some constant Cy (see [4], Lemma A.4), Lemma 3.3 and

(23)(28), we have (the constant Cy may different from line to line)

EIIF,I* < Co(1is<a) + ElwslPlIZ2).

: V2 V2N? V24¢? 32¢?
From Lemma 3.4, when < min{ 55, g0, and max{T, ==}<N.

1,72 rs 2 Lon2ey (15 oih (12
E(|st|l2”{f”2) E(”WS”zeZVN t’j(‘) 5”“Wr||ldr . 371VN l+j(; fn”m“ldr”{?”Z)

A

1 1
(E”WS”%—%WH]; 57;||w,\|;dr) 2 (Ee%vN%—f(ﬁ 5n||w,||$dr”§?”4) 2

IA

1
Coe3H Mo (Bljwy|[te~dV's+h siedliar)?

v2N?

2 -
40;—2@, m} , there exists a constant C5 such that

By Theorem 2.2, when 1 < min{

]E”WY”46—%VN2S+JJ Snllw 3dr e—%szs]El|WY”46—%VN23+fUS Sullw,I3dr

C3e—§v1v2se%nwm|2

IA

Thus, there exists constant C4 such that

1 2. Sn 2
E(wPICD < Chem3Nsev ol

V2N?

Therefore, there exists constant Cs such that if < min{#, m},

5n
<Cs exp(z—vuw()uz).

E ’ f N v(s)dB(s)
0
7

(32

(33)

(34)



Since

(VPip(wo), &) = Eu,(Ve(wy), &) = Euy (Vo) (wi)Jo£)
= Eu (Vo) (w)D'w;) + Eo (Vo) (w))pr)
= E, (D"p(w)) + Eu, (Vo) (wi)pr)

!
Il Eo| f V($)dB(s)| + IVelloEa, 01l
0

IA

so from (28), (30), (34), we proved this theorem.

Lemma 3.1 u, v, w are smooth functions belong to H, then
[(B(u, v), w)| < CllulliVli]Iwlli 2. (335

Proof: Sets; =%, 5=0,53=1, 41 =10, ¢2=2, g3 = §, g4 =40, then 3} |(1/g,) = 1. Set Q = T? = [-7, 7]%,

from Holder inequality

A

f u()Vvw(xdx < lullza IVV(Ollze [[wllzes 1] Lo
Q

IA

1
m) 2 ||| [[VVOOl 2| 295 - (36)
From sobolev embedding theorem, we have

[lullzan @) < Co, llulls, < Cillully,
IWllzss < Coslwlly, < Callwl

So
f u(x)Vv(x)w(x)dx < (2”)%C1C2”'4||1||V(x)||1||W||%-
Q

We next calculate Cy, C;. Set {e}(, k € Z*\{(0,0)} is the orthonormal basis for H, that is e}( 2‘ kX ke 72 \ {(0,0)}.
For the calculating of C, we assume u = Yez2\(0.0y Uk€; and b = [[ull> = Yyez2\(0.0y kP luel*. Thus || < W and

b
q1 < 29 f qld < 29 27)” Il 10.
a2, D | lmetdx<2@n 5

keZ?\{(0,0)} keZ?\{(0,0)}

From the above inequality, we have

10
1
lllzn < b[ > W] ,

keZ2\{(0,0))
thus we get
10
a=l Yo
1= |k|10 :
keZ2\((0,0)}
For the calculating of C;, we assume w = 37200} wke}( and »? = ||w||1 DkeZ2\((0,0)) |kllwi|?. Then |wy| < \/» and
a3 2 % 2 2 b s
Ihwllfs, <2 lonefrdr <2 Qe Qo D) Il
keZZ\ ((0,0)) keZ2\{(0.0)} Ikl

8



From the above inequality,

IA

lwllzes

2o ), |k1|“ i

keZ?\{(0,0)}

3 I
IOy )l

keZ?\{(0,0)}

IA

thus we get
3 1 s
C, = 23( —k.
kezi\(0.0y) K13

Lemma 3.2 u,v,w are smooth functions belong to H, then
(B, v),w)| < C'IIMII;IIVII1||W|I~

Proof: From Holder inequality,

A

f uX)Vvowxydx < lulle=IVvEoll2 (w2
Q
Callull 5 [Vl 2wl 2

IA

The constant C3 is calculated as follows. Set {e;(,k e Z*\{(0,0)} is the orthonormal basis for H and assume u =

’ b
Zkezﬁ\{(o,())} uge, and b* = ||M||2; = ZkeZz\{(0,0)} |k|3|uk|2. Then [u| < _\k|% and
2

11

bl < > 5=— b,

oy 2T IKI2
keZ2\{(0,0)}

thus we know that C3 = ZkEZZ\{(O 0)} %{ % O
’ k12

Lemma 3.3 Assume the conditions of Theorem 3.1 hold and ! is the solution to (24), then E(supy<; I 1128 < o0.
Proof: From (25)(26), we have
I + 1 llde < 20, mDQw)dBy) = 167°C*milg]||*dr.

For

K, DO !, DO

m 2

D&l eDaiwe!
i=1

IA

47 CPml|IZI1 .
Thus by using (26) and Lemma 2.1,

P{sup 1P - 11Z)? > K)

0<t<2

! !
SP{sup f 2L, mDQ(wy) ¢ dBy) — f 16n202m||g§||4ds21(}
0 0

0<t<2

< P{ sup f 2<§£’7TZDQ(WS){sst> - f 4’|<§£a ﬂZDQ(Ws){sdes 2 K}

0<r<2 Jo 0
< exp(—K).

So this Lemma has been proved. |



Lemma 3.4 Assume the conditions of Theorem 3.1 hold. If max{ \FC y A/ 32c2} < N, thenforanyn < min{ 5= 40”2 s 807:2@22 1,
there exists constants C, = Cz(m, N,n,v, ¢, C), C(N,m,n, ¢,c, V) and vy =y(v, N) > 0 such that

A S5n 2 _
EIIZNP < Chev™olie™ i >0,

EII eV =k sl < CNm,, €, Cv)e P Vi > 0, (37)
Proof: First, we give some estimations. From Lemma 3.1, Lemma 3.2, (8), (10) and (11), for any > 0,
K&t BEwn gl < Clig w11 (38)
% 6C?
< g IEI + == IwdRIgI, (39)
we, BEKZ, L < ClZ I Iwdl I (40)
% 6C?
< g + == IwdRIgI, @1
h h _ h  oh
|<§t ) B((](é’t ’ Wt)>| - |<Wt, B((](é’t 9{[ >)|
< g Iwlilig | 42)
éz
< w1 + =113
T] 2
2 2 éz
< nlwdfIEP + ;nghulug,hn
2 \% 6C?
< nlwdBIZNP + = | Dl + + =P
C2
y 6C*
= nlwdIEP + gug"nf + %nd'nz. (43)

Forany 6 € H,i=1,--- ,m, q;(0) = g;(m,6), thus

A

Ima DQw)GIP < Zanz(w,)gn el
i=1

m

D IDgiw L IPlled

i=1

IA

4 mC| 1.
V24C?
When N > T

dlig P

~21Z] 3dt + 25, Blws, ))dt + 2(L!, DQ(wi)idB,) + |lmDQ(w,) il dt
= IRt - 2L, BOKwy, {)dt — 20wy, BOKE, &)t

+2(¢!, DOW)GAB,) + ImyDO(w)& | Pdt

=217 I3t + 4CIwill 1112 de + 2wl 1E 1 17 e

+2(2, DQ(Wz)é“deO + 4P mC*\ P dt

IA

IA

24C
VIl Idr + ||Wt|| IZ/IPdt + 2nlw 121 ar+ 25 IIZ,II dt

+2(20, DQ(w»adB» +4n*mC?||Z\Pdt

IA

1
(‘EVN2 + 2lwil PP \I*dt

+2({!, DQW)L,dB,) + 4n*mC?|| 1) dt, (44)
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here the second equality, we have used (8). In the first inequality, we have used (38)(40)(42). In the second inequality
we have used (39)(41)(43). In the last inequality, we have used the fact ||{,h||1 > N|| ,”II.

By the same argument above, we have when N >

i

IA

IA

<

32¢?
v 9

20PN + 4KEE, DOt

48C?
w1 Pt

v
+8°mC (/| Ng! P dr + 167> CI P11y 1P dt + h(t)dB(r)
482C*

2

(=vN? + dgllw DI dt +

(=vN? + dglw DN dt + nllw 3N de + w T¢I dt

4 - (87°mC?)?
vN?
1
(=5 vN* & Snlbw DI I de + allwiFI7 1 de + Bl de + h(ndB@),

1
+ VNG e + gt +2C* - @m)*lig*de + 8C?12}\I*dt + h(1)d B(D)

where a = 4?;54 ,b=2C% 2n)* + 4@rmC) ,DO(w)¢ = X, (Dq,-(w,){,l) e; and h(t) is some process.

VN2

From (45), we can obtain

!
hyd  AvN2e— [ sylw,Rd )14 LyN2s— 7 syllw,|Pd 201 4112 4
Bl eV b sbelidr <+ f BN SR (gl | BIR + BlIZ s
0

IA

2
(4 LyN2s— [ 5llw,|Pd 201 #1112 4
Iz +E f e EN = st | B + BICII)d s
0

2

A A 2 12 ~ 14

< gl +C1E(f Iwsllids sup [IZ;ll )+C2E sup [IZ I,
0 5€[0,2] 5€[0,2]

< C(N,m,p,C,C v)e Ml

In the last inequality, we have used Theorem 2.2, Lemma 3.3.

Thus

From Theorem 2.2, (46), we know that when 1 < min{

4. Ergodicity

NP E|lh|Petv ik dwilidr . o= ivNee [ Snlbwldr

1

1 1
(]E”é«thnﬁle%szl—fo’ SUHW,-IIfdr)2 (Ee—%vNZHfOI SnHW,IIfdr)2

IA

I I
5 5 2
(Blgptete=f snbviar ) (pe-ieiue o) o252,
V2 V2N? }
40m2C2° 80n2C2m1°

1) yN2i

A 5 ~ 5
C(N,m,n,C,C, y)6277\\“10”2 . Ce(fvllwol\z)e— S
A 51
C(N,m,n,C,C, v)e%“w(’llze’”.

IA

ElIZ)

(45)

(46)

For getting the exponential convergence, we using the methods in [6]. In the Assumption 4.1, 4.2, 4.3 and Theorem
4.1 below, we assume that we are given a random flow @, on a Banach space H. We will assume that the map
x +— @ w,x) is C' for almost every element w of the underlying probability space. We will denote by D®, the
Fréchet derivative of ®,(w, x) with respect to x.
Let C(u1, o) for the set of all measures I' on H X H such that I'(A X H) = u1(A) and I'(H X A) = uy(A) for every
Borel set A C H. The following three assumptions are from [6].

11



Assumption 4.1 There exists a function V : H — [1, 0o) with the following properties:
1. There exists two strictly increasing continuous functions V* and V., from [0, c0) — [1, c0) such that
Vi(llxll) < V(x) < VE(lIxlD (47
for all x € H and such that lim,_,, V.(a) = o
2. There exists constants C and k > 1 such that
aV*(a) < CV¥&(a), (48)
for every a > Q.

3. There exists a positive constants C, ro < 1, a decreasing function & : [0, 1] — [0, 1] with £(1) < 1 such that for
every h € Hwith ||h]] = 1

EV/(®,(x))(1 + [|[DD,(x)h))) < CVED(x), (49)

for every x € H, every r € [ry, k], and every t € [0, 1].

Assumption 4.2 There exists a C; > 0 and p € [0, 1) so that for every a € (0, 1) there exists positive T (a) and C(«)
with

IDP( < €1 VP (x) (C(a> VPRI +a \/(lellelz)(X)) , (50)
foreveryx € Handt > T ().

Assumption 4.3 Given any C > 0, r € (0,1) and 6 > 0, there exists a Ty so that for any T > T there exists an a > 0
so that

inf sup I“{(x',y') eHXH: pr(xl,yl < (5)} >a. (&2))
MLYI<C rec(py6,,Py6,)

If Assumption 4.1 is satisfied, then for every Fréchet differentiable function ¢ : H — R, we introduce the following
norm

(o)l + |1Dp(x)l
sup ———————
xeH V(x)
and for r € (0, 1], a family of distance p, on H is defined by

llelly =

b}

1
pr = inf fo Vi anlyold,

where the infimum runs over all paths y such that y(0) = x and y(1) = y. For simple, we will write p for p;.
If the setting of the semigroup P, possesses an invariant measure (., we define

lell, = sup £ =0 ‘ f ()]

x#y p(x,y)

(52)
The next Theorem comes from Theorem 3.6, Corollary 3.5 and Theorem 4.5 in [6].

Theorem 4.1 Let ®, be a stochastic flow on a Banach space H which is almost surely C' and satisfy Assumption 4.1.
Denote by P; the corresponding Markov semigroup and assume that it satisfies Assumption 4.2 and 4.3. Then there
exists a unique invariant probability measure . for P, and exists constants y > 0 and C > 0 such that

1Pip = pepll, < Ce™llp = pagelly,

P —welly < Ce™llo — welly,
for every Fréchet differentiable function ¢ : H — R and every t > 0.

12



The next Lemma comes from Lemma 5.1 in [6].

Lemma 4.1 Let U be a real-valued semi-martingale
dU(t,w) = F(t, w)dt + G(t, w)dB(t, w),

where B is a standard Brownian motion. Assume that there exists a process Z and positive constants by, by, bz, with
by > bs, such that F(t,w) < by — byZ(t, w), U(t,w) < Z(t, w), and G(t, w)? < b3Z(t, w) almost surely. Then the bound

2by )

E b2 e—bzz/4 1 b2 ex (
Z(s)d _
exp (U 1+ 1 f(; (s) s) by~ b;

exp(U 0)e™ 2 )
holds for every t > 0.

Theorem 4.2 Assume the conditions of Theorem 3.1 is satisfied, then Assumption 4.1 is satisfied for

4

— ol —
V(X) =M B where no = W

Moreover, there exists a unique invariant probability measure . for P, and constants y > 0 and C > 0 such that

1P = pilly < Ce™llg = prgllv,
for every Fréchet differentiable function ¢ : H — R and every t > 0.

Proof: In order to prove this Theorem, by Theorem 4.1, we only to confirm w;, satisfy Assumption 4.1 and P, satisfy
Assumption 4.2, 4.3. From It6 formula,

mn
diflwilP + 2nviwRde = 250w, QOw)dBy) + 1 ) lgiwp)PledPdr.
i=1

From Lemma 4.1,

~bat/4 i b, ex ( 2biy
Eexp|U@®) + bye f Z(s)ds| < —}h exp (U(O)e‘l’).
4 by — b3

where U(f) = T]||Wz||2, Z(@) = TI||W;||2, by =4n r]mC2 by =2v, b3 = 4(271)217C2 Therefore when n < 4C2(2ﬂ)2,
—2vi/4
4

! 2 2
2y nmC _
Eexp(n||w,||2+ f nllwxll%dS)SZeXP(+)eXP(77IIWo|IZe 7). (53)
0

For ||¢]| = 1,denote &, = J,& = Dw;¢, where x is the initial value and D is the differential operator with x. So &, satisfy
the following equation

dé, = vA&dt + B(w,, &)dt + Z(in(wz)fz)eidBi(l)- (54)
i=1
and thus

dIENP < =2V NRde + 2BOKE, wp), €dt + ) Comllé,|Plledde + hdB,.

i=1

By the the similar method to get (43), we can obtain

16C4
UBKE, wy), &) < nlwilRIEIR +viiglR + Wu&nz,
13



and

C
I < nliwdFIEIPdr +( + 4 C*m)|\é|Pdt + hidB,.

Define the function h(n) = (16C + 472C%m), from the above inequality we have

!
ElIé|* exp (=h(n)t —f nliwsllids) < 1,¥n > 0. (55)
0

v

Setb=e"2,n< t € [0, 1]. From (53) and (55),

b !
(exp(nnw,n)exp( f Il ds)) (ng,uexp(—%v f ||ws||%ds>)

Ell& I exp (—bny f [Iwll ds))

8C2(271)7 ’

E exp (7llw/|®)II€ ]

IA

(E exp (2nlwil* + byy f ||wx||%ds>)
0

2

2n-4 C?
(2 exp( 2L 47mC”
Vv

IA

h(bnv)
2

2
)exp (2n||wO||2e‘zz’)) exp(——1)

0.

1
o 2n - 4m2mC? \? h(bnv
= exp nlwolle ﬁ’)(zexp(”fﬁ exp ("0

Set g = we know that the above inequality is satisfied for all € [0,2n9]. So w;, satisfies Assumption 4.1

T6C2n7 >
for V(x) = el k=2, 7y = $and V.(a) = V*(a) = ¢™@ . From Theorem 2.3, we know P, satisfy Assumption 4.3.
Since

(VPip(wo), &) Euy (D'o(w) + Eu, (Vo) (wi)pr)

\/(Pz|so|2><x>(JEw0| fo v(s)dB(s)Iz) + PV (B, llorl?)*

by (28), (30),(31), (32), (33), Lemma 3.4 and the fact p; = ;, we know Assumption 4.2 is satisfied.

IA

Appendix A. The existence and uniqueness of strong solution to equation (24)

Under the conditions of Theorem 3.1, the strong solution to equation (24) has and only has one solution.
Proof: Because g;(6) = g;(7;0), 1 <i < m, for any 6 € H, so the equation (24) is the same as the following equation

4 N
dg; = _2”21”(1; + > mD (qiwie) {dBi(1) + CrmAGidr - 2C*m* N \Pdt, g = €. (A1)
' i=1
This equation is essentially a finite dimension stochastic differential equation. If ||§(’)|| = 0, then zero is the solution to
(A.1)(for 0/0=0). If ||§é|| > 0, define the following stopping times

r, = inf{t>0, Il < 1/n}, VneZ",
T = limT,.
n—oo

When ¢ < 7, there exists a unique solution x} to equation (A.1). So

Z,: X!t <, forsomen,
-t 0 t>r1
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is a strong solution to (A.1). In the following, we will prove that if {é = 0, then any solution to equation (A.1) will be
zero. Let X; be the solution to equation (A.1) with Xy = 0. Then,
dIX,| < —1Xlldt + Z IDgi(w)Xi|Pdt — 2C*m||X,|[{dt — AC*m?||X,|I*dt + h(t)d B,
i=1
for some process A;. For ||Dg;(w,)|| < C, so
EIX | < Xl = 0,

then X, = 0, almost everywhere, ¥t > 0. Then the uniqueness follows.

Appendix B. The existence and uniqueness of solution to equation (29)

In this Appendix, we will prove that under the conditions of Theorem 3.1, equation (29) has and only has one
solution.
Proof: Because ¢;(0) = g;(m;6), 1 <i < m, for any 6 € H, so the equation (29) is the same as the following equation

dY, = vAYdt+ n,B(Kw,, Y)dt + 7, B(KY:, w,)dt + Z D (gi(wp)e;) {tldB,
i=1

+1, B(Kw,, C)dt + n, BOKL, wy)dt. (B.1)

We mainly use Theorem 1.2 in [1], so we need to check conditions (H1), (H2), (H3), (H4) in [1]. Recall that operator
7y, is defined in section 3, and the space H is defined in section 1. The spaces H, V in conditions (H1), (H2), (H3),
(H4) is defined as follows:

V= {w € Hy ([, 7, R) N myH : - w(x)dx = 0}, lIwll?, = f[_ o IVwl*dx, (B.2)

and ’ ’
H = {w e L*([-n,n>,R) N m,H : - w(x)dx = o}, Iwll3, = f[ . Iwl?dx. (B.3)

From (7) and ||w|| := ||w||o, we know that for any ¢ € ’H |

llellze = llellzz = liell = llglla,
and forany ¢ € V
llelly = el
Define stopping times
7, =1inf{r > 0, |w/lg = n}.
For (H2), when t < 1, by inequality ab < (1/p)a” + (1/q)b% (1/p + 1/g = 1) and (11), for any € > O,
0,

V(TR B(K Wy, vi = v2), v1 = va)y

v BKvi =va),w),vi = o)y < K = wo)lls - [will - [lvi = wally
= Cllvr=v)lly - lwell - [ve = vally
1 3
< Clive =v)ll2 - lwil - vy = wall}
< elvi = vallf + COlwill*ve = vall*. (B.4)
Set € = 3, we know that (H2) is satisfied for 7 < 7,,.

For (H3), set € = 5 in (B.4), we know that exists constant C such that
v 2 4 2
v B(K(v), wp), vy < 5”"1 = allf + Cliwdl*[lvi = wall”,

then we can know that when ¢ < 7,,, (H3) is satisfied fora =2, 6 = % O

5.
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Appendix C. The existence and uniqueness of solution to equation (1)

In this Appendix, we will prove that under the conditions of Theorem 2.1, equation (1) has and only has one

solution.

Proof: We mainly use Theorem 1.2 in [1], so we need to check conditions (H1), (H2), (H3), (H4) in [1]. In this

Appendix, The spaces H, V in conditions (H1), (H2), (H3), (H4), is defined as follows:

V= {w € H*([-n, 7%, R) : f
[

_ﬂ-‘ﬂ]Z

w(x)dx = 0}, w2 = f IVw|?dx,
[-7,7]?
and
H = {w e L*([-n, 71", R) : w(x)dx = o}, Iwli3, = f Iwl*dx.
[ [-7x]?

For (H2), by using inequality ab < (1/p)a? + (1/¢)b? (1/p + 1/q = 1) and (11), for any € > 0,

vi(B(Kvi,v1) = B(Kv2,v2),vi =vo)y = =y (B(Kvi,v1),va)y =y (B(Kv2,v2),vi)v
= —y(B(Kvi,vi =), va)y +ye (B(Kvz,vi —v2),vi)y
= —yAB(Kvi,vi =), va)y +y- (B(Kvz,vi —v2), va)y
= —y(B(Kvi = Kva,vi =), v2)y
= —yA(B(Kvi — Kva,v2),vi — )y,

then by the similar way in obtaining (B.4), for € = ‘5’, exists a constant C(€) such that
2 4 2
vi(B(Kvi = Kva,v2),vi —=va)y < €llvi = wallf + C(e)lvall*llvi = vall”.

So (H2) is satisfied for p(v) = C(e)llvll‘fH.
For (H4), by holder inequality,

v+ (BOKV,v), whvl < V2K VIl Iwlls.

For any smooth function ¢, (see Lemma 2.1 in [8] for example )
llllys < 2ligll7 - IVl
So, from (C.3), (C.4)
v (B, v), wivl? < 2 V2KV VKWV - V2l VWi,
S0,
[B(Kv, V)ly- < [Vll2lvilv-

From (C.5), it is not difficult to check that (H4) is satisfied for @ = 2, 8 = 2.

(C.1)

(C2)

(C.3)

(C4)

(C.5)
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