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Abstract

Consider the two-dimensional, incompressible Navier-Stokes equations on the torus T 2 = [−π, π]2 driven by a degen-
erate noise

dwt = ν∆wtdt + B(Kwt,wt)dt +

m∑
i=1

qi(wt)eidBi(t). (1)

We prove that the semigroup Pt generated by the solutions to (1) has asymptotically strong Feller property. More-
over, we also prove that semigroup {Pt}t≥0 is exponentially ergodic in some sense.
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1. Introduction and Notations

This work is motivated by the paper [5], in which, Martin Hairer and Jonathan C. Mattingly considered the
following two-dimensional, incompressible Navier-Stokes equations on the torus T 2 = [−π, π]2 driven by a additive
degenerate noise

dwt = ν∆wtdt + B(Kwt,wt)dt + QdB(t). (2)

With the asymptotically strong Feller property that they discovered, they proved the uniqueness and existence of the
invariant measure for the semigroup generated by the solution to (2). In this article, we consider stochastic Navier-
Stokes equations as follows

dwt = ν∆wtdt + B(Kwt,wt)dt + Q(wt)dB(t), wt |t=0 = w0. (3)

Recall that the Navier-Stokes equations are given by

∂tu + (u · ∇)u = ν4u − ∇p + ξ, div(u) = 0.

where ξ(x, t) is the external force field acting on the fluid. Denote H = L2
0, the space of real-valued square-integrable

functions on the torus with vanishing mean. The vorticity w is defined by w = ∇∧u = ∂2u1−∂1u2. B(u, ω) = −(u·∇)ω.
For k = (k1, k2) ∈ Z2 \ {(0, 0)}, k⊥ = (k2,−k1), ωk = 〈ω, (2π)−1e(ik·x)〉H . The operator K is defined in Fourier space by

(Kω)k = 〈Kω, (2π)−1e(ik·x)〉 = −iωkk⊥/||k||2.

We write Z2 \ {(0, 0)} = Z2
+ ∪ Z2

−, where

Z2
+ = {(k1, k2) ∈ Z2 : k2 > 0} ∪ {(k1, 0) ∈ Z2 : k1 > 0},

Z2
− = {(k1, k2) ∈ Z2 : −(k1, k2) ∈ Z2

+},
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and set, for k ∈ Z2\{(0, 0)},

fk(x) =

{
sin(k · x) k ∈ Z2

+,
cos(k · x) k ∈ Z2

−.
(4)

We also fix a set Z0 = {ki : i = 1, · · · ,m} ⊆ Z2 \ {(0, 0)}, and let ei = fki , ki ∈ Z0. We denote by {βi}
m
i=1 the canonical

basis of Rm. In this article, the linear map Q(wt) : Rm → H is given by Q(wt)βi = qi(wt)ei, 1 ≤ i ≤ m. qi : H → R, i =

1, · · · ,m are some functions. B(t) = (B1(t), · · · , Bm(t)) is a standard m-dimension Brownian motion. We denote by Pt

the semigroup generated by the the stochastic differential equation given by (3).
Assume Φt(B,w0) : C([0, t];Rm) × H → H be the map such that wt = Φt(B,w0) for initial condition w0 and noise

realization B. Given a v ∈ L2
loc(R+,Rm), the Malliavin derivative of the H-valued random variable wt in the direction

v, denoted byDvwt is defined by

Dvωt = lim
ε→0

Φt(B + εV,w0) − Φt(B,w0)
ε

,

where the limit holds almost surely with respect to Wiener measure and V(t) =
∫ t

0 v(s)ds.
Let {Js,t}s≤t be the derivative flow between times s and t, i.e for every ξ ∈ H, Js,tξ is the solution ofdJs,tξ = ν4Js,tξdt + B̃(ωt, Js,tξ)dt + DQ(ωt)Js,tξdBt,

Js,sξ = ξ,
(5)

where B̃(ωt, Js,tξ) = B(Kωt, Js,tξ) + B(ωt,K Js,tξ). J0,tξ is the effect on wt of an infinitesimal perturbation of the initial
condition in the direction ξ. DQ is Fréchet derivation of Q.

Observe thatDvωt = A0,tv, where As,t : L2([s, t],Rm)→ H:

As,tv =

∫ t

s
Jr,tQ(wr)v(r)dr. (6)

Denote by HN be the space spanned by
{
fk : k ∈ Z2 \ {(0, 0)}, |k| ≤ N

}
.

For α ∈ R and a smooth function w on [−π, π]2 with mean 0, denote ||w||α by

||w||2α =
∑

k∈Z2\{(0,0)}

|k|2α|wk |
2, ωk = 〈ω, (2π)−1e(ik·x)〉H , (7)

and ||w|| := ||w||0. If A : Rm → H is a linear map, then

||A||2 :=
m∑

i=1

||Aβi||
2,

for example, ||Q(wt)||2 =
∑m

i=1 qi(wt)2||ei||
2.

If B(u, v) = (u · ∇)v,S =
{
(s1, s2, s3) ∈ R3

+ :
∑

si ≥ 1, s , (1, 0, 0), (0, 1, 0), (0, 0, 1)
}
. Then the following relations

are useful. The proof can see [2] or [5] .

〈B(u, v),w〉 = −〈B(u,w), v〉, if ∇ · u = 0, (8)
|〈B(u, v),w〉| ≤ C||u||s1 ||v||1+s2 ||w||s3 , (s1, s2, s3) ∈ S, (9)

||Kw||α = ||w||α−1, (10)
||w||21

2
≤ ||w||1||w||. (11)

In section 2, we will give some estimations of the solution to (3). In section 3, we proved that the semigroup
generated by the solutions to (1) has asymptotically strong feller property under some conditions, that is there exists
constants η > 0, γ > 0 and C̃ such that for every t

|∇Ptϕ(w)| ≤ C̃ exp (
5η
ν
||w||2)

(
||ϕ||∞ + e−γt ||∇ϕ||∞

)
. (12)
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To prove (12), in [5], they constructed a deterministic equation. But we consider multiplicative noise, so we need to
construct a stochastic partial differential equation. It is more complicated. In section 4, under some conditions, we
prove that semigroup Pt generated by the solution to (1) exists unique invariant measure and the semigroup {Pt}t≥0 is
exponentially ergodic in some sense.

2. Some Properties For Solution

We first give a Lemma which comes from the Lemma A.1 in [9].

Lemma 2.1 Let M(s) be a continuous martingale with quadratic variation [M,M](s) such that E[M,M] < ∞. Define
the semi-martingale N(s) = −α2 [M,M](s) + M(s) for any α > 0. If γ ≥ 0, then for any β ≥ 0 and T > 1

β

P

 sup
t∈[T− 1

β ,T ]

∫ t

0
e−γ(t−s)dN(s) >

e
γ
β

α
K

 < e−K .

Specially,

P
{

sup
t

N(t) >
1
α

K
}
< e−K .

Theorem 2.1 Assume |qi(wt)| ≤ C, 1 ≤ i ≤ m, then there exists a constant C1 = C1(η, ν,m) such that

E exp {sup
t≥0

(η‖wt‖
2)} ≤ C1eη‖w0‖

2
, (13)

holds for every η ≤ η0 = ν
8C2π2 . Thus the invariant measure for Pt exists.

Proof: The exists and uniqueness of the solution to (3) can see Appendix C. From Itô formula,

dη‖wt‖
2 + 2ην‖wt‖

2
1dt = 2η〈wt,Q(wt)dBt〉 + η‖Q‖2dt. (14)

Using the fact that ‖wt‖ ≤ ‖wt‖1, ||Q||2 ≤ C2
2 := 4π2C2m,

dη‖wt‖
2 + νη‖wt‖

2dt ≤ 2η〈wt, ,Q(wt)dBt〉 + C2
2ηdt − νη‖wt‖

2dt,

that is,
ηd(‖wt‖

2eνt) ≤ 2ηeνt〈wt,Q(wt)dBt〉 + C2
2ηeνtdt − νηeνt‖wt‖

2dt.

So,

η‖wt‖
2 − ηe−νt‖w0‖

2 − η
C2

2

ν
≤ 2η

∫ t

0
e−ν(t−s)〈ws,Q(ws)dBs〉 − ην

∫ t

0
e−ν(t−s)‖ws‖

2ds.

From Lemma 2.1, if η ≤ η0 = ν
8C2π2 , we get

E exp
sup

t≥0

η‖wt‖
2 − ηe−νt‖w0‖

2 − η
C2

2

ν

 ≤ 2, (15)

here we use the fact that if a random variable X satisfies P(X ≥ C) ≤ 1
C2 for all C ≥ 0, then EX ≤ 2. So this Theorem

2.1 follows from (15).

Theorem 2.2 Assume |qi(wt)| ≤ C, 1 ≤ i ≤ m, then exists C̃ = C̃(η, ν,m) such that

E exp
(
η sup

t≥0
(‖wt‖

2 + ν

∫ t

0
‖wr‖

2
1dr − 4π2C2mt)

)
≤ C̃ exp (η‖w0‖

2), (16)

holds for every η ≤ η0 = ν
8C2π2 .
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Proof: From (14) and the fact ‖wt‖ ≤ ‖wt‖1, we have

η‖wt‖
2 + ην

∫ t

0
‖wr‖

2
1dr − η

∫ t

0
‖Q(wr)‖2dr − η‖w0‖

2 ≤ 2η
∫ t

0
〈wr,Q(wr)dBr〉 − ην

∫ t

0
‖wr‖

2dr.

For |qi| ≤ C,

η‖wt‖
2 + ην

∫ t

0
‖wr‖

2
1dr − 4π2 · η · m ·C2t − η‖w0‖

2 ≤ 2η
∫ t

0
〈wr,Q(wr)dBr〉 − ην

∫ t

0
‖wr‖

2dr.

From the Lemma 2.1 and condition η ≤ η0 = ν
8π2C2 ,

E exp
(
η sup

t≥0

(
‖wt‖

2 + ν

∫ t

0
‖wr‖

2
1dr − 4π2mC2t − ‖w0‖

2
))
≤ 2,

from which the theorem 2.2 follows.
In order to introduce Theorem 2.3, we first give some definitions. Let (Xt)0≤t≤T be a continuous stochastic process

take values in an open interval I ⊆ R, defined on a complete probability space (Ω,F ,P), and let F = (Ft)t∈[0,T ] be a
filtration on this space. Let Cx([u, v], I) = { f ∈ C([u, v], I), f (u) = x}. As usual, we equip the space Cx([u, v], I), x ∈
I with uniform topologies.

We say a process {Xt, t ≥ 0} has conditional full support(CFS) with respect to the filtration Ft, or briefly F-CFS, if
(a) X is adapted to F,
(b) for all t ∈ [0,T ) and P−almost all ω ∈ Ω,

supp
(
Law[(Xu)u∈[t,T ]|Ft](ω)

)
= CXt(ω)([t,T ], I).

The next theorem comes from Theorem 3.12 in [11].

Lemma 2.2 (Xt)0≤t≤T be a continuous stochastic process. (Wt)t∈[0,T ] is a Brownian motion, φ and ψ progressive
measurable function from [0,T ] ×C([0,T ])2 to R, and ξ is a random variable. Define

ht := φ(t,W, X), kt := ψ(t,W, X), Ft := σ {ξ,Ws, Xs : s ∈ [0, t]} , t ∈ [0,T ].

If Wt is a Brownian motion with respect {Ft}t∈[0,T ],

E
[
eλ

∫ T
0 k−2

s ds
]
< ∞ ∀λ > 0, E

[
e2

∫ T
0 k−2

s h2
s ds

]
< ∞, and (17)

∫ T

0
k2

s ds ≤ K̄ a.s for some constant 0 < K̄ < ∞, (18)

then the process

Zt := ξ +

∫ t

0
hsds +

∫ t

0
ksdWs, t ∈ [0,T ].

has CFS.

The next Lemma comes from Lemma 3.1 in [3]. Since we consider Multiplicative Noise, the proof needs little
changes. For the convenience of the reader, we prove it again.

Theorem 2.3 Assume there exists a constant K̃ such that 0 < K̃ ≤ |qi(wt)|, 1 ≤ i ≤ m. wt is the solution to equation
(1). Fix C0 > 0,C1 > 0, Let B0 = B(C0) and B1 = B(C1) be two arbitrary balls about the origin 0 ∈ H and h be
some positive constant. Then there exists a constant T0 = T0(C0,C1) > 0, so that for any T ≥ T0, there is a constant
p∗ = p∗(T, h,C0,C1) > 0 with

inf
w′0∈B0

Pw′0
{ω(t) ∈ B1 for all t ∈ [T,T + h]} ≥ p∗ > 0.
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Proof: Let v(t) = ω(t) − f̂ (t), where f̂ (t) =
∫ t

0 Q(ωr)dBr. Using (3), we see that v(t) satisfies

∂v
∂t

= ν 4 (v + f̂ ) − (u · ∇)(v + f̂ ), here ut = Kwt.

Taking the L2-inner product with v on the both side of this equation produces,

1
2

d
dt
||v||2 = −ν||∇v||2 −

∫
[−π,π]2

v(x)(u(x) · ∇) f̂ (x)dx −
∫

[−π,π]2
v(x) 4 f̂ (x)dx.

By standard estimate on the nonlinear term (see [2]) and the fact we are on the torus, we have∣∣∣∣∣∫ v(x)(u(x) · ∇) f̂ (x)dx
∣∣∣∣∣ ≤ C3||v|| ||∇u|| ||4 f̂ ||.

Since ||∇u|| = ||ω|| and ω = v + f̂ , the above estimate gives

1
2

d
dt
||v||2 ≤ −ν||∇v||2 + C3||v|| · ||v + f̂ || · ||4 f̂ || + ||v|| · || 4 f̂ ||

≤ −ν||∇v||2 + C3||v||2||4 f̂ || + C3||v|| || f̂ || ||4 f̂ || + ||v|| · || 4 f̂ ||.

Use the Poincaré inequality, ||v||2 ≤ ||∇v||2, we get

1
2

d
dt
||v||2 ≤ −

(
ν

2
−C3||4 f̂ ||

)
||v||2 +

4C2
3

ν
|| f̂ ||2||4 f̂ ||2 +

4
ν
|| 4 f̂ ||2.

Fix any δ > 0 and define for any T > 0

Ω
′

(δ,T ) =

{
g ∈ C([0,T + h]; H) : sup

s∈[0,T+h]
||4g(s)|| ≤ min{δ,

ν

4C3
}

}
.

If f̂ ∈ Ω
′

, then exists a constant C4 which is independent of h,T such that

||v(t)||2 ≤ ||v(0)||2 exp (−
ν

2
t) +

C4

ν2

min
(
δ,

ν

4C3

)4

+ min
(
δ,

ν

4C3

)2 .
Hence if ||w

′

0|| < C0, then given any C1 > 0 there exists a T and a δ such that ||v(T )|| < C1/2. By possible decreasing of
δ , if f ∈ Ω

′

, we can assume ||v(t)|| < C1/2 for t ∈ [T,T +h]. Putting everything together, we have that for approximate
T and δ ,

||ω
′

0|| ≤ C0, f̂ ∈ Ω
′

(δ,T )⇒ ||ω(t)|| ≤ ||v(t)|| + || f (t)|| ≤ C1 ∀t ∈ [T,T + h].

Since for any T > 0 and δ > 0, Ω
′

(T, δ) is an open set in the supremum topology, we know

P{ f̂ , f̂ ∈ Ω
′

(T, δ)} > 0, (19)

(19) comes from Lemma 2.2. So this theorem has been proved.

3. Asymptotically Strong Feller Property

Let πl be the orthogonal projection onto the span of HN and πh = 1 − πl. In the below of this article, we will
assuming HN ⊆ Range(Q) and exists positive constant K̃ such that 0 < K̃ ≤ infi:ei∈HN |qi(wt)| almost surely. Thus

Ql
de f
= πlQ is invertible and Q−1

l bounded on HN . Assume the span of {e1, · · · , em} contains HN (that is assume{
k : k ∈ Z2 \ {(0, 0)}, |k| ≤ N

}
⊆ Z0), so Q−1

l is a well defined and bounded operator from HN to Rm.

Denote Ĉ = max
{∑

k∈Z2\{(0,0)}
1

2π
1

|k|
3
2
, 2

3
8 · (2π)

1
20 ·

(∑
k∈Z2\{(0,0)}

1
|k|10

)10
· (

∑
k∈Z2\{(0,0)}

1

|k|
4
3

)
3
8

}
.
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Theorem 3.1 Assume HN ⊆ span{e1, · · · , em}, and πl is the orthogonal projection onto the span of HN . Assume
||Dqi(wt)|| ≤ C, 0 < K̃ ≤ infi:ei∈HN |qi(wt)| and qi(θ) = qi(πlθ) for any θ ∈ H, 1 ≤ i ≤ m. Assume there exists positive

constant a, a ≤ N2

m . N is big enough such that max{
√

24Ĉ2

ην
,
√

32C2

ν
} ≤ N for η = min{ ν2

40π2C2 ,
ν2a

80π2C2 }. Then there exists

constants C̃ = C̃(η,N, ν, K̄, Ĉ,m,C) and γ = γ(N, ν) > 0 such that

|∇Ptϕ(w0)| ≤ C̃ exp (
5η
ν
||w0||

2)
(
||ϕ||∞ + e−γt ||∇ϕ||∞

)
. (20)

Remark 3.1 In the proving process we will not use the condition 0 < a ≤ N2

m , η = min{ ν2

40π2C2 ,
ν2a

80π2C2 }, max{
√

24Ĉ2

ην
,
√

32C2

ν
} ≤

N. Instead, we will use the condition : assume η, N, m satisfy η ≤ min{ ν2

40π2C2 ,
ν2N2

80π2C2m } and max{
√

24Ĉ2

ην
,
√

32C2

ν
} ≤ N.

The condition η ≤ ν2N2

80π2C2m seems unreasonable, but it is necessary in additive case. In Proposition 4.11, [5], it needs
E0 = tr(QQ∗) =

∑m
k=1 |qk |

2 is smaller than a constant which is independent of N.

There exists some situations which the conditions of Theorem 3.1 are satisfied. For example, m = 4N2 +

4N, span{e1, · · · , em} ⊇ HN , a = 1/8, max{
√

24Ĉ2

ην
,

√
32C2

ν
} ≤ N.

Proof: Denote

ζ l
t = πlζt, ζ

h
t = πhζt, B̃(w, u) = B(Kw, u) + B(Ku,w).

Set ρt = J0,tξ −D
vwt = J0,tξ − A0,tvt, where the definition of J0,tξ and A0,tv0,t see (5)(6), then ρt satisfies the following

equation
dρt = ν∆ρtdt + B̃(wt, ρt)dt + DQ(wt)ρtdBt − Q(wt)vtdt. (21)

For any ξ ∈ H with ||ξ|| = 1, define ζt bydζt = −
ζ l

t
2||ζ ιt ||

dt + DQ(wt)ζtdBt + 4π2C2m∆ζ l
t dt + πhB̃(wt, ζt)dt + ν∆ζh

t dt − 8π2C2mζ l
t ||ζ

l
t ||

2dt

ζ0 = ξ
, (22)

with the convention 0/0 = 0. We set the infinitesimal perturbation v by

vt = Q−1
l Ft, Ft =

ζ l
t

2||ζ l
t ||

+ πlB̃(wt, ζt) − 4π2C2m∆ζ l
t + ν∆ζ l

t + 8π2C2mζ l
t ||ζ

l
t ||

2. (23)

From Appendix A and Appendix B, there exists a unique solution to equation (24) and (29). So equation (22) exists
a unique solution. Also from Appendix A, we know that (23) is meaningful. It clear from (21) and (22) that ρt and ζt

satisfy the same equation, and thus ρt = ζt. Since ζ l
t satisfies

dζ l
t = −

ζ l
t

2||ζ l
t ||

dt + πlDQ(wt)ζtdBt + 4π2C2m∆ζ l
t dt − 8π2C2m2ζ l

t ||ζ
l
t ||

2dt, ζ l
0 = ξl := πlξ. (24)

from Itô formula,

d||ζ l
t ||

2 = −||ζ l
t ||dt + ||πlDQ(wt)ζt ||

2dt − 8π2C2m||ζ l
t ||

2
1dt + 2〈ζ l

t , πlDQ(wt)ζtdBt〉 − 16π2C2m||ζ l
t ||

4dt. (25)

From

||πlDQ(wt)ζt ||
2 =

m∑
i=1

||(Dqi(wt)ζt)ei||
2 =

m∑
i=1

||(Dqi(wt)ζ l
t )ei||

2

≤

m∑
i=1

(2π)2C2||ζ l
t ||

2 = 4π2C2m||ζ l
t ||

2, (26)
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and (25), we have
dE||ζ l

t ||
2 ≤ −E||ζ l

t ||dt,

which is

E||ζ l
t ||

2 − E||ζ l
0||

2 ≤ −

∫ t

0
E||ζ l

s||ds.

Since (E||ζ l
t ||)

2 ≤ E||ζ l
t ||

2,E||ζ l
0||

2 = (E||ζ l
0||)

2,

(E||ζ l
t ||)

2 − (E||ζ l
0||)

2 ≤ −

∫ t

0
E||ζ l

s||ds. (27)

From the above inequality, we known that as t ≥ 2,

E||ζ l
t || = 0. (28)

Since ζh
t satisfy the following equation

dζh
t = ν∆ζh

t dt + πhB̃(wt, ζt)dt + πhDQ(wt)dBt. (29)

by Lemma 3.4, if max{
√

24Ĉ2

ην
,
√

32C2

ν
} ≤ N, η ≤ min{ ν2

40π2C2 ,
ν2N2

80π2C2m }, then there exists constants Ĉ2, γ such that

E||ζh
t || ≤ (E||ζh

t ||
2)

1
2 ≤ Ĉ2e

5η
2ν ||w0 ||

2
e−γt, ∀t > 0. (30)

We next need to get control over the size of perturbation v. Since v is adapted to the Wiener path,(
E

∣∣∣∣∣∣
∫ t

0
v(s)dB(s)

∣∣∣∣∣∣
)2

≤

∫ t

0
E||v(s)||2ds ≤ C1

∫ t

0
E||Fs||

2ds. (31)

From the definition of Ft, ||πlB̃(u,w)|| ≤ C0 · ||u|| · ||w|| for some constant C0 (see [4], Lemma A.4), Lemma 3.3 and
(23)(28), we have (the constant C0 may different from line to line)

E||Fs||
2 ≤ C0(1{s≤2} + E||ws||

2||ζh
s ||

2). (32)

From Lemma 3.4, when η ≤ min{ ν2

40π2C2 ,
ν2N2

80π2C2m } and max{
√

24Ĉ2

ην
,
√

32C2

ν
} ≤ N.

E(||ws||
2||ζh

s ||
2) = E

(
||ws||

2e
1
4 νN2t−

∫ t
0

5
2 η||wr ||

2
1dr · e−

1
4 νN2t+

∫ t
0

5
2 η||wr ||

2
1dr ||ζh

s ||
2
)

≤
(
E||ws||

4e−
1
2 νN2 s+

∫ s
0 5η||wr ||

2
1dr

) 1
2
(
Ee

1
2 νN2 s−

∫ s
0 5η||wr ||

2
1dr ||ζh

s ||
4
) 1

2

≤ C0e
5η
2ν ||w0 ||

2 (
E||ws||

4e−
1
2 νN2 s+

∫ s
0 5η||wr ||

2
1dr

) 1
2
.

By Theorem 2.2, when η ≤ min{ ν2

40π2C2 ,
ν2N2

80π2C2m } , there exists a constant C3 such that

E||ws||
4e−

1
2 νN2 s+

∫ s
0 5η||wr ||

2
1dr = e−

1
4 νN2 sE||ws||

4e−
1
4 νN2 s+

∫ s
0 5η||wr ||

2
1dr

≤ C3e−
1
4 νN2 se

5η
ν ||w0 ||

2
.

Thus, there exists constant C4 such that

E(||ws||
2||ζh

s ||
2) ≤ C4e−

1
8 νN2 se

5η
ν ||w0 ||

2
. (33)

Therefore, there exists constant C5 such that if η ≤ min{ ν2

40π2C2 ,
ν2N2

80π2C2m },

E
∣∣∣∣∣∫ ∞

0
v(s)dB(s)

∣∣∣∣∣ ≤ C5 exp (
5η
2ν
||w0||

2). (34)
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Since

〈∇Ptϕ(ω0), ξ〉 = Eω0 (〈∇ϕ(ωt), ξ〉) = Eω0 ((∇ϕ)(ωt)J0,tξ)
= Eω0 ((∇ϕ)(ωt)Dvwt) + Eω0 ((∇ϕ)(ωt)ρt)
= Eω0 (Dvϕ(ωt)) + Eω0 ((∇ϕ)(ωt)ρt)

≤ ||ϕ||∞Eω0 |

∫ t

0
v(s)dB(s)| + ||∇ϕ||∞Eω0 ||ρt ||,

so from (28), (30), (34), we proved this theorem.

Lemma 3.1 u, v,w are smooth functions belong to H, then

|〈B(u, v),w〉| ≤ Ĉ||u||1||v||1||w||1/2. (35)

Proof: Set s1 = 4
5 , s2 = 0, s3 = 1

4 , q1 = 10, q2 = 2, q3 = 8
3 , q4 = 40, then

∑4
i=1(1/qi) = 1. Set Ω = T 2 = [−π, π]2,

from Holder inequality ∫
Ω

u(x)∇v(x)w(x)dx ≤ ||u||Lq1 ||∇v(x)||Lq2 ||w||Lq3 ||1||Lq4

≤ (2π)
1
20 ||u||Lq1 ||∇v(x)||L2 ||w||Lq3 . (36)

From sobolev embedding theorem, we have

||u||Lq1 (Ω) ≤ Cs1 ||u||s1 ≤ C1||u||1,

||w||Lq3 ≤ Cs3 ||w||s3 ≤ C2||w|| 1
2
.

So ∫
Ω

u(x)∇v(x)w(x)dx ≤ (2π)
1
20 C1C2||u||1||v(x)||1||w|| 1

2
.

We next calculate C1,C2. Set {e
′

k, k ∈ Z
2\{(0, 0)} is the orthonormal basis for H, that is e

′

k = 1
2πeik·x, k ∈ Z2 \ {(0, 0)}.

For the calculating of C1, we assume u =
∑

k∈Z2\{(0,0)} uke
′

k and b2 = ||u||21 =
∑

k∈Z2\{(0,0)} |k|2|uk |
2. Thus |uk | ≤

b
|k| and

||u||q1
Lq1 ≤ 29

∑
k∈Z2\{(0,0)}

∫
Ω

|uke
′

k |
q1 dx ≤ 29(2π)−8

∑
k∈Z2\{(0,0)}

|
b
|k|
|10.

From the above inequality, we have

||u||Lq1 ≤ b

 ∑
k∈Z2\{(0,0)}

1
|k|10


10

,

thus we get

C1 =

 ∑
k∈Z2\{(0,0)}

1
|k|10


10

.

For the calculating of C2, we assume w =
∑

k∈Z2\{(0,0)} ωke
′

k and b2 = ||w||21
2

=
∑

k∈Z2\{(0,0)} |k||ωk |
2. Then |wk | ≤

b
√
|k|

and

||w||q3
Lq3 ≤ 22

∑
k∈Z2\{(0,0)}

∫
Ω

|ωke
′

k |
q3 dx ≤ 22 · (2π)2 · (2π)−

8
3

∑
k∈Z2\{(0,0)}

|
b
√
|k|
|

8
3 .
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From the above inequality,

||w||Lq3 ≤ 2
3
8 b(

∑
k∈Z2\{(0,0)}

1

|k|
4
3

)
3
8

≤ 2
3
8 (

∑
k∈Z2\{(0,0)}

1

|k|
4
3

)
3
8 ||w|| 1

2
.

thus we get

C2 = 2
3
8 (

∑
k∈Z2\{(0,0)}

1

|k|
4
3

)
3
8 .

Lemma 3.2 u, v,w are smooth functions belong to H, then

|〈B(u, v),w〉| ≤ Ĉ||u|| 3
2
||v||1||w||.

Proof: From Hölder inequality, ∫
Ω

u(x)∇v(x)w(x)dx ≤ ||u||L∞ ||∇v(x)||L2 ||w||L2

≤ C3||u|| 3
2
||∇v(x)||L2 ||w||L2

The constant C3 is calculated as follows. Set {e
′

k, k ∈ Z2\{(0, 0)} is the orthonormal basis for H and assume u =∑
k∈Z2\{(0,0)} uke

′

k and b2 = ||u||23
2

=
∑

k∈Z2\{(0,0)} |k|3|uk |
2. Then |uk | ≤

b

|k|
3
2

and

||u||L∞ ≤
∑

k∈Z2\{(0,0)}

1
2π

1

|k|
3
2

· b,

thus we know that C3 =
∑

k∈Z2\{(0,0)}
1

2π
1

|k|
3
2

.

Lemma 3.3 Assume the conditions of Theorem 3.1 hold and ζ l
t is the solution to (24), then E(sup0≤s≤2 ||ζ

l
s||

2)6 < ∞.

Proof: From (25)(26), we have

d||ζ l
t ||

2 + ||ζ l
t ||dt ≤ 2〈ζ l

t , πlDQ(wt)ζtdBt〉 − 16π2C2m||ζ l
t ||

4dt.

For

|〈ζ l
t , πlDQ(wt)ζt〉|

2 = |〈ζ l
t , πlDQ(wt)ζ l

t 〉|
2

=

∣∣∣∣∣∣∣
m∑

i=1

〈ζ l
t , ei〉Dqi(wt)ζ l

t

∣∣∣∣∣∣∣
2

≤ 4π2C2m||ζ l
t ||

4.

Thus by using (26) and Lemma 2.1,

P{ sup
0≤t≤2

||ζ l
t ||

2 − ||ζ l
0||

2 ≥ K}

≤ P
{

sup
0≤t≤2

∫ t

0
2〈ζ l

s, πlDQ(ws)ζsdBs〉 −

∫ t

0
16π2C2m||ζ l

s||
4ds ≥ K

}
≤ P

{
sup

0≤t≤2

∫ t

0
2〈ζ l

s, πlDQ(ws)ζsdBs〉 −

∫ t

0
4|〈ζ l

s, πlDQ(ws)ζs〉|
2ds ≥ K

}
≤ exp(−K).

So this Lemma has been proved.
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Lemma 3.4 Assume the conditions of Theorem 3.1 hold. If max{
√

24Ĉ2

ην
,
√

32C2

ν
} ≤ N, then for any η ≤ min{ ν2

40π2C2 ,
ν2N2

80π2C2m },

there exists constants Ĉ2 = Ĉ2(m,N, η, ν, Ĉ,C), C(N,m, η, Ĉ,C, ν) and γ = γ(ν,N) > 0 such that

E||ζh
t ||

2 ≤ Ĉ2e
5η
ν ||w0 ||

2
e−γt, ∀t ≥ 0,

E||ζh
t ||

4e
1
2 νN2t−

∫ t
0 5η||wr ||

2
1dr ≤ C(N,m, η, Ĉ,C, ν)e

5η
ν ||w0 ||

2
, ∀t ≥ 0. (37)

Proof: First, we give some estimations. From Lemma 3.1, Lemma 3.2, (8), (10) and (11), for any η > 0,

|〈ζ l
t , B(Kwt, ζ

h
t )〉| ≤ Ĉ||ζh

t ||1||wt || 1
2
||ζ l

t || (38)

≤
ν

6
||ζh

t ||
2
1 +

6Ĉ2

ν
||wt ||

2
1||ζ

l
t ||

2. (39)

〈wt, B(Kζ l
t , ζ

h
t )〉| ≤ Ĉ||ζh

t ||1||wt || 1
2
||ζ l

t || (40)

≤
ν

6
||ζh

t ||
2
1 +

6Ĉ2

ν
||wt ||

2
1||ζ

l
t ||

2. (41)

|〈ζh
t , B(Kζh

t ,wt)〉| = |〈wt, B(Kζh
t , ζ

h
t 〉)|

≤ Ĉ||ζh
t || 12
||wt ||1||ζ

h
t || (42)

≤ η||wt ||
2
1||ζ

h
t ||

2 +
Ĉ2

η
||ζh

t ||
2
1
2

≤ η||wt ||
2
1||ζ

h
t ||

2 +
Ĉ2

η
||ζh

t ||1||ζ
h
t ||

≤ η||wt ||
2
1||ζ

h
t ||

2 +
Ĉ2

η

[
ην

6Ĉ2
||ζh

t ||
2
1 +

6Ĉ2

ην
||ζh

t ||
2
]

= η||wt ||
2
1||ζ

h
t ||

2 +
ν

6
||ζh

t ||
2
1 +

6Ĉ4

η2ν
||ζh

t ||
2. (43)

For any θ ∈ H, i = 1, · · · ,m, qi(θ) = qi(πlθ), thus

||πhDQ(wt)ζt ||
2 ≤

m∑
i=1

||Dqi(wt)ζt ||
2||ei||

2

=

m∑
i=1

||Dqi(wt)ζ l
t ||

2||ei||
2

≤ 4π2mC2||ζ l
t ||

2.

When N ≥
√

24Ĉ2

ην
,

d||ζh
t ||

2 = −2ν||ζh
t ||

2
1dt + 2〈ζh

t , B̃(wt, ζt)〉dt + 2〈ζh
t ,DQ(wt)ζtdBt〉 + ||πhDQ(wt)ζt ||

2dt

= −2ν||ζh
t ||

2
1dt − 2〈ζ l

t , B(Kwt, ζ
h
t )〉dt − 2〈wt, B(Kζt, ζ

h
t ))dt

+2〈ζh
t ,DQ(wt)ζtdBt〉 + ||πhDQ(wt)ζt ||

2dt

≤ −2ν||ζh
t ||

2
1dt + 4Ĉ||wt || 1

2
||ζh

t ||1||ζ
l
t ||dt + 2Ĉ||wt ||1||ζ

h
t || 12
||ζh

t ||dt

+2〈ζh
t ,DQ(wt)ζtdBt〉 + 4π2mC2||ζ l

t ||
2dt

≤ −ν||ζh
t ||

2
1dt +

24Ĉ2

ν
||wt ||

2
1||ζ

l
t ||

2dt + 2η||wt ||
2
1||ζ

h
t ||

2dt +
12Ĉ4

η2ν
||ζh

t ||
2dt

+2〈ζh
t ,DQ(wt)ζtdBt〉 + 4π2mC2||ζ l

t ||
2dt

≤ (−
1
2
νN2 + 2η||wt ||

2
1)||ζh

t ||
2dt +

24Ĉ2

ν
||wt ||

2
1||ζ

l
t ||

2dt

+2〈ζh
t ,DQ(wt)ζtdBt〉 + 4π2mC2||ζ l

t ||
2dt, (44)
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here the second equality, we have used (8). In the first inequality, we have used (38)(40)(42). In the second inequality
we have used (39)(41)(43). In the last inequality, we have used the fact ||ζh

t ||1 ≥ N ||ζh
t ||.

By the same argument above, we have when N ≥
√

32C2

ν
,

d||ζh
t ||

4 = 2||ζh
t ||

2d||ζh
t ||

2 + 4|〈ζh
t ,DQ(wt)ζt〉|

2dt

≤ (−νN2 + 4η||wt ||
2
1)||ζh

t ||
4dt +

48Ĉ2

ν
||wt ||

2
1||ζ

l
t ||

2||ζh
t ||

2dt

+8π2mC2||ζ l
t ||

2||ζh
t ||

2dt + 16π2C2||ζ l
t ||

2||ζh
t ||

2dt + h(t)dB(t)

≤ (−νN2 + 4η||wt ||
2
1)||ζh

t ||
4dt + η||wt ||

2
1||ζ

h
t ||

4dt +
482Ĉ4

ην2 ||wt ||
2
1||ζ

l
t ||

4dt

+
1
4
νN2||ζh

t ||
4dt +

4 · (8π2mC2)2

νN2 ||ζ l
t ||

4dt + 2C2 · (2π)4||ζ l
t ||

4dt + 8C2||ζh
t ||

4dt + h(t)dB(t)

≤ (−
1
2
νN2 + 5η||wt ||

2
1)||ζh

t ||
4dt + a||wt ||

2
1||ζ

l
t ||

2dt + b||ζ l
t ||

4dt + h(t)dB(t), (45)

where a = 482Ĉ4

ην2 , b = 2C2 · (2π)4 +
4·(8π2mC2)2

νN2 , DQ(wt)ζt =
∑m

i=1

(
Dqi(wt)ζ l

t

)
ei and h(t) is some process.

From (45), we can obtain

E||ζh
t ||

4e
1
2 νN2t−

∫ t
0 5η||wr ||

2
1dr ≤ ||ζh

0 ||
4 + E

∫ t

0
e( 1

2 νN2 s−
∫ s

0 5η||wr ||
2
1dr)(a||ws||

2
1||ζ

l
s||

2 + b||ζs||
4)ds

≤ ||ζh
0 ||

4 + E
∫ 2

0
e( 1

2 νN2 s−
∫ s

0 5η||wr ||
2
1dr)(a||ws||

2
1||ζ

l
s||

2 + b||ζs||
4)ds

≤ ||ζh
0 ||

4 + C̃1E
(∫ 2

0
||ws||

2
1ds sup

s∈[0,2]
||ζ l

s||
2
)

+ C̃2E sup
s∈[0,2]

||ζ l
s||

4,

≤ C(N,m, η, Ĉ,C, ν)e
5η
ν ||w0 ||

2
, (46)

In the last inequality, we have used Theorem 2.2, Lemma 3.3.
Thus

E||ζh
t ||

2 = E||ζh
t ||

2e
1
4 νN2t−

∫ t
0

5
2 η||wr ||

2
1dr · e−

1
4 νN2t+

∫ t
0

5
2 η||wr ||

2
1dr

≤

(
E||ζh

t ||
4e

1
2 νN2t−

∫ t
0 5η||wr ||

2
1dr

) 1
2
(
Ee−

1
2 νN2t+

∫ t
0 5η||wr ||

2
1dr

) 1
2

=

(
E||ζh

t ||
4e

1
2 νN2t−

∫ t
0 5η||wr ||

2
1dr

) 1
2
(
Ee−

1
4 νN2t+

∫ t
0 5η||wr ||

2
1dr

) 1
2

e−
νN2 t

8 .

From Theorem 2.2, (46), we know that when η ≤ min{ ν2

40π2C2 ,
ν2N2

80π2C2m },

E||ζh
t ||

2 ≤ C(N,m, η, Ĉ,C, ν)e
5η
2ν ||w0 ||

2
· C̃e( 5η

2ν ||w0 ||
2)e−

νN2 t
8

= C(N,m, η, Ĉ,C, ν)e
5η
ν ||w0 ||

2
e−γt.

4. Ergodicity

For getting the exponential convergence, we using the methods in [6]. In the Assumption 4.1, 4.2, 4.3 and Theorem
4.1 below, we assume that we are given a random flow Φt on a Banach space H. We will assume that the map
x 7→ Φt(ω, x) is C1 for almost every element ω of the underlying probability space. We will denote by DΦt the
Fréchet derivative of Φt(ω, x) with respect to x.

Let C(µ1, µ2) for the set of all measures Γ on H × H such that Γ(A × H) = µ1(A) and Γ(H × A) = µ2(A) for every
Borel set A ⊂ H. The following three assumptions are from [6].

11



Assumption 4.1 There exists a function V : H → [1,∞) with the following properties:

1. There exists two strictly increasing continuous functions V∗ and V∗ from [0,∞)→ [1,∞) such that

V∗(||x||) ≤ V(x) ≤ V∗(||x||) (47)

for all x ∈ H and such that lima→∞ V∗(a) = ∞.

2. There exists constants C and κ ≥ 1 such that

aV∗(a) ≤ CVκ
∗ (a), (48)

for every a > 0.

3. There exists a positive constants C, r0 < 1, a decreasing function ξ : [0, 1]→ [0, 1] with ξ(1) < 1 such that for
every h ∈ H with ||h|| = 1

EVr(Φt(x))(1 + ||DΦt(x)h)||) ≤ CVrξ(t)(x), (49)

for every x ∈ H, every r ∈ [r0, κ], and every t ∈ [0, 1].

Assumption 4.2 There exists a C1 > 0 and p ∈ [0, 1) so that for every α ∈ (0, 1) there exists positive T (α) and C(α)
with

||DPtϕ(x)|| ≤ C1V p(x)
(
C(α)

√
(Pt |ϕ|2)(x) + α

√
(Pt ||Dϕ||2)(x)

)
, (50)

for every x ∈ H and t ≥ T (α).

Assumption 4.3 Given any C > 0, r ∈ (0, 1) and δ > 0, there exists a T0 so that for any T ≥ T0 there exists an a > 0
so that

inf
|x|,|y|≤C

sup
Γ∈C(P∗T δx,P∗T δy)

Γ
{
(x
′

, y
′

) ∈ H × H : ρr(x
′

, y
′

< δ)
}
≥ a. (51)

If Assumption 4.1 is satisfied, then for every Fréchet differentiable function ϕ : H → R, we introduce the following
norm

||ϕ||V = sup
x∈H

|ϕ(x)| + ||Dϕ(x)||
V(x)

,

and for r ∈ (0, 1], a family of distance ρr on H is defined by

ρr = inf
γ

∫ 1

0
Vr(γ(t))||γ̇(t)||dt,

where the infimum runs over all paths γ such that γ(0) = x and γ(1) = y. For simple, we will write ρ for ρ1.
If the setting of the semigroup Pt possesses an invariant measure µ∗, we define

||ϕ||ρ = sup
x,y

|ϕ(x) − ϕ(y)|
ρ(x, y)

+

∣∣∣∣∣∫
H
ϕ(x)µ∗(dx)

∣∣∣∣∣ . (52)

The next Theorem comes from Theorem 3.6, Corollary 3.5 and Theorem 4.5 in [6].

Theorem 4.1 Let Φt be a stochastic flow on a Banach space H which is almost surely C1 and satisfy Assumption 4.1.
Denote by Pt the corresponding Markov semigroup and assume that it satisfies Assumption 4.2 and 4.3. Then there
exists a unique invariant probability measure µ∗ for Pt and exists constants γ > 0 and C > 0 such that

||Ptϕ − µ∗ϕ||ρ ≤ Ce−γt ||ϕ − µ∗ϕ||ρ,

||Ptϕ − µ∗ϕ||V ≤ Ce−γt ||ϕ − µ∗ϕ||V ,

for every Fréchet differentiable function ϕ : H → R and every t > 0.
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The next Lemma comes from Lemma 5.1 in [6].

Lemma 4.1 Let U be a real-valued semi-martingale

dU(t, ω) = F(t, ω)dt + G(t, ω)dB(t, ω),

where B is a standard Brownian motion. Assume that there exists a process Z and positive constants b1, b2, b3, with
b2 > b3, such that F(t, ω) ≤ b1 − b2Z(t, ω),U(t, ω) ≤ Z(t, ω), and G(t, ω)2 ≤ b3Z(t, ω) almost surely. Then the bound

E exp
(
U(t) +

b2e−b2t/4

4

∫ t

0
Z(s)ds

)
≤

b2 exp( 2b1
b2

)

b2 − b3
exp

(
U(0)e−

b2
2 t

)
,

holds for every t ≥ 0.

Theorem 4.2 Assume the conditions of Theorem 3.1 is satisfied, then Assumption 4.1 is satisfied for

V(x) = eη0 ||x||2 , where η0 =
ν

16C2(2π)2 .

Moreover, there exists a unique invariant probability measure µ∗ for Pt and constants γ > 0 and C > 0 such that

||Ptϕ − µ∗ϕ||V ≤ Ce−γt ||ϕ − µ∗ϕ||V ,

for every Fréchet differentiable function ϕ : H → R and every t > 0.

Proof: In order to prove this Theorem, by Theorem 4.1, we only to confirm wt satisfy Assumption 4.1 and Pt satisfy
Assumption 4.2, 4.3. From Itô formula,

dη‖wt‖
2 + 2ην‖wt‖

2
1dt = 2η〈wt,Q(wt)dBt〉 + η

m∑
i=1

|qi(wt)|2||ei||
2dt.

From Lemma 4.1,

E exp
(
U(t) +

b2e−b2t/4

4

∫ t

0
Z(s)ds

)
≤

b2 exp( 2b1
b2

)

b2 − b3
exp

(
U(0)e−

b2
2 t

)
.

where U(t) = η||wt ||
2, Z(t) = η||wt ||

2
1, b1 = 4π2ηmC2, b2 = 2ν, b3 = 4(2π)2ηC2. Therefore when η ≤ ν

4C2(2π)2 ,

E exp
(
η||wt ||

2 +
2νe−2νt/4

4

∫ t

0
η||ws||

2
1ds

)
≤ 2 exp(

(2π)2ηmC2

ν
) exp

(
η||w0||

2e−
2ν
2 t
)
. (53)

For ||ξ|| = 1,denote ξt = Jtξ = Dwx
t ξ, where x is the initial value and D is the differential operator with x. So ξt satisfy

the following equation

dξt = ν∆ξtdt + B̃(wt, ξt)dt +

m∑
i=1

(Dqi(wt)ξt)eidBi(t). (54)

and thus

d||ξt ||
2 ≤ −2ν||ξt ||

2
1dt + 2〈B(Kξt,wt), ξt〉dt +

m∑
i=1

C2m||ξt ||
2||ei||

2dt + htdBt.

By the the similar method to get (43), we can obtain

2〈B(Kξt,wt), ξt〉 ≤ η||wt ||
2
1||ξt ||

2 + ν||ξt ||
2
1 +

16Ĉ4

η2ν
||ξt ||

2,
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and

d||ξt ||
2 ≤ η||wt ||

2
1||ξt ||

2dt + (
16Ĉ4

η2ν
+ 4π2C2m)||ξt ||

2dt + htdBt.

Define the function h(η) = ( 16Ĉ4

η2ν
+ 4π2C2m), from the above inequality we have

E||ξt ||
2 exp (−h(η)t −

∫ t

0
η||ws||

2
1ds) ≤ 1,∀η > 0. (55)

Set b = e−
ν
2 , η ≤ ν

8C2(2π)2 , t ∈ [0, 1]. From (53) and (55),

E exp (η||wt ||
2)||ξt || = E

(
exp (η||wt ||

2) exp (
bην
2

∫ t

0
||ws||

2
1ds)

)
·

(
||ξt || exp (−

bην
2

∫ t

0
||ws||

2
1ds)

)
≤

(
E exp (2η||wt ||

2 + bην
∫ t

0
||ws||

2
1ds)

) 1
2
(
E||ξt ||

2 exp (−bην
∫ t

0
||ws||

2
1ds)

) 1
2

≤

(
2 exp(

2η · 4π2mC2

ν
) exp

(
2η||w0||

2e−
2ν
2 t
)) 1

2

exp (
h(bην)

2
t)

= exp
(
η||w0||

2e−
2ν
4 t
) (

2 exp(
2η · 4π2mC2

ν
)
) 1

2

exp (
h(bην)

2
t).

Set η0 = ν
16C2(2π)2 , we know that the above inequality is satisfied for all η ∈ [0, 2η0]. So wt satisfies Assumption 4.1

for V(x) = eη0 ||x||2 , κ = 2, r0 = 1
2 and V∗(a) = V∗(a) = eη0a2

. From Theorem 2.3, we know Pt satisfy Assumption 4.3.
Since

〈∇Ptϕ(ω0), ξ〉 = Eω0 (Dvϕ(ωt)) + Eω0 ((∇ϕ)(ωt)ρt)

≤

√
(Pt |ϕ|2)(x)

(
Eω0 |

∫ t

0
v(s)dB(s)|2

) 1
2

+

√
(Pt ||∇ϕ||2)(x)

(
Eω0 ||ρt ||

2
) 1

2 ,

by (28), (30), (31), (32), (33), Lemma 3.4 and the fact ρt = ζt, we know Assumption 4.2 is satisfied.

Appendix A. The existence and uniqueness of strong solution to equation (24)

Under the conditions of Theorem 3.1, the strong solution to equation (24) has and only has one solution.
Proof: Because qi(θ) = qi(πlθ), 1 ≤ i ≤ m, for any θ ∈ H, so the equation (24) is the same as the following equation

dζ l
t = −

ζ l
t

2||ζ l
t ||

dt +

m∑
i=1

πlD (qi(wt)ei) ζ l
t dBi(t) + C2m∆ζ l

t dt − 2C2m2ζ l
t ||ζ

l
t ||

2dt, ζ l
0 = ξl. (A.1)

This equation is essentially a finite dimension stochastic differential equation. If ||ζ l
0|| = 0, then zero is the solution to

(A.1)(for 0/0=0). If ||ζ l
0|| > 0, define the following stopping times

τn = inf
{
t > 0, ||ζ l

t || ≤ 1/n
}
, ∀n ∈ Z+,

τ = lim
n→∞

τn.

When t ≤ τn, there exists a unique solution xn
t to equation (A.1). So

ζ l
t =

{
xn

t t ≤ τn, for some n,
0 t ≥ τ,
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is a strong solution to (A.1). In the following, we will prove that if ζ l
0 = 0, then any solution to equation (A.1) will be

zero. Let Xt be the solution to equation (A.1) with X0 = 0. Then,

d||Xt ||
2 ≤ −||Xt ||dt +

m∑
i=1

||Dqi(wt)Xt ||
2dt − 2C2m||Xt ||

2
1dt − 4C2m2||Xt ||

4dt + h(t)dBt,

for some process ht. For ||Dqi(wt)|| ≤ C, so
E||Xt ||

2 ≤ ||X0||
2 = 0,

then Xt = 0, almost everywhere, ∀t > 0. Then the uniqueness follows.

Appendix B. The existence and uniqueness of solution to equation (29)

In this Appendix, we will prove that under the conditions of Theorem 3.1, equation (29) has and only has one
solution.
Proof: Because qi(θ) = qi(πlθ), 1 ≤ i ≤ m, for any θ ∈ H, so the equation (29) is the same as the following equation

dYt = ν∆Ytdt + πhB(Kwt,Yt)dt + πhB(KYt,wt)dt +

m∑
i=1

πhD (qi(wt)ei) ζ l
t dBt

+πhB(Kwt, ζ
l
t )dt + πhB(Kζ l

t ,wt)dt. (B.1)

We mainly use Theorem 1.2 in [1], so we need to check conditions (H1), (H2), (H3), (H4) in [1]. Recall that operator
πh is defined in section 3, and the space H is defined in section 1. The spaces H ,V in conditions (H1), (H2), (H3),
(H4) is defined as follows:

V =

{
w ∈ H1,2

0 ([−π, π]2,R) ∩ πhH :
∫

[−π,π]2
w(x)dx = 0

}
, ||w||2V =

∫
[−π,π]2

|∇w|2dx, (B.2)

and

H =

{
w ∈ L2([−π, π]2,R) ∩ πhH :

∫
[−π,π]2

w(x)dx = 0
}
, ||w||2

H
=

∫
[−π,π]2

|w|2dx. (B.3)

From (7) and ||w|| := ||w||0, we know that for any ϕ ∈ H

||ϕ||H = ||ϕ||L2 = ||ϕ|| = ||ϕ||H ,

and for any ϕ ∈ V

||ϕ||V = ||ϕ||1.

Define stopping times

τn = inf{t ≥ 0, ||wt ||H ≥ n}.

For (H2), when t ≤ τn, by inequality ab ≤ (1/p)ap + (1/q)bq (1/p + 1/q = 1) and (11), for any ε > 0,

V∗〈πhB(Kwt, v1 − v2), v1 − v2〉V = 0,

V∗〈πhB(K(v1 − v2),wt), v1 − v2〉V ≤ C||K(v1 − v2)|| 3
2
· ||wt || · ||v1 − v2||1

= C||(v1 − v2)|| 1
2
· ||wt || · ||v1 − v2||1

≤ C||(v1 − v2)||
1
2 · ||wt || · ||v1 − v2||

3
2
1

≤ ε||v1 − v2||
2
1 + C(ε)||wt ||

4||v1 − v2||
2. (B.4)

Set ε = ν
2 , we know that (H2) is satisfied for t ≤ τn.

For (H3), set ε = ν
2 in (B.4), we know that exists constant C such that

V∗〈πhB(K(v),wt), v〉V ≤
ν

2
||v1 − v2||

2
1 + C||wt ||

4||v1 − v2||
2,

then we can know that when t ≤ τn, (H3) is satisfied for α = 2, θ = ν
2 .
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Appendix C. The existence and uniqueness of solution to equation (1)

In this Appendix, we will prove that under the conditions of Theorem 2.1, equation (1) has and only has one
solution.
Proof: We mainly use Theorem 1.2 in [1], so we need to check conditions (H1), (H2), (H3), (H4) in [1]. In this
Appendix, The spacesH ,V in conditions (H1), (H2), (H3), (H4), is defined as follows:

V =

{
w ∈ H1,2

0 ([−π, π]2,R) :
∫

[−π,π]2
w(x)dx = 0

}
, ||w||2V =

∫
[−π,π]2

|∇w|2dx, (C.1)

and

H =

{
w ∈ L2([−π, π]2,R) :

∫
[−π,π]2

w(x)dx = 0
}
, ||w||2

H
=

∫
[−π,π]2

|w|2dx. (C.2)

For (H2), by using inequality ab ≤ (1/p)ap + (1/q)bq (1/p + 1/q = 1) and (11), for any ε > 0,

V∗〈B(Kv1, v1) − B(Kv2, v2), v1 − v2〉V = −V∗〈B(Kv1, v1), v2〉V −V∗ 〈B(Kv2, v2), v1〉V

= −V∗〈B(Kv1, v1 − v2), v2〉V +V∗ 〈B(Kv2, v1 − v2), v1〉V

= −V∗〈B(Kv1, v1 − v2), v2〉V +V∗ 〈B(Kv2, v1 − v2), v2〉V

= −V∗〈B(Kv1 − Kv2, v1 − v2), v2〉V

= −V∗〈B(Kv1 − Kv2, v2), v1 − v2〉V ,

then by the similar way in obtaining (B.4), for ε = ν
2 , exists a constant C(ε) such that

V∗〈B(Kv1 − Kv2, v2), v1 − v2〉V ≤ ε||v1 − v2||
2
1 + C(ε)||v2||

4||v1 − v2||
2.

So (H2) is satisfied for ρ(v) = C(ε)||v||4
H
.

For (H4), by hölder inequality,

|V∗〈B(Kv, v),w〉V | ≤
√

2||Kv||L4 ||v||V ||w||L4 . (C.3)

For any smooth function ϕ, (see Lemma 2.1 in [8] for example )

||ϕ||4L4 ≤ 2||ϕ||2L2 · ||∇ϕ||
2
L2 . (C.4)

So, from (C.3), (C.4)

|V∗〈B(Kv, v),w〉V |2 ≤ 2
√

2||Kv||L2 ||∇(Kv)||L2 ||v||2V ·
√

2||w||L2 ||∇w||L2 ,

so,

|B(Kv, v)|V∗ ≤ ||v||L2 ||v||V . (C.5)

From (C.5), it is not difficult to check that (H4) is satisfied for α = 2, β = 2.
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