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Battle of Sex Game

2 Players = { Husband, Wife}.
2 Strategies = { Football, Ballet }.
Payoffs (2 × 2 asymmetric game ):

Football Ballet
Football 2, 1 -1, -1
Ballet -1, -1 1 , 2

3 Nash Equilibria:
{ Football, Football}, { Ballet, Ballet}. Unlikely in general.
1 mixed strategy:
Husband: Prob( Football ) = 3

5 , Prob( Ballet ) = 2
5 .

Wife: Prob( Football ) = 2
5 , Prob( Ballet ) = 3

5 .

Expected payoff of (Husband, Wife) = (1
4 ,

1
4).

Is it reasonable?
J. H. Wang, The Theory of Games, Oxford U. Press, 1988.
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Prisoner’s Dilemma Game

2 isolated prisoners in cell, waiting to be sentenced.
Strategy set { Defect, Cooperation }. Like spin {±}.
Defect = confess to be guilty.
Payoffs (2 × 2 symmetric game ):

D C
D 6 years, 6 years 3 months, 10 years
C 10 years, 3 months 1 year, 1 year

D: low list price. C: higher list price for a certain product.
Unique Nash Equilibrium is (D, D).
Payoff for (C, C) is better. Yet, no communication allowed.
Payoff for strategy D > payoff for strategy C.
Egoist ( for strategy D) vs. Altruist ( for strategy C).
Any way out of the dilemma?
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Prisoner’s Dilemma Game continued...

More generally, the payoffs, with b > d > a > c, are

D C
D a, a b, c
C c, b d, d

Nash Equilibrium is (D, D). But (C, C) is better.
Payoff for strategy D > payoff for strategy C.
Definition. (s, t) is called a Nash equilibrium if

payoff at (s, t) ≥ payoff at (s, t ′) ∀t ′ ∈ S;

payoff at (s, t) ≥ payoff at (s′, t) ∀s′ ∈ S.

No player gains by changing his present strategy alone.
No under-table deal. No side-payment. No talk.
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Prisoner’s Dilemma Game continued...

New models: play many times: 1-time codebook unbreakable,
many players, local structure.

Key features : strategy-revision dynamics.
Energy in the physical models. Variety in social study.
2 players with repeated games.
Like eye for eye.
Fictitious play. Cf. Hofbauer & Sandholm (2002).
∞ many players. Continous time.
Lotka-Volterra differential equation. Global interaction
State x ∈ [0,1] = the population proportion playing
strategy C.
Reaction-diffusion equation: Local interaction
Our setup: N ≥ 5 players, discrete time, local interaction.
Similar to interacting particle systems.
Goal: long-run behavior.
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Dynamics I. Strategy revision by imitation

By inertia, each player imagines to play the above PD game
once with each of their two neighbors, according to their
present strategies.

si−1 ⇐ si ⇒ si+1

Let zi(~s) = player i ’s total expected payoff if none changes the
present strategy.

Imitating-best-player among his neighbors and himself:
the rational choice for player i at time t + 1 is

ri(~s) ∈ Mi(~s)
def
= {sj : zj(~s) = max zk (~s) for k ∈ Ni ∪ {i} }.
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Dynamics I. continued...

Imitating-best-strategy: each player i will imitate the most
successful action yielding the highest average payoff which
was adopted among his neighbors and himself at time t .
Let δ be the Kronecker notation. Then

aE
i (~s) =


∑

k∈Ni∪{i} zk (~s)·δE,sk∑
k∈Ni∪{i} δE,sk

, if E ∈ {si−1, si , si+1},
−∞, if E 6= si−1 = si = si+1,

means the average payoff for strategy E ∈ {C,D} among
player i and his neighbors. Therefore, player i ’s next-period
rational choice ri(~s) satisfies

ri(~s) ∈ M̄i(~s)
def
= {E ∈ {C,D} : aE

i (~s) = max(aC
i (~s),aD

i (~s)) }.
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Dynamics I. continued...

The computation of Mi(~s) and M̄i(~s) for player i involves

(si−2, si−1, si , si+1, si+2)

14 out of 32 cases need to be considered. E.g.

ri(~s) = si if si−1 = si = si+1.

For brevity, r(si−2, si−1, si , si+1, si+2)
def
= ri(~s).

Strict rule : In case, {C, D} = Mi(~s) ( or M̄i(~s)),

ri(~s) = si by inertia. Deterministic process.

Essentially the same results for the loose rule. Random.
A time-homogeneous Markov chain on S = {C, D}n with
transition probability matrix Q0(~s, ~u) = 1 iff ~u = ~r(~s),
where the rational choice ~r(~s) = (r1(~s), r2(~s), . . . , rn(~s)) is
uniquely determined for state ~s ∈ S by the strict rule.
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Dynamics II. Mutation

Players will simultaneously, but independently alter their
rational choices {ri(~s)} with identical probability ε > 0.
Mutation : an important factor in biology evolution.
Rationality may not be good always.

Greedy algorithm. Monkey forever.
A learning process. People make less mistakes as time→∞.
Here ε is fixed but small.
If ε = ε(t) then that leads to simulated annealing.

Kirkpatrick, Gebatt and Vecchi, Optimization by simulated
annealing, Science 220 (1983), 671-680.
Geman and Geman, Stochastic relaxation, Gibbs
distributions and the Bayesian restoration of images, IEEE
Trans. Pattern Analysis and Machine Intelligence 6 (1984),
721-741.
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Dynamics II. Mutation 2

All together, it is a Markov chain {Xt : t = 0,1, ...} on S.
Its transition matrix Qε, a perturbation of Q0, given by

Qε(~s, ~u) = εd(~r(~s), ~u) · (1− ε)n−d(~r(~s), ~u) for all ~s, ~u ∈ S.

Here, d(~r(~s), ~u) = |{i ∈ N : ri(~s) 6= ui}|
= # of mismatches between the next truly-adopted strategy ~u
and the revised rational choice ~r(~s) at state ~s.

Qε(~s, ~u) ≈ εU(~s,~u) for ε << 1.
Here U(~s, ~u) = d(~r(~s), ~u) means the cost from ~s to ~u.
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Dynamics II. continued...

Qε(~s, ~u) > 0 for all ~s, ~u ∈ S.
Mutation makes our dynamic process {Xt} ergodic.
The unique invariant distribution µε is characterized by
µε = µε ·Qε.

Method of Ventcel-Freidlin can be applied.
µε is specified in terms of spanning-trees.
Freidlin & Wentzell, Random Perturbations of Dynamical
Systems. 1984.

Goal: to find µ∗
def
= limε→0 µε and its support S∗.

In particular, whether µε(~C) = 1. Or

(C,C,C, ...,C)
def
= ~C ∈ S∗

def
= {~s ∈ S : µ∗(~s) > 0}?

I.e. whether all-cooperation is possible in the long run?
Elements in S∗ are called the Long Run Equilibria.
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Results for PD games

{~C, ~D} ⊆ S0. Let M def
= S0 \ {~C, ~D}

the set of mixed stationary states at ε = 0, which means
cooperators and defectors coexist peacefully.
For ~s ∈ M 6= ∅ can be expressed as follows:

· · ·D · · ·D︸ ︷︷ ︸
dk

C · · ·C︸ ︷︷ ︸
ck

D · · ·D︸ ︷︷ ︸
d1

C · · ·C︸ ︷︷ ︸
c1

D · · ·D︸ ︷︷ ︸
d2

C · · ·C︸ ︷︷ ︸
c2

· · ·

di = length of the i th D-string,
cj = length of the j th C-string starting from a certain player.
For positive integers m and `, define

M≥m, ≥`
def
= {~s ∈ S : all di ≥ m, cj ≥ `}

Mm, `
def
= {~s ∈ S : all di = m, cj = `}.
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Results continued...

H.C. Chen and Y. Chow, Adv. Applied Probab., 41 (2009),
154-176.
Theorem 1. For Imitating-Best-Player dynamics,
S∗ = {~D} and Eε(T ) ≈ ε−1 as ε ↓ 0.
Here T = waiting time to hit S∗.

All-defection ~D is the unique LRE of the IBP dynamics.
Because

r(∗,C,D,C, ∗) = D

and
r(∗,D,C,D, ∗) = D,

which shows the strength of D against C.
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Results continued...

Theorem 2. Assume the Imitating-Best-Strategy dynamics.
(i) If a + b > c+3d

2 , S0 = {~C, ~D}, S∗ = {~D} and Eε(T ) ≈ ε−1.
(ii) If a + b ≤ c+3d

2 and 3a+b
2 < c + d , then S0 = {~C, ~D} ∪M,

where the mixed stationary states in M has all di ∈ {1, 2, 3}
and, besides ci ≥ 3,

ci ≥ 5 if (di ,di+1) = (1,1); ci ≥ 4 if (di ,di+1) = (1,2) or (2,1).



S∗ = {~D} and Eε(T ) ≈ ε−1 for n = 5,
S∗ = {~D} and Eε(T ) ≈ ε−d

n
10 e for 6 ≤ n ≤ 20,

S∗ = S0 and Eε(T ) ≈ ε0 for 21 ≤ n < 30 but n 6= 25,
S∗ = S0 \M2, 3 and Eε(T ) ≈ ε−1 for n = 25 or 30,
S∗ = (S0 \M2, 3) \ {~D} and Eε(T ) ≈ ε−3 for n ≥ 31.

(iii) If a + b ≤ c+3d
2 and 3a+b

2 ≥ c + d , then
S0 = {~C, ~D} ∪M≥2, ≥3,S∗ = {~D} and Eε(T ) ≈ ε−1.
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Coordination Games

2 players and 2 strategies {A, B}.
Payoffs (2 × 2 symmetric game ):

A B
A a , a b , c
B c, b d , d

Assume a > c, d > b, d > a, and a + b > c + d .
2 Nash Equilibria are (B,B) and (A,A).
d > a⇒ strategy B is Pareto efficient.
a + b > c + d ⇒ strategy A is risk dominant.
LRE under the evolutionary dynamics can be obtained.
By scaling, we may set c = 0 and d = 1.
So a + b > 1, 0 < a < 1 and 0 < b < 1.
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Results for Coordination Games

H.C. Chen, Y. Chow and L.C. Wu, Economics Bulletin 32 (2012)
and Intern. J. Game Theory (2013), to appear.
Theorem 3. For Imitating-Best-Player dynamics,
S∗ = {~B} except the following two cases:
(i) When b > 1/2, we have S∗ = {~A} if 5 ≤ n ≤ 6,

S∗ = {~A, ~B} ∪M1 ≥3 if 7 ≤ n ≤ 12,
and S∗ = {~B} ∪M1 ≥3 if n ≥ 13.

(ii) When b = 1/2, we have S∗ = {~A, ~B} if 5 ≤ n ≤ 6,
and S∗ = {~B} if n ≥ 7.

Theorem 4 Assume Imitating-Best-Strategy dynamics.
(a) If 3a+b

2 ≥ 1 then S∗ = {~A}.
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Results for Coordination Games continued...

(b) If 3a+b
2 < 1 and b ≤ 3

4 , then
S∗ = {~A} for 5 ≤ n ≤ 14,
S∗ = {~A, ~B} ∪M≥3, ≤2 for 15 ≤ n ≤ 21,
S∗ = {~B} ∪M≥3, ≤2 for n ≥ 22.

(c) If 3a+b
2 < 1 and b > 3

4 , then

S∗ = {~A} for n = 5,
S∗ = {~A} for 6 ≤ n ≤ 20,
S∗ = {~A, ~B} ∪ M̃ for 21 ≤ n < 30, n 6= 25,
S∗ = ({~A, ~B} ∪ M̃)\M3, 2 for n = 25 or 30,
S∗ = ({~B} ∪ M̃)\M3, 2 for n ≥ 31.
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· · ·A · · ·A︸ ︷︷ ︸
ak

B · · ·B︸ ︷︷ ︸
bk

A · · ·A︸ ︷︷ ︸
a1

B · · ·B︸ ︷︷ ︸
b1

A · · ·A︸ ︷︷ ︸
a2

B · · ·B︸ ︷︷ ︸
b2

· · · . (∗)

Here ai and bi are the lengths of its i-th A-string and B-string.

Mm, p
def
= {~s ∈ S : all ai = m, bj = p in (∗)}.

M≤m, ≥p
def
= {~s ∈ S : all ai ≤ m, bj ≥ p in (∗)}.

Furthermore,

M̃ = {~s ∈ M≤3, ≥3 : bi ≥ 4 if (ai , ai+1) = (1,2) or (2,1), and
bi ≥ 5 if (ai , ai+1) = (1,1) in (∗)}.
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Battle of Sex Game

2 Players = { Husband, Wife}.
2 Strategies = { Football, Ballet }.
Payoffs (2 × 2 asymmetric game ):

Football Ballet
Football 2, 1 -1, -1
Ballet -1, -1 1 , 2

3 Nash Equilibria:
{ Football, Football}, { Ballet, Ballet}. Unlikely in general.
1 mixed strategy:
Husband: Prob( Football ) = 3

5 , Prob( Ballet ) = 2
5 .

Wife: Prob( Football ) = 2
5 , Prob( Ballet ) = 3

5 .
Expected payoff of (Husband, Wife) = (1

4 ,
1
4).

Is it reasonable?
Play repeatedly for 2 players?
N-person BOS game with different payoff functions.
Try the evolutionary approach.

Yunshyong Chow Some Results on Evolutionary 2 x 2 Asymmetric Games



Battle of Sex Game continued

Payoffs (2 × 2 asymmetric game ):
Football Ballet

Football a, b 0, 0
Ballet c, c b , a

Here a > b > 0 ≥ c.
3 Nash Equilibria:
{ Football, Football}, { Ballet, Ballet}. Unlikely in general.
1 mixed strategy:
Husband: P ( Football ) = a−c

a+d−c , P ( Ballet ) = d
a+d−c .

Wife: P ( Football ) = d
a+d−c , P ( Ballet ) = a−c

a+d−c .

Goal: Expected payoff of (Husband, Wife) = (a+d
2 , a+d

2 ).
2n Players sit around a circle. H- and W-types alernating .
2 Strategies = { Football, Ballet } for each player.
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Battle of Sex Game continued

For imitating best player dynamics:
Singleton can hold only if it is

FBFBF or BFBFB

Any F string of length ≥ 2 can hold. So does H string.
S0 = {~F , ~H} ∪M≥2, ≥2 ∪ {FBFBFBFB....FB}
S∗ = {~F , ~H} and each with probability 1

2 .
Goal achieved.
Expected payoff of (Husband, Wife) = (a+b

2 , a+b
2 ) under µ∗.
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Battle of Sex Game continued

For imitating best strategy dynamics:
Singleton can hold under Q0 only if it is FBFBF or BFBFB.
If player i is Husband-type, then ∗BBF∗ can hold under Q0.
FFFBF can hold, but BFFBB cannot.
FFFBB can hold iff a ≤ 2b.
BFFBF can hold iff a + b + c ≥ 0.
Any B string of length ≥ 3 starting and ending with
Husband-type players can hold.
S∗ = {~F , ~H} and each with probability 1

2 .
Goal achieved.
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