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Let Lε(t , x) be a two-time scale diffusion generator on the
unit circle S1 of the form

Lε(t , x) = 1/ε · L1(t , x) + L2(t , x)

where Li(t , x) = bi(t , x)∂x + 1/2 · ai(t , x)∂xx .
bi(t , x),ai(t , x) > 0 are smooth functions on S1. Let X ε

t
satisfy the following stochastic differential equation :

dX ε
t = (1/ε · b1(t ,X ε

t ) + b2(t ,X ε
t ))dt

+
√

1/ε · a1(t ,X ε
t ) + a2(t ,X ε

t )dWt
X ε

0 = δx .
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There exists functions pi(t , y) and qi,x (t , y) such that

supt≤T ,y≤1 |pε(t , y)− (Σn
0ε

ipi(t , y) + Σn
0ε

iqi,x (t/ε, y))|
= O(εn+1).

pε(t , y) is the distribution of X ε
t , Σn

0ε
ipi(t , y) is called the

regular part Σn
0ε

iqi,x (t/ε, y) is the singular part of
pε(t , y) and |qi,x (t , y)| ≤ Ke−γt as t →∞ uniformly over
x , y and i ≥ 1.
Pε

n(t , y) := Σn
0ε

ipi(t , y) + Σn
0ε

iqi,x (t/ε, y).

Note that the regular part Σn
0ε

ipi(t , y) does not depend
on x and p0(t , y) = p(t , y) is the quasi-stationary
distribution of L1(t , x).
bi(t , x) and ai(t , x) ∈ Cn+1,2(n+1)[0,T ]× S1.
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For a bounded function f (x) on S1, an unscaled function of
the occupation time of X ε

t is defined as follows.

Z ε(t , f ) =

∫ t

0

(
f (X ε

s )−
∫ 1

0
f (y)p(s, y)dy

)
ds,

A scaled function is defined as :

nε(t , f ) = 1/
√
ε · Z ε(t , f ).

We shall establish a weak law of large numbers :

limε→0EZ ε(t , f )2 = 0, and thusZ ε(t , f )→ 0 in probability,

and asymptotic normality :

nε(t , f )→ n(t , f ) in C[0,T] where n(t , f ) is Gaussian.
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The covariance function of n(·, f ), independently of the initial
point, is as follows.

En(t , f )2 = 2
∫ ∫ ∫ t

0

∫ ∞
0

f (x)f (y)p(r , x)q0,r ,x (u, y)dudrdxdy

Moreover, n(·, f ) has independent increment and
E(n(t , f ) · n(s, f )) = En2(t min s, f ).
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Let Lε = 1/ε · L1(t , x) + L2(t , x) and pε(t , y) be the density of
X ε

t with initial distribution δx .
pε(t , y) satisfies the forward equation of Lε, i.e.,

∂tpε(t , y) = Lε,∗(t , y)pε(t , y),pε(0, y) = δx (y).

Lε,∗(t , y)· = −∂y ((1/εb1(t , y) + b2(t , y))·) +
1/2∂yy ((1/εa1(t , y) + a2(t , y))·) is the adjoint operator
of Lε.
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For the regular part, we have (∂t − Lε,∗)(Σn
0ε

ipi(t , y)) = 0.
Collecting terms, we have

ε−1, L∗1p0 = 0,
ε0, L∗1p1 = ∂tp0 − L∗2p0
ε1, L∗1p2 = ∂tp1 − L∗2p1

....
εn, L∗1pn+1 = ∂tpn − L∗2pn

with the integralibility conditions∫ 1

0
pi(t , y)dy = 0, i ≥ 1 and 1 if i = 0.
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Obviously, p0(t , y) = p(t , y) is the quasi-stationary
distribution of L1(t , x)

pi+1(t , y) is solvable because
∫ 1

0 ∂tpi − L∗2pi(t , y)dy = 0
which is the necessary and sufficient condition for
Poisson equations to have a solution.
To get the O(εn+1) estimate, we need to solve for
pn+1(t , y).
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For the singular part, we have (∂t − Lε,∗)(Σn
0ε

iqi(t/ε, y)) = 0.
For i = 1,2 and k = 0,1, ...,n + 1, let

L∗,ki (0, y)f = 1/2 · ∂yy (∂k
tk ai(0, y)f )− ∂y (∂k

tk bi(0, y)f ).

Let τ = t/ε and collect terms according to εi , we have

∂τq0(τ, y) = L∗1(0, y)q0(τ, y),

∂τq1(τ, y) = L∗1(0, y)q1(τ, y) + τL∗,11 (0, y)q0(τ, y)
+L∗2(0, y)q0(τ, y),

∂τq2(τ, y) = L∗1(0, y)q2(τ, y) + τL∗,11 (0, y)q1(τ, y)

+τ2L∗,21 (0, y)q0(τ, y)

+L∗2(0, y)q1(τ, y) + L∗,12 (0, y)q0(τ, y),
= ...

∂τqi(τ, y) = L∗1(0, y)qi(τ, y) + Σi
j=1τ

j/j! · L∗,j1 (0, y)qi−j(τ, y)

+Σi−1
j=0τ

j/j! · L∗,j2 (0, y)qi−j−1(τ, y),



Short Paper
Title

Author,
Another

Introduction
and summary
of results

Review of the
Asymptotic
Expansion of
Xεt
the Regular Part

The Singular Part

Unscaled
Function
Zε(t, f )

Asymptotic
normality
Mixing condition

Tightness of
nε(·, f)

Normality
and
covariance of
nε(·, f )
Independent
increments

References

MATH, Academia Sinica, R.O.C

institution-logo Singular Part Continued 9

with initial conditions qi(0, y) = −pi(0, y),1 ≤ i ≤ n + 1
and q0(0, y) = δx (y)− p(0, y).
There is a Green’s function G(x , τ, y) for ∂τ = L∗1(0, y).

q0(τ, y) =
∫ 1

0 G(x , τ, y)q0(0, x)dx and

qi(τ, y) =
∫ 1

0 G(x , τ, y)qi(0, x)dx
+
∫ τ

0

∫ 1
0 G(x , τ − s, y)fi(s, x)dxds, i = 1,2, ...,n.

where fi(s, x) = Σi
j=1sj/j! · L∗,j1 (0, y)qi−j(s, x)+Σi−1

j=0τ
j/j! ·

L∗,j2 (0, y)qi−j−1(s, x).
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Exponential decay of q0(τ, y).

|q0(τ, y)| = |
∫ 1

0 G(x , τ, y)q0(0, x)dx |
≤ supx∈[0,1]|G(x , τ, y)−m(y)|

∫ 1
0 |q0(0, x)|dx

+|m(y)
∫ 1

0 q0(0, x)dx |
≤ Kδe−γτ , τ ≥ δ, because∫ 1

0 q0(0, x)dx = 0 and
supx∈[0,1]|G(x , τ, y)−m(y)| ≤ Kδe−γτ , τ ≥ δ > 0.
For τ ≤ δ, q0(τ, y) ≤ KG(x , τ, y). Recall
q0(0, x) = δx − p(0, x).
Note that K , δ, γ only depends on the bound of Lε.
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For general qi(τ, y), we can also obtain the exponential
bound, i.e., we have

|qi(τ, y)| ≤ Ke−γτ

for some positive constants K , γ and i ≥ 1.
We have the following approximation :

supt≤T ,y≤1 |pε(t , y)− (Σn
0ε

ipi(t , y) + Σn
0ε

iqi,x (t/ε, y))|
= O(εn+1).
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Recall that Z ε(t , f ) =
∫ t

0

(
f (X ε

s )−
∫ 1

0 f (y)p(s, y)dy
)

ds. We

shall show that limε→0EZ ε(t , f )2 = 0.

Z ε (t , f )2 =
∫ t

0

∫ t
0

(
f (X ε

r )−
∫ 1

0 f (y)p(r , x)dx
)(

f (X ε
s )−

∫ 1
0 f (x)p(s, x)dx

)
drds

=
∫ t

0

∫ t
0{f (X ε

r )f (X ε
s )− f (X ε

r )
∫ 1

0 f (x)p(s, x)dx
−f (X ε

s )
∫ 1

0 f (x)p(r , x)dx
+
∫ 1

0 f (x)p(r , x)dx
∫ 1

0 f (x)p(s, x)dx}drds

= 2 ·
∫ t

0

∫ s
0 {f (X ε

r )f (X ε
s )− f (X ε

r )
∫ 1

0 f (x)p(s, x)dx
−f (X ε

s )
∫ 1

0 f (x)p(r , x)dx
+
∫ 1

0 f (x)p(r , x)dx
∫ 1

0 f (x)p(s, x)dx}drds.
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Ef (X ε
r ) =

∫ 1
0 f (x)pε(r , x)dx =

∫ 1
0 f (x)Pε

1(r , x)dx + O(ε2)
and
Ef (X ε

s ) =
∫ 1

0 f (x)pε(s, x)dx =
∫ 1

0 f (x)Pε
1(s, x)dx + O(ε2).

For the estimate of Ef (X ε
r )f (X ε

s ), we have

Ef (X ε
r )f (X ε

s ) = E(f (Xr )E(f (Xs)|Xr ))

=
∫ 1

0

∫ 1
0 f (x)f (y)pε(r , x)pε(r , x ; s, y)dxdy

pε(r , x ; s, y) is the transition density of the process X ε
t .
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EZ ε (t , f )2 = 2
∫ t

0

∫ s
0

∫ 1
0

∫ 1
0 f (x)f (y)Pε

1(r , x)(Σi=0,1ε
ipi(s, y)

+Σi=0,1ε
iqi,r ,x ((s − r)/ε, y))− Pε

1(r , x)p(s, y)

−Pε
1(s, y)p(r , x) + p(r , x)p(s, y))dxdydrds + O(ε2)

= 2
∫ t

0

∫ s
0

∫ 1
0

∫ 1
0 f (x)f (y)I(x , y , r , s, ε)dxdydrds + O(ε2).
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Two simple estimates : for any κ > 0,∫ t
0

∫ s
0 e−(κs)/εdrds = −(ε/κ)t · e−(κt)/ε

+ε2/κ2 · (1− e−(κt)/ε)

≤ ε2/κ2, and∫ t
0

∫ s
0 e−(κr)/εdrds =

∫ t
0

∫ s
0 e−κ(s−r)/εdrds

=
∫ t

0 ε/κ · (1− e−(κs)/ε)ds ≤ (ε/κ)t .
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We now simplify the term I(x , y , r , s, ε) as follows.

I = Pε
1(r , x)(Σ1

i=0ε
ipi(s, y) + Σ1

i=0ε
iqi,r ,x ((s − r)/ε, y))

−Pε
1(r , x)p(s, y)− (Σ1

i=0ε
ipi(s, y) + Σ1

i=0ε
iqi(s/ε, y))p(r , x)

+p(r , x)p(s, y) + O(ε2)

= (Σi=0,1ε
ipi(r , x) + Σi=0,1ε

iqi(r/ε, x))
·(εp1(s, y) + Σi=0,1ε

iqi,r ,x ((s − r)/ε, y))
−(εp1(s, y) + Σi=0,1ε

iqi(s/ε, y))p(r , x) + O(ε2)

= (εp1(r , x) + Σi=0,1ε
iqi(r/ε, x))

·(εp1(s, y) + Σi=0,1ε
iqi,r ,x ((s − r)/ε, y))

+p(r , x)(Σ1
i=0ε

iqi,r ,x ((s − r)/ε, y)− Σ1
i=0ε

iqi(s/ε, y)) + O(ε2)

= q0(r/ε, x)q0,r ,x ((s − r)/ε, y) + p(r , x)q0,r ,x ((s − r)/ε, y)

+O(ε)(e−γr/ε + e−γ(s−r)/ε) + O(ε2)
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Hence, ∫ t
0

∫ s
0 I(x , y , r , s, ε)drds

=
∫ t

0

∫ s
0 p(r , x)q0,r ,x ((s − r)/ε, y) + O(e−γs/ε)

+O(ε)O(e−γr/ε) + O(ε2)drds

= O(ε2) +
∫ t

0

∫ s
0 p(r , x)q0,r ,f εr ((s − r)/ε, y)drds.

Finally,

EZ ε(t , f )2

= 2
∫ t

0

∫ s
0

∫ 1
0

∫ 1
0 f (x)f (y)p(r , x)q0,r ,x ((s − r)/ε, y)drdsdxdy

+O(ε2).
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EZ ε(t , f )2

= 2ε
∫ 1

0

∫ 1
0

∫ t
0

∫∞
0 f (x)f (y)p(r , x)q0,r ,x (u, y)dudrdxdy

+O(ε2).

Obviously, limε→0EZ ε(t , f )2 = 0, thus the law of large of
numbers holds.
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A stochastic process Xt is φ-mixing if for any t , s, A ∈ F t
0

and B ∈ F∞t+s, we have

|P(B|A)− P(B)| ≤ φ(s).

The process X ε
t satisfies the mixing condition with

mixing rate K · e−(κ/ε)s, i.e., for any η ∈ F∞s+t , |η| ≤ 1,

|E(η|F t
0)− Eη| ≤ K · e−(κ/ε)s.

Thus for any random variable ξ ∈ F t
0 and |ξ| ≤ 1, we

have
|E(ξη)− Eξ · Eη| ≤ K · e(−κ/ε)s.
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Let n̄ε(t , f ) = 1/
√
ε
∫ t

0

(
f (X ε

s )−
∫ 1

0 f (y)pε(s, y)dy
)

ds

since

nε(t , f ) = n̄ε(t , f )

+1/
√
ε
∫ t

0

(
Ef (X ε

t )−
∫ 1

0 f (y)p(s, y)dy
)

ds

= n̄ε(t , f ) + 1/
√
εEZ ε(t , f )

= n̄ε(t , f ) + O(
√
ε),

the tightness of nε(·, f ) will follow from that of n̄ε(·, f ).
We establish the tightness of n̄ε(·, f ) by showing that
E(n̄ε(t + s, f )− n̄ε(t , f ))4 ≤ Ks2 for any s, t > 0.
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Let h(r) = f (X ε
r )− Ef (X ε

r ). Since
n̄ε(t + s, f )− n̄ε(t , f ) = 1/

√
ε
∫ t+s

t h(r)dr , we have

E(n̄ε(t + s, f )− n̄ε(t , f ))4

= 1/ε2
∫ t+s

t

∫ t+s
t

∫ t+s
t

∫ t+s
t Eh(r1)h(r2)h(r3)h(r4)dr1..dr4

= 24/ε2
∫

D Eh(r1)h(r2)h(r3)h(r4)dr1..dr4

where D = {(r1, .., r4), t ≤ r1 ≤ r2 ≤ r3 ≤ r4 ≤ t + s}.
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Note that

|Eh(r1)h(r2)h(r3)h(r4)|
≤ |Eh(r1)h(r2)h(r3)h(r4)− Eh(r1)h(r2) · Eh(r3)h(r4)|
+|Eh((r1)h(r2))| · |Eh(r3)h(r4)|
≤ |Eh(r1)h(r2)h(r3)h(r4)− Eh(r1)h(r2) · Eh(r3)h(r4)|
+Ke−κ(r2−r1)/ε · Ke−κ(r4−r3)/ε.

The last inequality follows from the mixing condition and
Eh(r) = 0. Similarly,

|Eh(r1)h(r2)h(r3)h(r4)−Eh(r1)h(r2)·Eh(r3)h(r4)| ≤ Ke−κ(r3−r2)/ε.
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Hence,

|Eh(r1)h(r2)h(r3)h(r4)− Eh(r1)h(r2) · Eh(r3)h(r4)|
= (|Eh(r1)h(r2)h(r3)h(r4)− Eh(r1)h(r2) · Eh(r3)h(r4)|1/2)2

≤ Ke−κ(r3−r2)/(2ε) · (|Eh(r1)h(r2)h(r3)h(r4)|1/2

+|Eh(r1)h(r2) · Eh(r3)h(r4)|1/2)

The last inequality follows from
√

a− b ≤
√

a +
√

b. Also,

|Eh(r1)h(r2)h(r3)h(r4)|
= |Eh(r1)h(r2)h(r3)E(h(r4)|F r3

0 )− Eh(r4)|
≤ M3Ke−κ(r4−r3)/ε.

Here, M = supx |f (x)|.
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And

|Eh(r1)h(r2) · Eh(r3)h(r4)|
= |Eh(r1)h(r2)− Eh(r1)Eh(r2)||Eh(r3)h(r4)− Eh(r3)Eh(r4)|
≤ K 2e−κ(r2−r1)/εe−κ(r4−r3)/ε

Thus

|Eh(r1)h(r2)h(r3)h(r4)− Eh(r1)h(r2) · Eh(r3)h(r4)|
≤ Ke−κ(r3−r2)/2ε

·(e−κ(r2−r1)/2εe−κ(r4−r3)/2ε + e−κ(r4−r3)/2ε)

= K (e−κ(r4−r1)/2ε + e−κ(r4−r2)/2ε).
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Two simple estimates,∫
D e−κ(r2−r1)/εe−κ(r4−r3)/εdr1dr2dr3dr4

≤
∫ t+s

t sε2/κ2(1− e−κ(r4−t)/ε)dr4 ≤ s2ε2/κ2

and∫
D e−κ(r4−r1)/2εdr1dr2dr3dr4 ≤

∫
D e−κ(r4−r2)/2εdr1dr2dr3dr4

≤ 4s2ε2/κ2.

We therefore conclude that E(n̄ε(t + s, f )− n̄ε(t , f ))4 ≤ Ks2

for every ε and n̄ε(·, f ) is tight in C[0,T ].
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Consider n(t4, f )− n(t3, f ) and n(t2, f )− n(t1, f ) where
t4 > t3 > t2 > t1 ≥ 0. By the mixing property, we have

|Eeiu1(nε(t4,f )−nε(t3,f ))+iu2(nε(t2,f ))−nε(t1,f ))

−Eeiu1(nε(t4,f )−nε(t3,f ))Eeiu2(nε(t2,f )−nε(t1,f ))|
≤ Ke−κ(t3−t2)/ε → 0 as ε→ 0

for any u1,u2 ∈ R.
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But

|Eeiu1(nε(t4,f )−nε(t3,f ))+iu2(nε(t2,f )−nε(t1,f ))

−Eeiu1(nε(t4,f )−nε(t3,f ))Eeiu2(nε(t2,f )−nε(t1,f ))|
→ |Eeiu1(n(t4,f )−(t3,f ))+iu2(n(t2,f )−n(t1,f ))

−Eeiu1(n(t4,f )−n(t3,f ))Eeiu2(n(t2,f )−n(t1,f ))| as ε→ 0,

we thus have

Eeiu1(n(t4,f )−n(t3,f ))+iu2(n(t2,f ))−n(t1,f ))

= Eeiu1(n(t4,f )−n(t3,f ))Eeiu2(n(t2,f )−n(t1,f )).

This shows the independence of n(t4, f )− n(t3, f ) and
n(t2, f )− n(t1, f ). Let t3 → t2 and then complete the proof.
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Continuous sample paths and independent increments imply
that n(t , f ) is a Gaussian process (with mean 0). We now
compute its covariance. Since

EZ ε(t , f )2

= 2ε
∫ 1

0

∫ 1
0

∫ t
0

∫∞
0 f (x)f (y)p(r , x)q0,r ,x (u, y)dudrdxdy

+O(ε2),

we obviously have that for two non-negative functions f and
g,

EZ ε(t , f ) · Z ε(t ,g)

= ε
∫ 1

0

∫ 1
0

∫ t
0

∫∞
0 f (x)g(y)p(r , x)q0,r ,x (u, y)dudrdxdy

+ε
∫ 1

0

∫ 1
0

∫ t
0

∫∞
0 f (y)g(x)p(r , x)q0,r ,x (u, y)dudrdxdy

+O(ε2).

It follows that
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limε→0Enε(t , f )2

= 2
∫ 1

0

∫ 1
0

∫ t
0

∫∞
0 f (x)f (y)p(r , x)q0,r ,x (u, y)dudrdxdy

= En(t , f )2.

The covariance fuction of n(t , f ) is thus
En(t , f )n(s, f ) = En(min{t , s}, f )2.



Short Paper
Title

Author,
Another

Introduction
and summary
of results

Review of the
Asymptotic
Expansion of
Xεt
the Regular Part

The Singular Part

Unscaled
Function
Zε(t, f )

Asymptotic
normality
Mixing condition

Tightness of
nε(·, f)

Normality
and
covariance of
nε(·, f )
Independent
increments

References

MATH, Academia Sinica, R.O.C

institution-logo References 32 I

[1] Yin,G. and Zhang,Qing.
Continuous -Time Markov Chains and Applications, A
Singular Perturbation Approach
Springer 1996.

[1] Khasminskii,R.Z. and Yin,G.
Asymptotic Series for Singularly Perturbed
Kolmogorov-Fokker-Planck Equations
SIAM J.Appl.Math.,56, no.6, (1996), 1766-1793.


	Introduction and summary of results
	Review of the Asymptotic Expansion of Xt
	the Regular Part
	The Singular Part

	Unscaled Function Z(t,f)
	Asymptotic normality
	Mixing condition
	Tightness of n(,f)

	Normality and covariance of n(,f)
	Independent increments

	References

