Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Tightness of $n^{c}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

 \sim · ·

Asymptotic Normality of Occupation Time of Singularly Perturbed Diffusions

Chen, Wei-Da, Chiang, Tzuu-Shuh

Institute of Mathematics Academia Sinica, Taipei, Taiwan

2013.7.6-10, Ermei, Sichung

Sac

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of $n^{e}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

Let $L^{\epsilon}(t, x)$ be a two-time scale diffusion generator on the unit circle S^{1} of the form

$$L^{\epsilon}(t,x) = 1/\epsilon \cdot L_1(t,x) + L_2(t,x)$$

where $L_i(t, x) = b_i(t, x)\partial_x + 1/2 \cdot a_i(t, x)\partial_{xx}$. $b_i(t, x), a_i(t, x) > 0$ are smooth functions on S^1 . Let X_t^{ϵ} satisfy the following stochastic differential equation :

$$\begin{array}{ll} dX_t^{\epsilon} &= (1/\epsilon \cdot b_1(t,X_t^{\epsilon}) + b_2(t,X_t^{\epsilon})) dt \\ &+ \sqrt{1/\epsilon} \cdot a_1(t,X_t^{\epsilon}) + a_2(t,X_t^{\epsilon}) dW_t \\ X_0^{\epsilon} &= \delta_x. \end{array}$$

(□▶ 4 □ ▶ 4 三 ▶ 4 三 ● 9 Q ()

institution-logo Introduction and summary of results 2

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

There exists functions $p_i(t, y)$ and $q_{i,x}(t, y)$ such that

$\begin{aligned} \sup_{t \leq T, y \leq 1} & |p^{\epsilon}(t, y) - (\Sigma_0^n \epsilon^i p_i(t, y) + \Sigma_0^n \epsilon^i q_{i,x}(t/\epsilon, y))| \\ &= O(\epsilon^{n+1}). \end{aligned}$

- $p^{\epsilon}(t, y)$ is the distribution of X_t^{ϵ} , $\Sigma_0^n \epsilon^i p_i(t, y)$ is called the regular part $\Sigma_0^n \epsilon^i q_{i,x}(t/\epsilon, y)$ is the singular part of $p^{\epsilon}(t, y)$ and $|q_{i,x}(t, y)| \leq K e^{-\gamma t}$ as $t \to \infty$ uniformly over x, y and $i \geq 1$.
- $P_n^{\epsilon}(t,y) := \Sigma_0^n \epsilon^i p_i(t,y) + \Sigma_0^n \epsilon^i q_{i,x}(t/\epsilon,y).$
- Note that the regular part $\Sigma_0^n \epsilon^i p_i(t, y)$ does not depend on x and $p_0(t, y) = p(t, y)$ is the quasi-stationary distribution of $L_1(t, x)$.

< □ > < 同 > < 三 > <

Sar

• $b_i(t,x)$ and $a_i(t,x) \in C^{n+1,2(n+1)}[0,T] \times S^1$.

1

institution-logo Introduction and summary of results 2

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

There exists functions $p_i(t, y)$ and $q_{i,x}(t, y)$ such that

$$\begin{aligned} \sup_{t \leq T, y \leq 1} & |p^{\epsilon}(t, y) - (\Sigma_0^n \epsilon^i p_i(t, y) + \Sigma_0^n \epsilon^i q_{i,x}(t/\epsilon, y))| \\ &= O(\epsilon^{n+1}). \end{aligned}$$

- $p^{\epsilon}(t, y)$ is the distribution of X_t^{ϵ} , $\Sigma_0^n \epsilon^i p_i(t, y)$ is called the regular part $\Sigma_0^n \epsilon^i q_{i,x}(t/\epsilon, y)$ is the singular part of $p^{\epsilon}(t, y)$ and $|q_{i,x}(t, y)| \leq Ke^{-\gamma t}$ as $t \to \infty$ uniformly over x, y and $i \geq 1$.
- $P_n^{\epsilon}(t,y) := \Sigma_0^n \epsilon^i p_i(t,y) + \Sigma_0^n \epsilon^i q_{i,x}(t/\epsilon,y).$
- Note that the regular part $\Sigma_0^n \epsilon^i p_i(t, y)$ does not depend on x and $p_0(t, y) = p(t, y)$ is the quasi-stationary distribution of $L_1(t, x)$.

<<p>< □ > < 同 > < 三 >

Sar

• $b_i(t,x)$ and $a_i(t,x) \in C^{n+1,2(n+1)}[0,T] \times S^1$.

Introduction and summary of results 2

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Tightness of $n^{e}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

There exists functions $p_i(t, y)$ and $q_{i,x}(t, y)$ such that

$$\begin{aligned} \sup_{t \leq T, y \leq 1} & |p^{\epsilon}(t, y) - (\Sigma_0^n \epsilon^i p_i(t, y) + \Sigma_0^n \epsilon^i q_{i,x}(t/\epsilon, y))| \\ &= O(\epsilon^{n+1}). \end{aligned}$$

- $p^{\epsilon}(t, y)$ is the distribution of X_t^{ϵ} , $\Sigma_0^n \epsilon^i p_i(t, y)$ is called the regular part $\Sigma_0^n \epsilon^i q_{i,x}(t/\epsilon, y)$ is the singular part of $p^{\epsilon}(t, y)$ and $|q_{i,x}(t, y)| \leq Ke^{-\gamma t}$ as $t \to \infty$ uniformly over x, y and $i \geq 1$.
- $P_n^{\epsilon}(t,y) := \Sigma_0^n \epsilon^i p_i(t,y) + \Sigma_0^n \epsilon^i q_{i,x}(t/\epsilon,y).$
- Note that the regular part $\sum_{0}^{n} \epsilon^{i} p_{i}(t, y)$ does not depend on x and $p_{0}(t, y) = p(t, y)$ is the quasi-stationary distribution of $L_{1}(t, x)$.

• □ • • @ • • = • • =

Sar

• $b_i(t, x)$ and $a_i(t, x) \in C^{n+1,2(n+1)}[0, T] \times S^1$.

Short Paper Title

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of

Normality and covariance of $n^{\epsilon}(\cdot, f)$

References

For a bounded function f(x) on S^1 , an unscaled function of the occupation time of X_t^{ϵ} is defined as follows.

Introduction and summary of results 3

$$Z^{\epsilon}(t,f) = \int_0^t \left(f(X^{\epsilon}_s) - \int_0^1 f(y)p(s,y)dy\right)ds,$$

• A scaled function is defined as :

$$n^{\epsilon}(t,f) = 1/\sqrt{\epsilon} \cdot Z^{\epsilon}(t,f).$$

• We shall establish a weak law of large numbers :

 $lim_{\epsilon \to 0} EZ^{\epsilon}(t, f)^2 = 0$, and thus $Z^{\epsilon}(t, f) \to 0$ in probability,

• and asymptotic normality :

 $n^{\epsilon}(t, f) \rightarrow n(t, f)$ in C[0,T] where n(t, f) is Gaussian.

Introduction and summary of results 3

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of $n^{e}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

For a bounded function f(x) on S^1 , an unscaled function of the occupation time of X_t^{ϵ} is defined as follows.

$$Z^{\epsilon}(t,f) = \int_0^t \left(f(X^{\epsilon}_s) - \int_0^1 f(y)p(s,y)dy\right)ds,$$

• A scaled function is defined as :

$$n^{\epsilon}(t,f) = 1/\sqrt{\epsilon} \cdot Z^{\epsilon}(t,f).$$

• We shall establish a weak law of large numbers :

 $\lim_{\epsilon \to 0} EZ^{\epsilon}(t, f)^2 = 0$, and thus $Z^{\epsilon}(t, f) \to 0$ in probability,

and asymptotic normality :

 $n^{\epsilon}(t, f) \rightarrow n(t, f)$ in C[0,T] where n(t, f) is Gaussian.

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

The covariance function of $n(\cdot, f)$, independently of the initial point, is as follows.

ų

.

$$En(t,f)^{2} = 2 \int \int \int_{0}^{t} \int_{0}^{\infty} f(x)f(y)p(r,x)q_{0,r,x}(u,y)dudrdxdx$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• Moreover, $n(\cdot, f)$ has independent increment and $E(n(t, f) \cdot n(s, f)) = En^2(t \min s, f)$.

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

Let $L^{\epsilon} = 1/\epsilon \cdot L_1(t, x) + L_2(t, x)$ and $p^{\epsilon}(t, y)$ be the density of X_t^{ϵ} with initial distribution δ_x .

• $p^{\epsilon}(t, y)$ satisfies the forward equation of L^{ϵ} , i.e.,

$$\partial_t p^{\epsilon}(t, y) = L^{\epsilon, *}(t, y) p^{\epsilon}(t, y), p^{\epsilon}(0, y) = \delta_x(y).$$

Sac

•
$$L^{\epsilon,*}(t,y) = -\partial_y((1/\epsilon b_1(t,y) + b_2(t,y))) + 1/2\partial_{yy}((1/\epsilon a_1(t,y) + a_2(t,y)))$$
 is the adjoint operator of L^{ϵ} .

Outline

Short Paper Title

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Mixing conditi Tightness of $n^{e}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

Review of the Asymptotic Expansion of X_t^{ϵ} • the Regular Part

The Singular Part

Inscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

- Mixing condition
- Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Independent increments

1

Regular Part 6

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of n^e(·, f)

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

~ . .

For the regular part, we have $(\partial_t - L^{\epsilon,*})(\Sigma_0^n \epsilon^i p_i(t, y)) = 0$. Collecting terms, we have

$$\begin{array}{ll} \epsilon^{-1}, & L_1^* p_0 = 0, \\ \epsilon^0, & L_1^* p_1 = \partial_t p_0 - L_2^* p_0 \\ \epsilon^1, & L_1^* p_2 = \partial_t p_1 - L_2^* p_1 \\ & \cdots \\ \epsilon^n, & L_1^* p_{n+1} = \partial_t p_n - L_2^* p_n \end{array}$$

with the integralibility conditions

$$\int_0^1 p_i(t, y) dy = 0, i \ge 1 \text{ and } 1 \text{ if } i = 0.$$

▲□▶▲@▶▲콜▶▲콜▶ 콜

590

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

- Obviously, p₀(t, y) = p(t, y) is the quasi-stationary distribution of L₁(t, x)
- $p_{i+1}(t, y)$ is solvable because $\int_0^1 \partial_t p_i L_2^* p_i(t, y) dy = 0$ which is the necessary and sufficient condition for Poisson equations to have a solution.
- To get the O(\epsilon^{n+1}) estimate, we need to solve for p_{n+1}(t, y).

- ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● の Q @ ♪

Outline

Short Paper Title

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Mixing conditi Tightness of $n^{e}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

Review of the Asymptotic Expansion of X_t^e
 the Regular Part

The Singular Part

Inscaled Function $Z^{\epsilon}(t, f)$

- Asymptotic normality
- Mixing condition
- Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Independent increments

1

Singular Part 8

Short Paper Title

institution-lodo

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^e the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of $n^{c}(\cdot, f)$

Normality and covariance o $n^{\epsilon}(\cdot, f)$

Independent increments

References

For the singular part, we have $(\partial_t - L^{\epsilon,*})(\Sigma_0^n \epsilon^i q_i(t/\epsilon, y)) = 0$. For i = 1, 2 and k = 0, 1, ..., n + 1, let

$$L_i^{*,k}(0,y)f = 1/2 \cdot \partial_{yy}(\partial_{t^k}^k a_i(0,y)f) - \partial_y(\partial_{t^k}^k b_i(0,y)f).$$

Let $\tau = t/\epsilon$ and collect terms according to ϵ^i , we have

$$\begin{array}{ll} \partial_{\tau} q_{0}(\tau,y) &= L_{1}^{*}(0,y)q_{0}(\tau,y), \\ \partial_{\tau} q_{1}(\tau,y) &= L_{1}^{*}(0,y)q_{1}(\tau,y) + \tau L_{1}^{*,1}(0,y)q_{0}(\tau,y) \\ &+ L_{2}^{*}(0,y)q_{0}(\tau,y), \\ \partial_{\tau} q_{2}(\tau,y) &= L_{1}^{*}(0,y)q_{2}(\tau,y) + \tau L_{1}^{*,1}(0,y)q_{1}(\tau,y) \\ &+ \tau^{2}L_{1}^{*,2}(0,y)q_{0}(\tau,y) \\ &+ L_{2}^{*}(0,y)q_{1}(\tau,y) + L_{2}^{*,1}(0,y)q_{0}(\tau,y), \\ &= \dots \\ \partial_{\tau} q_{i}(\tau,y) &= L_{1}^{*}(0,y)q_{i}(\tau,y) + \sum_{j=1}^{i}\tau^{j}/j! \cdot L_{1}^{*,j}(0,y)q_{i-j}(\tau,y) \\ &+ \sum_{j=0}^{i-1}\tau^{j}/j! \cdot L_{2}^{*,j}(0,y)q_{i-j-1}(\tau,y), \end{array}$$

Sac

institution-loso Singular Part Continued 9

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of

Normality and covariance of $n^{\epsilon}(\cdot, f)$

References

- with initial conditions $q_i(0, y) = -p_i(0, y), 1 \le i \le n + 1$ and $q_0(0, y) = \delta_x(y) - p(0, y)$.
- There is a Green's function $G(x, \tau, y)$ for $\partial_{\tau} = L_1^*(0, y)$.
- $q_0(\tau, y) = \int_0^1 G(x, \tau, y) q_0(0, x) dx$ and

$$\begin{array}{ll} q_i(\tau,y) &= \int_0^1 G(x,\tau,y) q_i(0,x) dx \\ &+ \int_0^\tau \int_0^1 G(x,\tau-s,y) f_i(s,x) dx ds, i=1,2,...,n. \end{array}$$

where
$$f_i(s, x) = \sum_{j=1}^i s^j / j! \cdot L_1^{*,j}(0, y) q_{i-j}(s, x) + \sum_{j=0}^{i-1} \tau^j / j! \cdot L_2^{*,j}(0, y) q_{i-j-1}(s, x).$$

1 . 0. . D 0 0

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

• Exponential decay of $q_0(\tau, y)$.

$$\begin{aligned} |q_0(\tau, y)| &= |\int_0^1 G(x, \tau, y) q_0(0, x) dx| \\ &\leq sup_{x \in [0,1]} |G(x, \tau, y) - m(y)| \int_0^1 |q_0(0, x)| dx \\ &+ |m(y) \int_0^1 q_0(0, x) dx| \\ &\leq K_\delta e^{-\gamma \tau}, \tau \geq \delta, \quad \text{because} \end{aligned}$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• $\int_0^1 q_0(0, x) dx = 0$ and

- $sup_{x\in[0,1]}|G(x,\tau,y)-m(y)| \leq K_{\delta}e^{-\gamma\tau}, \tau \geq \delta > 0.$
- For $\tau \leq \delta$, $q_0(\tau, y) \leq KG(x, \tau, y)$. Recall $q_0(0, x) = \delta_x p(0, x)$.
- Note that K, δ, γ only depends on the bound of L^{ϵ} .

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of n^E(·, f)

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

For general q_i(τ, y), we can also obtain the exponential bound, i.e., we have

$$|\boldsymbol{q}_{\boldsymbol{i}}(au, oldsymbol{y})| \leq oldsymbol{K} oldsymbol{e}^{-\gamma au}$$

for some positive constants K, γ and $i \ge 1$.

• We have the following approximation :

 $\begin{aligned} sup_{t \leq T, y \leq 1} & |p^{\epsilon}(t, y) - (\Sigma_0^n \epsilon^i p_i(t, y) + \Sigma_0^n \epsilon^i q_{i, x}(t/\epsilon, y))| \\ &= O(\epsilon^{n+1}). \end{aligned}$

□□▶▲@▶▲≧▶▲≧▶ ≧ ∽Q@

Law of large numbers 12

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of

Normality and covariance of $n^{\epsilon}(\cdot, f)$ Independent

References

Recall that $Z^{\epsilon}(t, f) = \int_{0}^{t} (f(X_{s}^{\epsilon}) - \int_{0}^{1} f(y)p(s, y)dy) ds$. We shall show that $\lim_{\epsilon \to 0} EZ^{\epsilon}(t, f)^{2} = 0$.

$$Z^{\epsilon} \quad (t,f)^{2} = \int_{0}^{t} \int_{0}^{t} \left(f(X_{r}^{\epsilon}) - \int_{0}^{1} f(y)p(r,x)dx \right) \\ \left(f(X_{s}^{\epsilon}) - \int_{0}^{1} f(x)p(s,x)dx \right) drds$$

$$= \int_0^t \int_0^t \{f(X_r^{\epsilon})f(X_s^{\epsilon}) - f(X_r^{\epsilon}) \int_0^1 f(x)p(s,x)dx \\ -f(X_s^{\epsilon}) \int_0^1 f(x)p(r,x)dx \\ + \int_0^1 f(x)p(r,x)dx \int_0^1 f(x)p(s,x)dx \} drds$$

 $= 2 \cdot \int_0^t \int_0^s \{f(X_r^{\epsilon})f(X_s^{\epsilon}) - f(X_r^{\epsilon}) \int_0^1 f(x)p(s,x)dx \\ -f(X_s^{\epsilon}) \int_0^1 f(x)p(r,x)dx \\ + \int_0^1 f(x)p(r,x)dx \int_0^1 f(x)p(s,x)dx \} drds.$

institution-loso Law of Large numbers, Continued 13

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

I

.

 \sim ·

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

•
$$Ef(X_r^{\epsilon}) = \int_0^1 f(x)p^{\epsilon}(r,x)dx = \int_0^1 f(x)P_1^{\epsilon}(r,x)dx + O(\epsilon^2)$$

and

•
$$Ef(X_s^{\epsilon}) = \int_0^1 f(x) p^{\epsilon}(s, x) dx = \int_0^1 f(x) P_1^{\epsilon}(s, x) dx + O(\epsilon^2).$$

• For the estimate of $Ef(X_r^{\epsilon})f(X_s^{\epsilon})$, we have

$$Ef(X_r^{\epsilon})f(X_s^{\epsilon}) = E(f(X_r)E(f(X_s)|X_r)) \\ = \int_0^1 \int_0^1 f(x)f(y)p^{\epsilon}(r,x)p^{\epsilon}(r,x;s,y)dxdy$$

Sac

p^ε(*r*, *x*; *s*, *y*) is the transition density of the process *X*^ε_t.

institution-logo Law of Large Numbers, Continued 16

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

~ . .

D O

$$\begin{aligned} EZ^{\epsilon} & (t, f)^{2} = 2 \int_{0}^{t} \int_{0}^{s} \int_{0}^{1} \int_{0}^{1} f(x) f(y) P_{1}^{\epsilon}(r, x) (\Sigma_{i=0,1} \epsilon^{i} p_{i}(s, y) \\ & + \Sigma_{i=0,1} \epsilon^{i} q_{i,r,x} ((s-r)/\epsilon, y)) - P_{1}^{\epsilon}(r, x) p(s, y) \\ & - P_{1}^{\epsilon}(s, y) p(r, x) + p(r, x) p(s, y)) dx dy dr ds + O(\epsilon^{2}) \end{aligned}$$

 $= 2\int_0^t\int_0^s\int_0^1\int_0^1f(x)f(y)I(x,y,r,s,\epsilon)dxdydrds + O(\epsilon^2).$

590

Law of Large Numbers, Continued 17

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

 \sim · ·

Two simple estimates : for any $\kappa > 0$,

$$\int_0^t \int_0^s e^{-(\kappa s)/\epsilon} dr ds = -(\epsilon/\kappa)t \cdot e^{-(\kappa t)/\epsilon} \\ + \epsilon^2/\kappa^2 \cdot (1 - e^{-(\kappa t)/\epsilon})$$

 $\leq \epsilon^2/\kappa^2$, and

 $\int_0^t \int_0^s e^{-(\kappa r)/\epsilon} dr ds = \int_0^t \int_0^s e^{-\kappa (s-r)/\epsilon} dr ds$

$$=\int_0^t \epsilon/\kappa \cdot (1-e^{-(\kappa s)/\epsilon}) ds \leq (\epsilon/\kappa)t.$$

□▶ < @ ▶ < E ▶ < E > E - ∽Q (~

institution-loso Law of Large Numbers, Continued 18

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance o $n^{\epsilon}(\cdot, f)$

Independent increments

References

We now simplify the term $I(x, y, r, s, \epsilon)$ as follows.

$$I = P_1^{\epsilon}(r, x) (\Sigma_{i=0}^1 \epsilon^i p_i(s, y) + \Sigma_{i=0}^1 \epsilon^i q_{i,r,x}((s-r)/\epsilon, y)) -P_1^{\epsilon}(r, x) p(s, y) - (\Sigma_{i=0}^1 \epsilon^i p_i(s, y) + \Sigma_{i=0}^1 \epsilon^i q_i(s/\epsilon, y)) p(r, x) +p(r, x) p(s, y) + O(\epsilon^2)$$

$$= (\Sigma_{i=0,1}\epsilon^{i}p_{i}(r,x) + \Sigma_{i=0,1}\epsilon^{i}q_{i}(r/\epsilon,x)) \\ \cdot (\epsilon p_{1}(s,y) + \Sigma_{i=0,1}\epsilon^{i}q_{i,r,x}((s-r)/\epsilon,y)) \\ - (\epsilon p_{1}(s,y) + \Sigma_{i=0,1}\epsilon^{i}q_{i}(s/\epsilon,y))p(r,x) + O(\epsilon^{2})$$

$$= (\epsilon p_1(r, x) + \sum_{i=0,1} \epsilon^i q_i(r/\epsilon, x)) \cdot (\epsilon p_1(s, y) + \sum_{i=0,1} \epsilon^i q_{i,r,x}((s-r)/\epsilon, y)) + p(r, x)(\sum_{i=0}^1 \epsilon^i q_{i,r,x}((s-r)/\epsilon, y) - \sum_{i=0}^1 \epsilon^i q_i(s/\epsilon, y)) + O(\epsilon^2)$$

$$= q_0(r/\epsilon, x)q_{0,r,x}((s-r)/\epsilon, y) + p(r, x)q_{0,r,x}((s-r)/\epsilon, y) + O(\epsilon)(e^{-\gamma r/\epsilon} + e^{-\gamma(s-r)/\epsilon}) + O(\epsilon^2)$$

 ◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ・ つへで

institution-loso Law of Large Numbers, Continued 19

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

 $\int_0^t \int_0^s I(x, y, r, s, \epsilon) dr ds$

$$= \int_0^t \int_0^s \rho(r, x) q_{0,r,x}((s-r)/\epsilon, y) + O(e^{-\gamma s/\epsilon}) + O(\epsilon)O(e^{-\gamma r/\epsilon}) + O(\epsilon^2) dr ds$$

$$= O(\epsilon^2) + \int_0^t \int_0^s p(r,x) q_{0,r,f_r^\epsilon}((s-r)/\epsilon,y) dr ds.$$

Finally,

.

. . .

Hence.

$$EZ^{\epsilon}(t, f)^{2}$$

$$= 2 \int_{0}^{t} \int_{0}^{s} \int_{0}^{1} \int_{0}^{1} f(x)f(y)p(r, x)q_{0,r,x}((s-r)/\epsilon, y)drdsdxdy$$

$$+O(\epsilon^{2}).$$

◆□▶ ◆□▶ ◆ ⊇▶ ◆ ⊇▶ → ⊇ → のへぐ

institution-logo	Law of Large Numbers, Continued 20
Short Paper Title Author, Another	
Introduction and summary of results	 EZ^ε(t, f)² = 2ε ∫₀¹ ∫₀¹ ∫₀^t ∫₀[∞] f(x)f(y)p(r, x)q_{0,r,x}(u, y)dudrdxdy +O(ε²). Obviously, lim_{ε→0}EZ^ε(t, f)² = 0, thus the law of large of numbers holds.
Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part	
Unscaled Function $Z^{\epsilon}(t, f)$	
Asymptotic normality Mixing condition Tightness of $n^{e}(\cdot, t)$	
Normality and covariance of $n^{\epsilon}(\cdot, f)$ Independent increments	
References	(□▷ 4륜▷ 4분▷ 4분▷ 분

Outline

Short Paper Title

Author, Another

- Introduction and summary of results
- Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part
- Unscaled Function $Z^{\epsilon}(t, f)$
- Asymptotic normality Mixing condition
- Tightness of $n^{\epsilon}(\cdot, f)$
- Normality and covariance of $n^{\epsilon}(\cdot, f)$
- Independent increments
- References

- Review of the Asymptotic Expansion of X_i • the Regular Part
 - The Singular Part

Inscaled Function $Z^{\epsilon}(t, f)$

- Asymptotic normalityMixing condition
 - Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Sac

Independent increments

References

mixing condition 21

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of $n^{c}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

 A stochastic process X_t is φ-mixing if for any t, s, A ∈ F^t₀ and B ∈ F[∞]_{t+s}, we have

$$P(B|A) - P(B)| \le \phi(s).$$

The process X^ε_t satisfies the mixing condition with mixing rate K · e^{-(κ/ε)s}, i.e., for any η ∈ F[∞]_{s+t}, |η| ≤ 1,

$$m{E}(\eta|\mathcal{F}_0^t) - m{E}\eta| \leq m{K} \cdot m{e}^{-(\kappa/\epsilon)s}.$$

• Thus for any random variable $\xi \in \mathcal{F}_0^t$ and $|\xi| \le 1$, we have

 $|\boldsymbol{E}(\xi\eta) - \boldsymbol{E}\xi \cdot \boldsymbol{E}\eta| \leq \boldsymbol{K} \cdot \boldsymbol{e}^{(-\kappa/\epsilon)\boldsymbol{s}}.$

□ ▶ < @ ▶ < \arrow \arrow

Outline

Short Paper Title

Another

- of results
- Expansion of
- Unscaled $Z^{\epsilon}(t, f)$

- the Regular Part
 - The Singular Part

- 3 Unscaled Function $Z^{\epsilon}(t, f)$
 - Asymptotic normality
 - Mixing condition
 - Tightness of $n^{\epsilon}(\cdot, f)$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Tightness 22

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Tightness of $n^{e}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

~ . .

• Let
$$\bar{n}^{\epsilon}(t, f) = 1/\sqrt{\epsilon} \int_0^t \left(f(X_s^{\epsilon}) - \int_0^1 f(y) p^{\epsilon}(s, y) dy \right) ds$$

• since

$$n^{\epsilon}(t,f) = \bar{n}^{\epsilon}(t,f) + \frac{1}{\sqrt{\epsilon}} \int_{0}^{t} \left(Ef(X_{t}^{\epsilon}) - \int_{0}^{1} f(y)p(s,y)dy \right) ds$$

$$= \bar{n}^{\epsilon}(t, f) + 1/\sqrt{\epsilon} E Z^{\epsilon}(t, f)$$

= $\bar{n}^{\epsilon}(t, f) + O(\sqrt{\epsilon}),$

the tightness of $n^{\epsilon}(\cdot, f)$ will follow from that of $\bar{n}^{\epsilon}(\cdot, f)$.

• We establish the tightness of $\bar{n}^{\epsilon}(\cdot, f)$ by showing that $E(\bar{n}^{\epsilon}(t+s, f) - \bar{n}^{\epsilon}(t, f))^4 \leq Ks^2$ for any s, t > 0.

▲□▶▲□▶▲≡▶▲≡▶ ■ のへの

Tightness 23

Short Paper Title

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

Let $h(r) = f(X_r^{\epsilon}) - Ef(X_r^{\epsilon})$. Since $\bar{n}^{\epsilon}(t+s, f) - \bar{n}^{\epsilon}(t, f) = 1/\sqrt{\epsilon} \int_t^{t+s} h(r) dr$, we have

$$E(\bar{n}^{\epsilon}(t+s,f) - \bar{n}^{\epsilon}(t,f))^{4}$$

= $1/\epsilon^{2} \int_{t}^{t+s} \int_{t}^{t+s} \int_{t}^{t+s} \int_{t}^{t+s} Eh(r_{1})h(r_{2})h(r_{3})h(r_{4})dr_{1}..dr_{4}$
= $24/\epsilon^{2} \int_{D} Eh(r_{1})h(r_{2})h(r_{3})h(r_{4})dr_{1}..dr_{4}$

where $D = \{(r_1, .., r_4), t \le r_1 \le r_2 \le r_3 \le r_4 \le t + s\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ▶ ◆□

Tightness 24

Note that

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Tightness of $n^{e}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

$\begin{aligned} &|Eh(r_1)h(r_2)h(r_3)h(r_4)| \\ &\leq |Eh(r_1)h(r_2)h(r_3)h(r_4) - Eh(r_1)h(r_2) \cdot Eh(r_3)h(r_4)| \\ &+ |Eh((r_1)h(r_2))| \cdot |Eh(r_3)h(r_4)| \\ &\leq |Eh(r_1)h(r_2)h(r_3)h(r_4) - Eh(r_1)h(r_2) \cdot Eh(r_3)h(r_4)| \\ &+ Ke^{-\kappa(r_2-r_1)/\epsilon} \cdot Ke^{-\kappa(r_4-r_3)/\epsilon}. \end{aligned}$

The last inequality follows from the mixing condition and Eh(r) = 0. Similarly,

 $|Eh(r_1)h(r_2)h(r_3)h(r_4)-Eh(r_1)h(r_2)\cdot Eh(r_3)h(r_4)| \leq Ke^{-\kappa(r_3-r_2)/\epsilon}.$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

Short Paper Title

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

Hence,

Tightness 25

$$\begin{split} |Eh(r_1)h(r_2)h(r_3)h(r_4) - Eh(r_1)h(r_2) \cdot Eh(r_3)h(r_4)| \\ &= (|Eh(r_1)h(r_2)h(r_3)h(r_4) - Eh(r_1)h(r_2) \cdot Eh(r_3)h(r_4)|^{1/2})^2 \\ &\leq Ke^{-\kappa(r_3-r_2)/(2\epsilon)} \cdot (|Eh(r_1)h(r_2)h(r_3)h(r_4)|^{1/2} \\ &+ |Eh(r_1)h(r_2) \cdot Eh(r_3)h(r_4)|^{1/2}) \end{split}$$

The last inequality follows from $\sqrt{a-b} \le \sqrt{a} + \sqrt{b}$. Also,

$$\begin{aligned} |Eh(r_1)h(r_2)h(r_3)h(r_4)| \\ &= |Eh(r_1)h(r_2)h(r_3)E(h(r_4)|\mathcal{F}_0^{r_3}) - Eh(r_4)| \\ &\leq M^3 K e^{-\kappa(r_4-r_3)/\epsilon}. \end{aligned}$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Here, $M = sup_x |f(x)|$.

Tightness 26

Short Paper Title

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

$\begin{aligned} |Eh(r_1)h(r_2) \cdot Eh(r_3)h(r_4)| \\ &= |Eh(r_1)h(r_2) - Eh(r_1)Eh(r_2)||Eh(r_3)h(r_4) - Eh(r_3)Eh(r_4)| \\ &\leq K^2 e^{-\kappa(r_2-r_1)/\epsilon} e^{-\kappa(r_4-r_3)/\epsilon} \end{aligned}$

Thus

And

$$\begin{split} |Eh(r_1)h(r_2)h(r_3)h(r_4) - Eh(r_1)h(r_2) \cdot Eh(r_3)h(r_4) \\ &\leq K e^{-\kappa(r_3 - r_2)/2\epsilon} \\ &\cdot (e^{-\kappa(r_2 - r_1)/2\epsilon} e^{-\kappa(r_4 - r_3)/2\epsilon} + e^{-\kappa(r_4 - r_3)/2\epsilon}) \\ &= K(e^{-\kappa(r_4 - r_1)/2\epsilon} + e^{-\kappa(r_4 - r_2)/2\epsilon}). \end{split}$$

・ロト・4回ト・4回ト・4回ト・4回ト

Tightness 27

Short Paper Title

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

 \sim ·

D O

Two simple estimates,

$$\begin{split} &\int_{D} e^{-\kappa(r_2-r_1)/\epsilon} e^{-\kappa(r_4-r_3)/\epsilon} dr_1 dr_2 dr_3 dr_4 \\ &\leq \int_t^{t+s} s\epsilon^2/\kappa^2 (1-e^{-\kappa(r_4-t)/\epsilon}) dr_4 \leq s^2\epsilon^2/\kappa^2 \\ &\text{and} \\ &\int_{D} e^{-\kappa(r_4-r_1)/2\epsilon} dr_1 dr_2 dr_3 dr_4 \leq \int_{D} e^{-\kappa(r_4-r_2)/2\epsilon} dr_1 dr_2 dr_3 dr_4 \\ &\leq 4s^2\epsilon^2/\kappa^2. \end{split}$$

We therefore conclude that $E(\bar{n}^{\epsilon}(t+s,f)-\bar{n}^{\epsilon}(t,f))^4 \leq Ks^2$ for every ϵ and $\bar{n}^{\epsilon}(\cdot,f)$ is tight in C[0,T].

< □ >

Sac

Outline

Short Paper Title

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Mixing condition Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

Introduction and summary of results

- Review of the Asymptotic Expansion of X_t • the Regular Part
- The Singular Part

Inscaled Function $Z^{\epsilon}(t, f)$

- Asymptotic normality
- Mixing condition
- Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of n^ϵ(·, f) Independent increments

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

References

 Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of $n^{\epsilon}(\cdot, t)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

.

Consider $n(t_4, f) - n(t_3, f)$ and $n(t_2, f) - n(t_1, f)$ where $t_4 > t_3 > t_2 > t_1 \ge 0$. By the mixing property, we have

$$\begin{aligned} &| \textit{Ee}^{\textit{iu}_{1}(n^{\epsilon}(t_{4},f)-n^{\epsilon}(t_{3},f))+\textit{iu}_{2}(n^{\epsilon}(t_{2},f))-n^{\epsilon}(t_{1},f))} \\ &-\textit{Ee}^{\textit{iu}_{1}(n^{\epsilon}(t_{4},f)-n^{\epsilon}(t_{3},f))}\textit{Ee}^{\textit{iu}_{2}(n^{\epsilon}(t_{2},f)-n^{\epsilon}(t_{1},f))} | \\ &\leq \textit{Ke}^{-\kappa(t_{3}-t_{2})/\epsilon} \to 0 \text{ as } \epsilon \to 0 \end{aligned}$$

for any $u_1, u_2 \in R$.

~ . .

D O

・ 4 回 ト 4 三 ト 4 回 ト 4

institution-loso Independent Increments 29

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$ Independent

References

$$\begin{split} &| Ee^{iu_1(n^{\epsilon}(t_4,f)-n^{\epsilon}(t_3,f))+iu_2(n^{\epsilon}(t_2,f)-n^{\epsilon}(t_1,f))} \\ &- Ee^{iu_1(n^{\epsilon}(t_4,f)-n^{\epsilon}(t_3,f))} Ee^{iu_2(n^{\epsilon}(t_2,f)-n^{\epsilon}(t_1,f))} \\ &\rightarrow | Ee^{iu_1(n(t_4,f)-(t_3,f))+iu_2(n(t_2,f)-n(t_1,f))} \\ &- Ee^{iu_1(n(t_4,f)-n(t_3,f))} Ee^{iu_2(n(t_2,f)-n(t_1,f))} | \text{ as } \epsilon \to 0, \end{split}$$

we thus have

But

$$Ee^{iu_1(n(t_4,f)-n(t_3,f))+iu_2(n(t_2,f))-n(t_1,f))} = Ee^{iu_1(n(t_4,f)-n(t_3,f))}Ee^{iu_2(n(t_2,f)-n(t_1,f))}$$

This shows the independence of $n(t_4, f) - n(t_3, f)$ and $n(t_2, f) - n(t_1, f)$. Let $t_3 \rightarrow t_2$ and then complete the proof.

 □ ► < @ ► < E ► < E ► < 0 < 0<</p>

institution-loso Covariance 30

Short Paper Title

> Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of $n^{c}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$ Independent

Independent increments

References

Continuous sample paths and independent increments imply that n(t, f) is a Gaussian process (with mean 0). We now compute its covariance. Since

 $\begin{aligned} & EZ^{\epsilon}(t,f)^2 \\ &= 2\epsilon \int_0^1 \int_0^1 \int_0^t \int_0^{\infty} f(x)f(y)p(r,x)q_{0,r,x}(u,y) du dr dx dy \\ &+ O(\epsilon^2), \end{aligned}$

we obviously have that for two non-negative functions f and g,

$$\begin{aligned} EZ^{\epsilon}(t,f) \cdot Z^{\epsilon}(t,g) \\ &= \epsilon \int_{0}^{1} \int_{0}^{1} \int_{0}^{t} \int_{0}^{\infty} f(x)g(y)p(r,x)q_{0,r,x}(u,y)dudrdxdy \\ &+ \epsilon \int_{0}^{1} \int_{0}^{1} \int_{0}^{t} \int_{0}^{\infty} f(y)g(x)p(r,x)q_{0,r,x}(u,y)dudrdxdy \end{aligned}$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

$$+O(\epsilon^2).$$

It follows that

Covariance 31

Short Paper Title

Author, Another

Introduction and summary of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality Mixing condition Tightness of $n^{e}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

increments

References

.

 \sim · ·

$$\begin{split} \lim_{\epsilon \to 0} & En^{\epsilon}(t, f)^{2} \\ &= 2 \int_{0}^{1} \int_{0}^{1} \int_{0}^{t} \int_{0}^{\infty} f(x) f(y) p(r, x) q_{0, r, x}(u, y) du dr dx dy \\ &= & En(t, f)^{2}. \end{split}$$

Sac

The covariance fuction of n(t, f) is thus $En(t, f)n(s, f) = En(min\{t, s\}, f)^2$.

References 32 I

Short Paper Title

> Author, Another

Introduction and summar of results

Review of the Asymptotic Expansion of X_t^{ϵ} the Regular Part The Singular Part

Unscaled Function $Z^{\epsilon}(t, f)$

Asymptotic normality

Tightness of $n^{\epsilon}(\cdot, f)$

Normality and covariance of $n^{\epsilon}(\cdot, f)$

Independent increments

References

[1] Yin,G. and Zhang,Qing.

Continuous -Time Markov Chains and Applications, A Singular Perturbation Approach Springer 1996.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

[1] Khasminskii, R.Z. and Yin, G.

Asymptotic Series for Singularly Perturbed Kolmogorov-Fokker-Planck Equations *SIAM J.Appl.Math.*,56, no.6, (1996), 1766-1793.