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Abstract: Let W denote d-dimensional Brownian motion. We find an explicit formula for the essential supremum
of Hausdorff dimension of W (E) ∩ F , where E ⊂ (0 ,∞) and F ⊂ Rd are arbitrary nonrandom compact sets. Our
formula is related intimately to the thermal capacity of Watson (1978). We prove also that when d ≥ 2, our formula
can be described in terms of the Hausdorff dimension of E×F , where E×F is viewed as a subspace of space time.
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