ASYMPTOTIC NORMALITY OF OCCUPATION TIME OF SINGULARLY PERTURBED DIFFUSION PROCESSES

Wei-Da Chen Institute of Mathematics Academia Sinica Taipei, Taiwan Tzuu-Shuh CHIANG Institute of Mathematics Academia Sinica Taipei, Taiwan, E-mail: matsch@math.sinica.edu.tw

KEY WORDS: Central Limit Theorem, Singularly Perturbed Diffusions.

MATHEMATICAL SUBJECT CLASSIFICATION: Primary 60J60; Secondary 60F05,35C20.

Abstract: Let X_t^{ϵ} to be a diffusion process on the unit circle S^1 with generator $L^{\epsilon} = 1/\epsilon \cdot L_1 + L_2$ where $L_i(t, x) = b_i(t, x)\partial x + 1/2 \cdot a_i(t, x)\partial xx$ are two diffusion generators for i = 1, 2. Here, $b_i(t, x)$ and $a_i(t, x) > 0$ are taken to be smooth functions on S^1 . Given a bounded measurable function f(x) on S^1 , an unscaled function of the occupation time of X_t^{ϵ} is defined as

$$Z^{\epsilon}(t,f) = \int_0^t (f(X^{\epsilon}(s)) - \int_0^1 f(y)p(s,y)dy)ds.$$

where for each t, p(t, y) is the quasi-stationary distribution of $L_1(t, y)$. In this paper, we shall first show that the law of large numbers of $Z^{\epsilon}(t, f)$ holds, i.e., $\lim_{\epsilon \to 0} Z^{\epsilon}(t, f) = 0$ in L^2 and hence in probability. Let $n^{\epsilon}(t, f) = 1/\sqrt{\epsilon} \cdot Z^{\epsilon}(t, f)$. The second result is to show that $n^{\epsilon}(\cdot, f)$ converges to a Gaussian process $n(\cdot, f)$ as $\epsilon \to 0$ and we will explicitly compute the covariance function of $n(\cdot, f)$.