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SRBM model

• Two-dimensional reflecting BM with state space R2
+:

Z (t) = X (t) + RY (t)

where

• X is a Brownian motion with drift vector µ and covariance
matrix Σ

• Y is continuous and non-decreasing with Y (0) = 0, and Yj

only increase at times t for which Zj (t) = 0, j = 1, 2

• R is a 2× 2 matrix specifying the direction of the increase for
Y
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Existence of SRBM and its stationary distribution

• R is an S-matrix, if there exists a 2-vector ω ≥ 0 such that
Rω ≥ 0. R is completely-S, if each of its principal
sub-matrices is an S-matrix.

• For a given data set (Σ, µ,R) with Σ being positive definite,
there exists an SRBM for each initial distribution of Z (0) if
and only if R is completely-S. Furthermore, when R is
completely-S, the SRBM is unique in distribution for each
given initial distribution.

• A necessary and sufficient condition for Z (t) to have a
stationary distribution is that R is a P-matrix (all of its
principal minors are positive) and R is non-singular with
R−1µ < 0.
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Boundary measures

• We assume that the SRBM has a unique stationary
distribution π. Also assume that Z (0) follows the stationary
distribution.

• From the literature result, we get that each component of
Eπ(Y (1)) is finite. Therefore, we can define

Vi (A) = Eπ
[ ∫ 1

0
1{Z(u)∈A}dYi (u)

]
, i = 1, 2,

where A ⊂ R2
+ is a Borel set. Vi is a finite measure on R2

+

with the support on the boundary {x ∈ R2
+ : xi = 0}.

• Our focus in on the tail behavior of the boundary measures
Vi ,i = 1, 2.
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Types of tail asymptotics

• (Rough asymptotics) Let g(x) be a positive valued function of
x ∈ [0,∞). If

α = lim
x→∞

−1

x
log g(x)

exists, g(x) is said to have a rough decay rate α.

• On the other hand, if there exists a function h such that

lim
x→∞

g(x)

h(x)
= 1,

then g(x) is said to have exact asymptotics h(x).
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Originated from combinatorics

• The original idea was first introduced by Knuth [5] and later
developed as the kernel method by Banderier et al. [1].

• The original method deals with the fundamental form:

K (x , y)F (x , y) = A(x , y)G (x) + B(x , y),

where F (x , y) and G (x) are unknown functions.

• The key idea in the kernel method is to find a branch
y = y0(x), such that, at (x , y0(x)), the kernel function is zero,
or K (x , y0(x)) = 0.

• When analytically substituting this branch into the RHS of the
FM, we have G (x) = −B(x , y0(x))/A(x , y0(x)), and hence,

F (x , y) =
−A(x , y)B(x , y0(x))/A(x , y0(x)) + B(x , y)

K (x , y)
.



Outline The Model The Kernel Method Branch Points and Branches Asymptotic Properties Main Result Literature

FM for SRBM model

• Let Z = (Z1,Z2) be a random vector following the stationary
distribution.

• For x̂ = (x , y) ∈ R2, define three MG functions:

φ(x , y) = E
(
e<x̂ ,Z>

)
,

φ1(y) =

∫
R+

eyw2V1(dw) = Eπ
∫ 1

0
eyZ2(u)dY1(u),

φ2(x) =

∫
R+

exw1V2(dw) = Eπ
∫ 1

0
eθ1Z1(u)dY2(u).

• Let R =
(
rij

)
2×2

and Σ =
(
Σij

)
2×2

. It follows from Dai and
Miyazawa [4] that the FM for SRBM is given by

γ(x , y)φ(x , y) = γ1(x , y)φ1(y) + γ2(x , y)φ2(x),
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FM for SRBM model

where

γ1(x , y) = r11x + r21y ,

γ2(x , y) = r12x + r22y ,

γ(x , y) = − < x̂ , µ > −1

2
< x̂ ,Σx̂ > .

• However, when applying the key idea of the original kernel
method to the FM of the SRBM, we only have a relationship
between the two unknown functions φ1(y) and φ2(x).

• Therefore, a good understanding on the interlace of these two
functions is crucial.
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Extension of the kernel method

• There is no need to express the unknown MG functions first
for the purpose of characterizing tail asymptotics.

• We do need the information about the location of the
dominant singularity of the unknown functions and the
detailed asymptotic property of the function at the dominant
singularity.

• A Tauberian-like theorem for the MG function will be
developed for linking the asymptotic property of the unknown
function at the dominant singularity to the tail asymptotic
property of the boundary measure.
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Branch points

Consider the kernel equation:

γ(x , y) =
1

2
Σ22y 2 + (µ2 + Σ12x)y +

1

2
Σ11x2 + xµ1

= ay 2 + b(x)y + c(x) = 0.

Let D1(x) = b2(x)− 4ac(x). Then, for each fixed x , the two
solutions for y are given by

Y±(x) =
−b(x)±

√
b2(x)− 4ac(x)

2a
,

unless D1(x) = 0, for which the two solutions coincide and x is
called a branch point of Y .
Symmetrically, we can consider the two solutions for x for each
fixed y .
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Branch points

We have the following properties on the branch points.

Lemma

D1(x) has two zeros satisfying x1 ≤ 0 < x2. Furthermore,
D1(x) > 0 in (x1, x2).

Similarly, D2(y) has two zeros satisfying y1 ≤ 0 < y2. Moreover,
D2(y) > 0 in (y1, y2).
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Branches — analytic continuation

• Y− and Y+ are analytic in a region in Cx , respectively.

• For continuation of them, consider the cut plan

C̃x = Cx − (−∞, x1] ∪ [x2,∞).

• However, Y−(x) or Y+ cannot be analytic (or meromorphic)
in the cut plan.

• Define

Y0(x) =

{
Y−(x), if |Y−(x)| ≤ |Y+(x)|,
Y+(x), if |Y−(x)| > |Y+(x)|;
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Branches — analytic continuation

Lemma

Y0(x) is analytic on C̃x .

Based on the property of Y0(x), we have

Lemma

The function γ2(x ,Y0(x)) is analytic on C̃x . Similarly, the function
γ1(X0(y), y) is analytic on C̃y .
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Asymptotic analysis of φ1(y) and φ2(x)

Asymptotic properties for φ1(y) and φ2(x) are the key for
characterizing exact tail asymptotics for the two boundary
distributions V1(y) and V2(x). For this purpose, we do the
following:

Lemma

Let g(λ) =
∫∞

0 eλx dF (x) be the moment generating function of a
probability distribution F on R+ with real variable λ. Define the
convergence parameter of g as

Cp(g) = sup{λ ≥ 0 : g(λ) <∞}.

Then the complex variable function g(z) is analytic on
{z ∈ Cz ; Re(z) < Cp(g)}. It implies that Cp(g) is a singular point
for the complex g(z).
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From above Lemma, we get that

Lemma

φ1(z) is analytic on {z : Re(z) < τ2}, and φ2(z) is analytic on
{z : Re(z) < τ1}, where Cp(φ1) = τ2, and Cp(φ2) = τ1.

The following lemma characterizes τ1 and τ2.

Lemma

τ2 > 0 and τ1 > 0.
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A singular point xdom satisfying Re(xdom) = τ1 is called a
dominant singularity for φ2(z). There are three candidates for a
dominant singularity according to the following theorem.

Theorem

If Re(xdom) 6= x2, then either xdom = x∗ is a zero of γ2

(
x ,Y0(x)

)
or xdom = x̃ satisfying Y0(x̃) a zero of γ1(X0(y), y). In each case,
xdom is real.

Theorem

In any case, there is only one dominant singularity.

Corollary

Except at τ1, φ2(x) can be analytically continued to
Re(z) = τ1 + ε; or for some 0 < δ < π/2, φ2(x) is analytic in the
dented region:

G (δ, ε) = {z ∈ Cz : Re(z) < 1 + ε, z 6= τ1, |arg(z − τ)| > δ} .
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Tauberian-like theorem

Let V be a r.v. having distribution V (t) and v(s) = E(esV ). The
following Tauberian-like theorem, which is an extension of Gustanv
[4], links the asymptotic property of v(s) at its its dominant
singularity to the tail property of V (t).

Theorem

Assume that v(s) has only one dominant singularity α0 and has
the following asymptotic property at α0 for λ0 /∈ {0, 1, 2, . . .},

lim
s→α0

(s − α0)−λ0v(s) = c0 6= 0,

where the limit is taken in a dented neighborhood of α0. Then,
V (t) has the following tail asymptotic property, for large t:

V (t) ∼ e−α0t c0

Γ(−λ0)
t−λ0−1.
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Asymptotic property at xdom

Theorem

For the function φ2(x), a total of four types of asymptotics exists:

Case 1. If τ1 = x∗ < min{x̃ , x2}, or τ1 = x̃ < min{x∗, x2}, or
τ1 = x̃ = x2, then

limx→τ1(τ1 − x)φ2(x) = A1(τ1);

Case 2. If τ1 = x∗ = x2 < x̃ , or τ1 = x̃ = x2 < x∗, then
limx→τ1

√
τ1 − xφ2(x) = A2(τ1);

Case 3 If τ1 = x2 < min{x̃ , x∗}, then
limx→τ1

√
τ1 − xφ′1(x) = A3(τ1);

Case 4 If τ1 = x∗ = x̃ < x2, then
limx→τ1(τ1 − x)2φ2(x) = A4(τ1),

where Ak for k = 1, 2, 3, 4 are constants.



Outline The Model The Kernel Method Branch Points and Branches Asymptotic Properties Main Result Literature

Four types of tail asymptotics

Theorem

For t ≥ 0, let V2(t) = V2(A) if A = {(x1, 0) : x1 ≤ t}. Then, for
large t, the boundary distribution V2 has the following four types
of tail asymptotics:

Case 1. If τ1 = x∗ < min{x̃ , x2}, or τ1 = x̃ < min{x∗, x2}, or
τ1 = x̃ = x2, then

V1(t) ∼ A1(τ1)e−τ1t ;

Case 2. If τ1 = x∗ = x2 < x̃ , or τ1 = x̃ = x2 < x∗, then
V1(t) ∼ A2(τ1)t−1/2e−τ1t ;

Case 3 If τ1 = x2 < min{x̃ , x∗}, then
V1(t) ∼ A3(τ1)t−3/2e−τ1t ;

Case 4 If τ1 = x∗ = x̃ < x2, then
V1(t) ∼ A4(τ1)te−τ1t ,

where Ak for k = 1, 2, 3, 4 are constants.
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Thank You!


	Outline
	The Model
	The Kernel Method
	Branch Points and Branches
	Asymptotic Properties
	Main Result
	Literature

