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Figure: A “Sample Path” of the Switching Diffusion (X(t),α(t)).



Main Features

continuous dynamics & discrete events coexist

switching is used to model random environment or other random
factors that cannot be formulated by the usual differential
equations

problems naturally arise in applications such as distributed,
cooperative, and non-cooperative games, wireless
communication, target tracking, reconfigurable sensor
deployment, autonomous decision making, learning, etc.

traditional ODE or SDE models are no longer adequate

non-Gaussian distribution



Switching Diffusions

M = {1, . . . ,m}
α(·): taking values in M .
w(t): d -dimensional standard Brownian motion
b(·, ·) : Rr ×M 7→ R

r

σ(·, ·) : Rr ×M 7→ R
r ×R

d

dX (t) = b(X (t),α(t))dt +σ(X (t),α(t))dw(t),
X (0) = x , α(0) = α ,

(1)



Switching Diffusions

M = {1, . . . ,m}
α(·): taking values in M .
w(t): d -dimensional standard Brownian motion
b(·, ·) : Rr ×M 7→ R

r

σ(·, ·) : Rr ×M 7→ R
r ×R

d

dX (t) = b(X (t),α(t))dt +σ(X (t),α(t))dw(t),
X (0) = x , α(0) = α ,

(1)

P{α(t +∆)= j |α(t) = i ,(X (s),α(s)),s ≤ t}
= qij(X (t))∆+o(∆), i 6= j .

(2)



Formulation (cont.)

Q(x) = (qij(x)) : generator associated with α(t) satisfying

qij(x)≥ 0, if j 6= i , and
m

∑
j=1

qij(x) = 0, i = 1,2, . . . ,m

L : generator of (X (t),α(t)). For each i ∈ M , and any g(·, i) ∈ C2(Rr ),

L g(x , i) =
1
2

tr(a(x , i)∇2g(x , i))+b′(x , i)∇g(x , i)+Q(x)g(x , ·)(i) (3)

where
∇g(·, i) & ∇2g(·, i): gradient & Hessian of g(·, i),
a(x , i) = σ(x , i)σ ′(x , i),

Q(x)g(x , ·)(i) =
m

∑
j=1

qij(x)g(x , j).



Main Difficulty of x-Dependnet Switching

Consider (X (t),α(t)) with two different initial data
(X (0),α(0)) = (x ,α) & (X (0),α(0)) = (y ,α), y 6= x .

Since Q(x) depends on x ,
αx ,α(t) 6= αy ,α(t) infinitely often even though
αx ,α(0) = αy ,α(0) = α .



Stock Price Models

Variables and parameters
◮ S(t): stock price
◮ w(·): stand Brownian motion
◮ µ : return (appreciation) rate
◮ σ : volatility

Traditional GBM model:

dS(t) = µS(t)dt +σS(t)dw .

Regime-switching market model:

dS(t) = µ(α(t))S(t)dt +σ(α(t))S(t)dw .

◮ α(·) continuous-time Markov chain independent of w(·)
◮ α(·): market mode, investor’s mode, & other economic factors (e.g.,

bull, bear)



Consensus Problems: Schooling (Couzin, [Nature, 2005])



Mean-Field Model

Originated from statistical mechanics, mean-field models are concerned
with many-body systems. To overcome the difficulty of interactions due
to the many bodies, one of the main ideas is to replace all interactions

to any one body with an average or effective interaction .

α(t): with M = {1,2, . . . ,m0}.

Consider an ℓ-body mean-field model For i = 1,2, . . . , ℓ,

dXi(t) =
[
γ(α(t))Xi (t)−X 3

i (t)−β (α(t))(Xi (t)−X (t))
]
dt

+σii(X (t),α(t))dwi (t),

X (t) =
1
ℓ

ℓ

∑
j=1

Xj(t),

X (t) = (X1(t),X2(t), . . . ,Xℓ(t))′,

(4)

γ(i)> 0 and β (i)> 0 for i ∈ M .



Regularity

Definition

Regularity. A Markov processY x ,α(t) = (X x ,α (t),αx ,α (t)) is said to be
regular, if for any 0 < T < ∞,

P{ sup
0≤t≤T

|X x ,α (t)|= ∞}= 0. (5)



Regularity

Definition

Regularity. A Markov processY x ,α(t) = (X x ,α (t),αx ,α (t)) is said to be
regular, if for any 0 < T < ∞,

P{ sup
0≤t≤T

|X x ,α (t)|= ∞}= 0. (5)

Remark
Let βn := inf{t : |X x ,α(t)| = n}. Then{βn} is monotonically increasing and
hence has a (finite or infinite) limit. It follows that the process is regular iff

βn → ∞ almost surely asn → ∞. (6)



Recurrence

Definition

(i) Recurrence. For U := D×J, whereJ ⊂ M andD ⊂ R
r is an open set

with compact closure, letσ x ,α
U = inf{t : Y x ,α(t) ∈ U}. A regular process

Y x ,α(·) is recurrent w.r.t. U if

P{σ x ,α
U < ∞}= 1 for any(x ,α) ∈ Dc ×M .

(ii) Positive and Null Recurrence. A recurrent process satisfying
Eσ x ,α

U < ∞ is said to bepositive recurrent w.r.t. U; otherwise, the
process isnull recurrent w.r.t. U.



Recurrence Is Independent of Sets

(i) The process (X (t),α(t)) is (positive) recurrent w.r.t. D×M if and
only if it is (positive) recurrent w.r.t. D×{ℓ}, where D ⊂ R

r is a
bounded open set with compact closure and ℓ ∈ M .

(ii) If the process (X (t),α(t)) is (positive) recurrent w.r.t. some
U = D×M , where D ⊂ R

r , then it is (positive) recurrent w.r.t.
Ũ = D̃×M , where D̃ ⊂ R

r is any nonempty open set.



Positive Recurrence

Theorem

A necessary and sufficient condition for positive recurrence with
respect to a domain U = D×{ℓ} ⊂ R

r ×M is: For each i ∈ M , there
exists a nonnegative function V (·, i) : Dc 7→ R s.t. V (·, i) is twice
continuously differentiable and that

L V (x , i) =−1, (x , i) ∈ Dc ×M . (7)

Let u(x , i) = Ex ,i σD . It is the smallest positive sol’n to

{
L u(x , i) =−1, (x , i) ∈ Dc ×M ,

u(x , i) = 0, (x , i) ∈ ∂D×M .
(8)



Ergodicity

Theorem

A positive recurrent process (X (t),α(t))has a unique stationary
distribution ν̂(·, ·) = (ν̂(·, i) : i ∈ M ).



Ergodicity
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Figure 2: Cycles of Y (t) = (X(t),α(t)); m = 3 & ℓ= 1



Seemingly Not Much Different from a
Diffusion?



An Example

Consider
ẋ(t) = A(α(t))x(t) (9)

where α(t) has two states {1,2},

A(1) =
[
0 −1
1 0

]
, A(2) =

[
−1 2
−2 −1

]
, Q =

[
−1 1
2 −2

]
,

Associated with the hybrid system, there are two ODEs

ẋ(t) = A(1)x(t), and (10)

ẋ(t) = A(2)x(t) (11)

switching back and forth according to α(t).



Phase Portrait of the Components
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Phase portraits of the ‘component’ with a center (in dashed line) and
the ‘component’ with a stable node (in solid line) with the same initial

condition x0 = [1,1]′



Phase Portrait of Hybrid System

The phase portrait is given below.
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Figure: Switching linear system: Phase portrait of (9) with x0 = [1,1]′.
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Q: When we have a coupled system with M = {1,2} and two stable
linear systems, do we always get a stable system?



Seemingly Not Much Different from Diffusions without Switc hing?

Q: When we have a coupled system with M = {1,2} and two stable
linear systems, do we always get a stable system?

Consider ẋ = A(α(t))x +B(α(t))u(t), and a state feedback
u(t) = K (α(t))x(t). Then one gets

ẋ = [A(α(t))−B(α(t))K (α(t))]x .

Suppose that α(t) ∈ {1,2} such that

A(1)−B(1)K (1) =
[

−100 20
200 −100

]
, A(2)−B(2)K (2) =

[
−100 200

20 −100

]
.



The hybrid system is unstable
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[L.Y. Wang, P.P. Khargonecker, and A. Beydoun, 1999, deterministic switching system]



Why is the system unstable?

1
2
[A(1)−B(1)K (1)+A(2)−B(2)K (2)] =

1
2

[
−200 220

220 −200

]

is an unstable matrix.

The averaging effect dominates the dynamics.



Consider a system

ẋε(t) = b(xε(t),αε (t)), αε(t) ∼ Q/ε (12)

each ẋ(t) = b(x(t), i), i ∈ M is stable.

Q irreducible

xε(·)⇒ x(·) such that

ẋ(t) = b(x(t)), b(x) = ∑
i∈M

νib(x , i). (13)

System (13) is unstable.

Use perturbed Liapunov function to show that (12) is unstable.



Explosion Suppression & Stabilization



Regularity: Criterion

Theorem

Suppose that b(·, ·) : Rr ×M 7→R
r and that σ(·, ·) : Rr ×M 7→ R

r×d ,

dX(t) = b(X(t),α(t))dt +σ(X(t),α(t))dw(t), (X(0),α(0)) = (x ,α),
P{α(t + δ ) = j|α(t) = i,X(s),α(s),s ≤ t}= qij(X(t))δ +o(δ ), i 6= j.

(14)

Suppose that for each i ∈ M , both b(·, i) and σ(·, i) are local linear growth
and local Lipschitzian and that ∃ a nonnegative V (·, ·) : Rr ×M 7→ R

+ that is
C2 in x ∈R

r for each i ∈ M s.t. ∃γ0 > 0

L V (x , i)≤ γ0V (x , i), for all (x , i) ∈ R
r ×M ,

VR := inf
|x |≥R, i∈M

V (x , i)→ ∞ as R → ∞. (15)

Then the process (X(t),α(t)) is regular.



Explosion Suppression

x ∈ R
r

f (·, ·) : Rr ×M 7→ R
r

α(t) ∈ M = {1, . . . ,m}

dX (t)
dt

= f (X (t),α(t)) (16)

f (·, i) continuous but the growth rate is faster than linear

We wish to stabilize (16).



Motivational Example

Consider an even simpler problem: the logistic system

ẋ(t) = x(t)(1+x(t)), x(0) = 1.
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Motivational Example

Consider an even simpler problem: the logistic system

ẋ(t) = x(t)(1+x(t)), x(0) = 1.

solution:

x(t) =
1

−1+2e−t .

It will blow up and the explosion time τ = log2.

Question: How can we get a global soln; stabilize it?

Two things are needed:
1) extend to a global solution;
2) stabilization.



Stabilization: What have been done?

Khasminskii’s book (1981): stabilize 2-d system with two white
noise

Arnold (1972): ẋ = Ax can can be stabilized by zero mean
stationary process iff tr(A)< 0

Mao (1994) established a general stabilization results of Brownian
noise under linear growth condition.

Wu & Hu (2009) treated one-sided growth condition

Mao, Yin, and Yuan (2007): showed that both Brownian motion
and Markov Chain can be used to stabilize systems.



Motivation (diffusion case)

dx = µxdt +σxdw , x(0) = x0.

x(t) = x0 exp
((

µ −
σ2

2

)
t +σw(t)

)
.

when σ2 > 2µ ,

limsup
t

log |x(t)|
t

≤

(
µ −

σ2

2

)
< 0.

This implies exponential stability.



How to Get a Global Solution? Stablization?

add a diffusion perturbation

dX (t) = f (X (t),α(t))dt +a1(α(t))|X (t)|β X (t)dw1(t)

such that 2β −β1 > 0, where w1(·) is scalar Brownian motion.

add another diffusion to get stability

dX (t) = f (X (t),α(t))dt +a1(α(t))|X (t)|β X (t)dw1(t)
+a2(α(t))X (t)dw2(t),

(17)

where w2(·) is a scalar Brownian motion independent of w1(·).



Results

General case:

dX (t) = f (X (t),α(t))dt +σ1(X (t),α(t))dw1 +σ2(X (t),α(t))dw2.
(18)

With proper choice of the perturbations, we get a global solution

limsupt→∞ P(|X (t)| ≥ Kδ )≤ δ
The resulting system is stable w.p.1. In fact,
limsupt log |X (t)|/t < 0 w.p.1.



(A) For each i ∈ M , f (·, i), σ1(·, i), and σ2(·, i) are locally Lipschitz
continuous such that

(a) f (0, i) = 0;
(b) f ′(x , i)x ≤ K0(i)(|x |β1+2 + |x |2) for each i ∈ M and some β1 > 0.
(c) for some β > 0 satisfying 2β −β1 > 0 and some Kj (i)> 0 with

j = 1, . . . ,4 satisfying 2K1(i) > K2(i) and for each x ∈ R
r ,

K1(i)(|x |
4+2β −|x |4)≤ tr(σ1(x , i)σ ′

1(x , i)xx ′)≤ K5(i)|x |4+2β

tr(σ1(x , i)σ ′
1(x , i))≤ K2(i)(|x |

2+2β + |x |2),

tr(σ2(x , i)σ ′
2(x , i)xx ′)≥ K3(i)|x |

4,

tr(σ2(x , i)σ ′
2(x , i))≤ K4(i)|x |

2.
(19)

(d) The Markov chain α(t) is irreducible in the sense that the system of
equations {

νQ = 0
ν11 = 1

has a unique positive solution, where 11 is a column vector with all
component being 1.



Example

Begin with (16) together with initial condition X (0) = 1. Suppose that
α(t) is a Markov chain with two states M = {1,2} and

Q =

(
−0.1 0.1

1 −1

)
, f (x ,1) = x(x +1) and f (x ,2) = x(2x +1).

Corresponding to the states, we have two equations

d
dt

X (t) = X (t)(X (t)+1),
d
dt

X (t) = X (t)(2X (t)+1).
(20)

Neither equation has a global soln. For the 1st equation, we have
X (t) = et/(2−et) that will blow up at time ln2; for the second equation,
X (t) = et/(3−2et) that will blow up at time ln(3/2). We plot the
trajectories of the switched system.



To regularize the system, use a feedback control a1(α(t))X2(t)dw1(t), where
w1(t) is a 1-d Brownian motion. The resulting eq is

dX(t) = f (X(t),α(t))dt +a1(α(t))X2(t)dw1(t), (21)

a1(i) = 2 for i = 1,2.
Although the system has a global solution, it is not asymptotically stable. To
stabilize the system, we add another feedback control a2(α(t))X(t)dw2(t),
w2(t) is 1-d standard Brownian motion independent of w1(t) and a2(1) = 19
and a2(2) = 24.

dX(t) = f (X(t),α(t))dt +a1(α(t))X2(t)dw1(t)+a2(α(t))X(t)dw2(t). (22)
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Figure: Trajectory of system (21) with stepsize ∆t = 10−4.
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Numerical Methods for Control and Games
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Numerics for Controlled Switching Diffusions





X (t) = x +

∫ t

0
b(X (s),α(s),u(s))ds+

∫ t

0
σ(X (s),α(s))dw ,

α(t) continuous-time MC α(0) = i ,
(23)

where w(t) is a standard Brownian motion independent of the Markov
chain α(t).

• Kushner & Dupuis, Springer, Markov chain approximation

• with Song & Zhang, (2006), regime-switching & jump diffusion



Controlled Switching Diffusions (cont.)

Given B > 0, define a stopping time as

τx ,i ,u
B = inf{t : X x ,i ,u(t) /∈ (−B,B)}.

Objective: choose control u· to minimize the expected cost function




JB
i (x ,u) = E

∫ τx ,i,u
B

0
f (X (s),α(s),u(s))ds,

∀x ∈ (−B,B), i ∈ M ,

JB
i (x ,u) = 0, ∀x /∈ (−B,B), i ∈ M ,

(24)

where for each i ∈ M , f (·, i , ·) is an appropriate function representing
the running cost function.



For each i ∈ M , the value function is given by

V B(x , i) = inf
u∈U

JB(x , i ,u), (25)

where U is the space of all Ft -adapted controls taking values on a
compact set U.

Formally, the value functions satisfy Hamilton-Jacobi-Bellman (HJB)
equations,

{
inf

u∈U
{LuV B(x , i)+ f (x , i ,u)}= 0, ∀x ∈ (−B,B), i ∈ M ,

V B(x , i) = 0, ∀x /∈ (−B,B), i ∈ M ,
(26)

where

Luϕ(x , i) =
1
2

σ2(x , i)
d2ϕ(x , i)

dx2 +b(x , i ,u)
dϕ(x , i)

dx
+ ∑

j∈M

qijϕ(x , j).



Algorithm

h > 0: discretization parameter.

Sh = {x : x = kh,k = 0,±1,±2, . . .}. Let {(ξ h
n ,αh

n ),n < ∞} be a
controlled discrete-time Markov chain on a discrete state space
Sh ×M

ph((x , i),(y , j)|u): transition probabilities from (x , i) ∈ Sh ×M to
(y , j) ∈ Sh ×M , for u ∈ U.



Then, V̄ B,h(x , i), the discretization of V B(x , i) with step size h > 0, is
the solution of

{
inf

u∈U
{Lu

hV̄ B,h(x , i)+ f (x , i ,u)}= 0, ∀x ∈ (−B,B)h, i ∈ M ,

V̄ B,h(x , i) = 0, ∀x /∈ (−B,B)h, i ∈ M ,
(27)

where

(−B,B)h = (−B,B)∩Sh, [−B,B]h = (−B,B)h ∪{B,−B}. (28)

V̄ B,h(x , i) = inf
u∈U

{
p̄h,+

i (x ,u)V̄ B,h(x +h, i)+ p̄h,−
i (x ,u)V̄ B,h(x −h, i)

+∑
j 6=i

p̄h
ij (x)V̄

B,h(x , j)+ f (x , i ,u)∆t̄h
i (x)

}

(29)



Rates of Convergence

Theorem

Under suitable conditions, ∃γ > 2 and ρ ∈ (0,1] s.t. the Markov chain
approximation algorithm converges at the rate (γ −2)∧ρ ∧ 1

2 . That is,

|V̄ B,h
i (x)−V B

i (x)| ≤ Kh
1
2∧ρ∧(γ−2), ∀(i ,x) ∈ M ×G.

Note that γ > 2 comes from Markov chain ≈ for switching, ρ is the Hölder exponent of the
cost function.

PDE approach for controlled diffusions (finite difference approx of PDEs)

◮ Menaldi, SIAM J. Control Optim. (1989)
◮ Krylov, Probab. Theory Related Fields, (2000)
◮ Dong & N.V. Krylov, Appl. Math Optim.

We use probabilistic approach for controlled switching diffusions



Main Ideas (work with Q.S. Song, probabilistic approach)

Use relaxed controls (measures)

Construct approximation sequence

Consider boundary perturbations
◮ usual notion of cost Ji(x ,m̃);

◮ ours J
B

i (x ,m̃)
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Construct approximation sequence

Consider boundary perturbations
◮ usual notion of cost Ji(x ,m̃);

◮ ours J
B

i (x ,m̃)



Tangency Problem

τ and τh: the first hitting time of X (t) and xh(t) to the boundary.
Objective: ≈ Eτ by Eτh

In the Figure, τh 6→ τ , even though xh(·) converges to X (·).
Q: extra conditions needed?

B

Bh

B
h

lim τhτ



Thank you
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