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A characterisation of the path-independence property

Given (Q, F, P; { Ft}te[o,00))- Consider a stochastic dynamical
system described by the following SDE of the Markovian type

dX; = b(t, X;)dt + o(t, X)dB;, >0

where

b:[0,00) x RY — RY,

o :[0,00) x RY — R¥® R, and

Bt is d-dimensional {Ft}tc[0,o0)-Brownian motion.

It is well known that under the usual conditions of linear growth
and locally Lipschitz for the coefficients b and o, there exists a
unique solution to the equation with given initial data Xj.

Jiang-Lun Wu A characterization of stochastically integrable systems



A characterisation of the path-independence property

The celebrated Girsanov theorem provides a very powerful tool
to solve SDEs under the name of the Girsanov transformation
or the transformation of the drift. Let v : [0, 00) x RY — RY
satisfy the following condition

t
E [exp <;/0 y(s,Xs)|2ds>] < oo, Vt>0.

Then, by Girsanov theorem,

t 1 t
oxp ([ (. X)08s — 5 [ (s XPds) . te [0.00)

is an {F;}-martingale. Furthermore, for t > 0, we define
t 1 t
Q= oo [ 2(s. X008~ [ (s xoPds) - P
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A characterisation of the path-independence property

or equivalently in terms of the Radon-Nikodym derivative
aQ t
dTDt = exp </0 (s, Xs)dBs — / 17(s, Xs)| ds)
Then, forany T > 0,
. t
B; := Bt—/ (s, Xs)ds, 0<t<T
0

is an {F;}-Brownian motion under the probability Q.
Moreover, X; satisfies

dX; = [b(t, X;) + o(t, X)y(t, Xp)]dt + o (t, X;)dB;, t>0.
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A characterisation of the path-independence property

Motivation from economics and finance Now look at

aQ: f 1 2
op = &P ( /0 7(8. Xs)dBs — /O (s, Xs)| dS)

we see that generally 5 do’ depends on the “history” of the path
uptot(i.e, {Xs:0< s g t})! While in economics and finance
studies, in particular towards to the optimal problem for the
utility functions in an equilibrium market, it is a necessary
requirement that de depends only on the state X;, not on the

whole “history” {Xs :0 < s < t}. See, e.g., [1] E. Stein, J.C. Stein:
Stock price distributions with stochastic volatility: an analytic
approach. The Review of Financial Studies 4 (1991), 727-752;

[2] S. Hodges, A. Carverhill: Quasi mean reversion in an efficient
stock market: the characterisation of Economic equilibria which
support Black-Scholes Option pricing. The Economic Journal 103
(1993), 395-405.
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A characterisation of the path-independence property

So mathematically, one requires that the Radon-Nikodym
derivative is in the form of

_da
~ dP’
We call this the path-independent property of the density of the

Girsanov transformation. A characterisation of this property for
the above SDEs was obtained in

Z(X, 1) t € [0, 00).

A. Truman, F-Y. Wang, J.-L. Wu and W. Yang: A link of
stochastic differential equations to nonlinear parabolic
equations, SCIENCE CHINA Mathematics, in press.
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A characterisation of the path-independence property

Assumptions:
(i) (Non-degeneracy) The coefficient o satisfies that the matrix
o(t, x) is invertible, for any (¢, x) € [0, 00) x RY;
(i) Specify the function ~ by
¥t x) = —(o(t,x)) " b(t, x)

so that b(t, X;) + o(t, Xt)v(t, X;) = 0, and hence we require b
and o satisfy

E [exp <; /Ot|(a(s, Xs))~"b(s. Xs)|2ds>] < oo, V0.
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A characterisation of the path-independence property

Thus the associated probability measure Q; is determined by
dQ ! _
9 exp (— | (ot X6)) (s, Xe). o)

dP 0

t
—;/0 \(a(s,xs))—1b(s,xs)\2ds> .

Now set

N e
Zi=—Inp

that is
t t
Z= /0 (o(5. X)) b(s, xs),st>+;/0 (o5, Xe)) ™" b(s. Xs)|*ds.

Clearly, Z; is a one dimensional stochastic process with the
stochastic differential form

5 2 —
dz; = y (£, X))~ b(t, X)) [“dt + (o (t, X)) 7' b(t, X;), dBy) .



A characterisation of the path-independence property

Theorem (Characterisation Theorem)

Let v : [0,00) x RY — R be a scalar function which is C' with
respect to the first variable and C? with respect to the second
variable. Then

Vit X)) = v(O,X0)+;/Ot\(a(s,Xs))1b(s,Xs)|2ds

t
+ / ((o(5, Xs)) "' b(s, Xs), dBs)
0

equivalently,

CZ,% = exp{v(0,Xo) — v(t, X¢)}, t€[0,00)

holds if and only if
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A characterisation of the path-independence property

Theorem (cont’d)

b(t, x) = (co*VV)(t,x), (t x)e|0,00) xRY
and v satisfies the following time-reversed Burgers-KPZ type
equation

0 _ 1 * 72 * 2
Sv(t.x) = —E{[Tr(aa V20)](t, X) + |o*VV| (t,x)}
where V2v stands for the Hessian matrix of v with respect to

the second variable.
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A characterisation of the path-independence property

Proof
Necessity Assume that there exists a scalar function

v : [0,00) x RY — R which is C' with respect to the first variable
and C? with respect to the second variable such that

V(LX) = v(0. %)+ /y (5. Xs))""b(s, Xs)[2dis

T /0 ((o(5. Xe)) " b(s, Xs), dlBs)
holds, then we have

av(t, Xi) = %\(o(t, X))~ b(t, Xo) [P dt+((o(t, X)) " b(t, X), 0By} .
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A characterisation of the path-independence property

Now viewing v(t, X;) as the composition of the deterministic
C'2-function v : [0,00) x RY — R with the continuous
semi-martingale X;, we can apply Ité’s formula to v(¢, X;) and
further with the help of our original SDE

aX; = b(t, Xt)dt—{— O‘(t, Xt)dBt, t>0

we have the following derivation

avit, Xp) = {gtv(t,Xt)Jr;[Tr(aa*)vzv](t,Xt)

+(b, Vv)(t, Xp)} dt + ((c*VV)(t, Xt), dB:)
since

<VV(t, Xt),O'(t,Xt)dBt> = <0*(t,Xt)VV(t, Xt), dBt> .
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A characterisation of the path-independence property

Now comparing this with the previously obtained
av(t, X;) = \ o(t, X)) b(t, X2)|Pdt+ (o (t, X¢))~"b(t, Xz), dB)
and using the uniqueness of Doob-Meyer’s decomposition of

continuous semi-martingale, we conclude that the coefficients
of dt and dB; must coincide, respectively, namely

(e 'b)(t, X;) = (" VV)(t, Xp)

%](a’1b)(t, X)) = gtv(t, Xt)+%[7'r(aa*V2v)](t, Xp)+(b, VV)(t, X,)

holds for all t > O.
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A characterisation of the path-independence property

Since our SDE is non-degenerate, the support of X;, t € [0, c0)
is the whole space RY. Hence, the following two equalities

(e 'b)(t, x) = (6*V)Vv(t, x)
1, _ o 1 i
5l(o b)(t, x)|? = 5¢V(1X)+ (b, V) (8, X)+ 5[ TH (oo " VV)](t, x)
hold on [0, oc) x RY. From these equalities we derive
b(t, x) = (co*VV)(t,x), (t x)e0,00) xRY

and v satisfies the Burgers-KPZ type equation

t.x) =~ { oo™ V20)] (t.0) + 0" Vv (1. x)}

PTad! 2
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A characterisation of the path-independence property

Sufficiency Assume that there exists a C'? scalar function
v : [0,00) x R — R solving the Burgers-KPZ equation.
Specify the drift b of the original SDE via

b(t, x) = (co*VV)(t,x), (t x)e[0,00)xRY.
We then have
dv(t, X)) = [—%\J*Vv\z(t,xt)—i—(b,VV>(t,Xt)]dt
+{(c*VV)(t, Xt), dBy)
= %|a‘1b|2(t,X,)dt +{(c7'b)(t, Xp), dBy) .
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A characterisation of the path-independence property

This clearly implies
v(t,X:) = v(0,X0)+ /] (s, Xs)) (s,Xs)|2ds

+ / (05, X5)) " B(s, Xs), dBs)
0

by taking stochastic integration. This completes the proof.
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Stochastic deformation of classical dynamical systems

Path-independent phenomenon also appeared in Calculus of
Variation and Stochastic Optimal Control. Here some ref’s
[1] J.C. Zambrini: Variational processes and stochastic versions of
mechanics. J Math Physics 27 (1986), 2307-2330.

[2] A.B. Cruzeiro, J.C. Zambrini: Malliavin calculus and Euclidean
quantum mechanics. J Funct Anal 96 (1991), 62-95.

[3] A.B. Cruzeiro, L. Wu, J.C. Zambrini: Bernstein processes
associated with a Markov process. pp41-72 in Stochastic Analysis
and Mathematical Physics, Birkh&user, 2000.

[4] K.L.Chung, J.C. Zambrini: Introduction to Random Time and
Quantum Randomness. World Scientific, 2003.

[5] W.H. Fleming, H.M. Soner: Controlled Markov Processes and
Viscosity Solutions. (2nd Ed) Springer, 2006.

[6] J.C. Zambrini: On the geometry of the Hamilton-Jacob-Bellman
equation. J Geometric Mechanics 1 (2009), 369-387.

[7] N. Privault, J.C. Zambrini: Stochastic deformation of integrable
dynamical systems and random time symmetry. J Math Phys 51
(2010), 082104.
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Stochastic deformation of classical dynamical systems

Given a probability space (2, F, P). We are concerned with a
stochastically deformed dynamical system described as the
following n-dimensional It6 stochastic differential equation
dZ(r) = B(Z(r),7)dr + h2dW(r), 7 € (t, U] )
Z(t)=qeR"

with 0 < t < u < oo and g € R" being arbitrarily fixed, where
B:R" x [0,00) — R" is a vector field, h > 0 is the deformation
parameter and W = {W(7)} >0 is an n-dimensional standard
Brownian motion . It is well known that under the usual
conditions of linear growth and locally Lipschitz in the space
variable for the drift coefficient B, there exists a unique solution
to the equation together with the given initial data Z(t) = q.
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Stochastic deformation of classical dynamical systems

Actually, the solution Z = {Z(7)},¢[1,,1 Of the initial value
problem (1) is a R"-valued diffusion process on (2, F, P)
endowed with a filtration {7 }.c[0,.) generated by the
Brownian motion {W(7)}.¢[t,y in the sense that F; represents
the past information generated by Z up to any time r € [t, u]. If,
moreover, we specify 2 as the path space of Z to be the
classical Wiener space (endowed with the supremum norm)

Q=W([t,u]) :={w e C([t,u] = R"): w(t) = gandw(u) = y fixed}
(2)

then the process Z can be realised canonically as
Z(r,w)=w(r), TE[tu], we.

Such a stochastic deformation of dynamical system belongs to
the class of Bernstein or reciprocal processes initiated in
Zambrini [1] and developed further in [2,3,4].
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Stochastic deformation of classical dynamical systems

Furthermore, for any such diffusion process Z(7), € [t, u], we
can define its Kolmogorov (infinitesimal) generator in the

following manner

DHZ(r),7) = ;iLnOEq,t [f(Z(T +6), 7 +99) - f(Z(T),T):|
= gi(Z(T),T) + B(Z(1),7)VI(Z(T),T)
+gAf(Z(T),T) (3)

for any function f : R” x [0, c0) — R in the domain such that the
above limit exists. In particular, taking for f any component g; of

q= (91,9, ...,qn) € R", one derives
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Stochastic deformation of classical dynamical systems

Due to the well known fact that, with probability one, the sample
paths of Brownian motion W is nowhere differentiable (cf. e.g.
the seminal paper in 1961 by Dvoretzky, Erdés and Kakutani),
the diffusion process Z does not differentiate either. Thus, the
classical action functional along the diffusion process Z
becomes divergent so one can not consider the classical action
functional for Z. However, with the help of the Kolmogorov
generator D, the following action functional for the process

Z = {Z; }+¢qt,u) Was introduced in Cruzeiro and Zambrini [2]
(utilising Malliavin calculus)

FIZ) := Eq / L(Z(r), DZ(r))dr (4)
with the classical Lagrangian
L(w,o) = \w|2 +V(w), weC'([0,00) = R"). (5)
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Stochastic deformation of classical dynamical systems

where E, ; denotes the conditional expectation given Z(t) = q,
& = 2 the time derivative of the path w € C'([0, 00) — R”),
and the potential V : R” — R is a function in the Kato class.
For F, its domain is defined in the following manner

Dom(F) := {Z = (Z())rera) * Ea / IL(Z(r), DZ(r))|dr < oo}

Recall that for the classical Wiener space W defined in (2), we
have the Cameron-Martin space H C W endowed with the
scalar product

u
< Wiy, ws >H1:/ w1(7) - wo(T)dr, wi,ws € H.
t
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Stochastic deformation of classical dynamical systems

It is known that for any §Z € H and for any ¢ > 0, the (path)
probability measure induced by the shifted process

(Z(7) + €6Z(7))ret,u is @bsolutely continuous with respect to
the path probability measure of (Z(7)),¢,- Moreover, the
variation F[Z + edZ] — F|[Z] of F[Z] is well defined, so we can
define directional derivative (cf. [2,6,7] where the directional
derivative can be even computed explicitly)

i FIZ+e6Z) - F[Z]

e—0 €

VF[Z]|(52) =

With all these in hand, one can then have the following
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Stochastic deformation of classical dynamical systems

Definition

A process Z € Dom(F) is called a critical point (or a minimal
point) for F if the directional derivative of F at Z along any
direction §Z vanishes in the following sense

Eq:(VF[Z](62)) = 0.

It has been shown in [2] that any critical point Z of the action
functional F[Z] from the class of diffusion processes
determined by (1) satisfies the deformed Euler-Lagrange
equation (along the paths of 2)
p (9L<£(r), DZ(7))\ _ 9L(Z(r), DZ(7)) _
oDZ(T) 0Z(T) B
which is equivalent to

DDZ(r) = VV(Z())
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Stochastic deformation of classical dynamical systems

since
aL(ZEaTZ)ETD)Z(T)) - az%) <;‘DZ(T)|2 + V(Z(T))> = VV(Z(7))
and
oL(Z(r),DZ(r)) 0 1 B
aDZ(r) _ aDZ(r) (2'02(7)2 + V(Z(T))> = DZ(7).

The above action functional F[Z] also enjoys the following

“invariance property”. Let S: R” x [0,00) — R be a C?>' scalar

function. Along the paths of Z, one can define

9S(Z(r),7)
or

and build another action functional

DS(Z(r, 7)) = +DZ(T)VS(Z(T),T)-f-gAS(Z(T),T)

FlZ] = Eq. /t " 1(2(r), DZ(+))dr
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Stochastic deformation of classical dynamical systems

with the associated Lagrangian
Z(Z(r), DZ(1)):= L(Z(r), DZ(7)) + DS(Z(7), 7).

Then it is shown in [1] that the action functional F is equivalent
to the original action functional F[Z] in the sense that their
associated (deformed) Euler-Lagrange equations are the same.
So DS has been given a name as a deformed null Lagrangian.
In addition, if the scalar function S is a solution to the following
Hamilton-Jacobi-Bellman equation

0S(z,7)
or

then along a critical point Z = (Z(7)),¢[t,,, We have
L(z(r),DZ(r)) = 0 so

L(Z(7),DZ(7)) = L(Z(7), DZ(7))-DS(Z(r),7) = —DS(Z(7), 7)

- %\VS(Z,T)F + gAS(z, )+ V(z)=0
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Stochastic deformation of classical dynamical systems

from which one can obtain Dynkin’s formula (cf. e.g. K. It6:
Stochastic Processes, Springer, 2004.)

F[Z] = Eq;t /tu(—DS(Z(T),T))dT = 5(qg,t) — Eq,:S(Z(u), u).

showing that the action functional F[Z] has the
path-independent property with respect to Z. This is expected
because the critical point is defined as the one minimises the
action functional F[Z] over all Z’s.
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Path-independence of the action functionals

A.B. Cruzeiro, J.-L. Wu and J.-C. Zambrini: Stochastically
integrable systems and stochastic Stokes formula, working

paper.

Our objective here is to characterise the path-independence of
the action functionals.

Definition
We say that the action functional F[Z] possesses the

path-independent property if there is a scalar C>'-function
f:R" x [0,00) — R such that

| A

FIZ] = Eq: /t " L(2(r), DZ(r))d7 = K(q. 1) — Eq.f(Z(u), u).
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Path-independence of the action functionals

Theorem
(i) Let f : R” x [0,00) — R be C?'. Then

u
FIZ] = Eqy / L(Z(r), DZ(r))dr = £(q. 1) — Eqf(Z(u), u)
t
if and only if the scalar function S : R"” x [0, 00) — R defined by
S(z,7) = 3IB(z ) + V(2) ~ f(z,7)

satisfies the following Hamilton-Jacobi-Bellman equation

0S(z,1)
or

~ %|VS(Z, )2 + gAS(zJ) +V(2)=0.
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Path-independence of the action functionals

Theorem (cont’d)

(i) If, moreover, Z is a critical point for F, then the
path-independent property of the action functional F[Z] is
characterised by its drift vector field B given in the form

B(z,7) = hVlogn(z,7), (z,7) € R" x [0, 00)

where n: (z,7) € R" x [0, 00) — 7n(z,7) € (0, 00) satisfies the
following linear parabolic equation

2
W) - I ayz + Vimzn. reltal

h
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Path-independence of the action functionals

Thank Youl!
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