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A resampling model

Type space K, compact
We consider a multi-type asexual population of fixed size V.
Foreach k € {2,..., N} atrate Ay g,

e a k-tuple {iy,...,7; } of individuals is killed, and

e replaced by k& copies of the individual 7, chosen at random among
{i1,...,1% } . That is, the offspring inherits the type from i,.
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A-Cannings dynamics
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A-Cannings dynamics
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Consequences of consistency

Consistency. (= same dynamics is observed in any sample)
Pitman 1999, Sagitov 1999

There exists a finite measure A on [0, 1] with

1
)\N,k = / A(dx) $k_2(1 — ZE)n_k.
0

Examples of A -Cannings.

A = ¢y (Kingman coalescent); A = d; (star-shaped)
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From particle model to diffusion limits

Interesting functional.

X" .= empirical type distribution at time ¢

Bertoin & Le Gall (2003)

Measure-valued process (N — oc). X is a strong Markov process
with values in M (K) whose generator acts on functions of the form

n

M= H<N>¢z — (Xm sz

1=1

as follows:

Qa—rv [ i) ()

=1

= > Ao ograg (G TT w50 = T ¢howi)) - 11 (i) ().

JC{1,2,...,n} jed jed i€{1,2,...,n}\J

#J > 2
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Tracing back ancestry
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Tracing back ancestry
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l/o l l l l A -.coalescent (in bac.kward picture)
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Evolving genealogies
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Evolving genealogies
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Evolving genealogies
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Evolving genealogies
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Evolving genealogies
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Evolving genealogies
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Encoding genealogies ...

We aim to describe the genealogical tree of the whole population while

making ancestral lines of all possible samples explicit.

and evaluate samples via test functions of the form

n

"¢ (U, r, ) ::/ P (dw) ¢ ((r(ui; ws))1<icj<n).

Such test functions are referred to as polynomials.
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The state space: more formal

U := {isometry classes of ultra metric probability spaces}.

Gromov (2000); Greven, Pfaffelhuber & Winter (2009)

We equip U with the Gromov-weak topology which means convergence

in the sense of convergence of all polynomials (with continuous bounded

test functions).
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Tree growth

e==s Sample

— full tree
Qo (U, 1)
— 2/ 1" (dw) Z aijj ((T(uz7ug))1<z<9<n) +O(%>?

where the error term comes from multiples in a sample.
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Reproduction

B B o N R,

Reproduction event — full tree

N
V

(3 indiv. involved)

oA o, r, )

repro
= > A4 / o dw) gy 3 {RP e — o} (r(uiui)i<icj<n) + O(F)
JC{1,2,...,n}, #J > 2 v jo€J

with the replacement operator
R§O¢<(ri,j)1§i<j§n) = ¢((77,3)1§z‘<j§n>
where forall 1 <1 < n,

~ -707 |f'L€ J,
1 =
i, ifid J
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The tree-valued generalized A-FV

Consider the limiting operator

A A A
Q CID(U, r, /J) = Q ®(U, r, wn) —I—QgrowthCID(U, T, W)

repro

= > An,#J/ - p®™ (dw) % > {R§O¢ — ¢} ((r(ui,uj))i<ici<n)
JC{1,2,...,n},#J > 2 v jo€J

w2 [ uw 3 g2 ((r(uisu)i<i<i<n)
U 1<i<j<n J

acting on the set

IT' := polynomials with differentiable, bounded test functions.

Theorem 1. (Greven, Klimovsky & W.) Let Pg be a probability measure
on U. The (Pg, Q*,1I') -martingale problem is well-posed provided that
the ““dust-free’ property holds, i.e.,

/01 A(dw)% = oo.

The solution U* is a strong Markov process with the Feller property.
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Existence: Particle Approximation

Theorem 2. (Greven, Klimovsky & W.) Let "? the tree-valued
A -Cannings dynamics with population size /N . Assume that the initial
conditions convergence in Uy € U. Then

(U;V,A)tzoj\f; (Z/{iA)tzo'
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Uniqueness of MP = Tree-valued duality

generalized A-FV (U,r", 1), dual to A-coalescent (I, "),

X YY

Greven, Pfaffelhuber & W. (2012)
Theorem 3. Greven, Klimovsky, & W.

E[/Mg@n(d@)gb((rz(ui?uj))1§i<j§n)}
[/ H Mo de (Z 7) —I-TO( W(i)vvw(j)))1§i<j§n)]

WEKt
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The infinitely old population

Theorem 4. (Greven, Klimovsky & W.) Assume that A satisfies the
dust-free property. Then there exists Z/{é};¢ such that

Ur = Ul

t— o0

Greven, Pfafelhuber & W. (2009) gives explicit representation of {2+ .

Proof. It is enough to show that

IE[(I)(Z/{{\)} —>E[<I> (Llﬁo’i)},

t— o0

for all polynomials ® € II*.

This, however, follows by duality.
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A resampling model with mutation

Type space K, compact
We consider a multi-type asexual population of fixed size V.
For each k € {2,..., N} atrate Ay g,

e k-individuals {i1, ..., 4%} are killed, and

e are replaced by £ copies of the individual ¢, chosen at random
among {1, ..., % }. That is, the offspring inherits the type from i, .

For each individual of type x, at rate m

e the type mutates from x to y with probability M (z,dy).
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Enriching the state space with types ...

We aim to describe the genealogical tree of the whole population while

making ancestral lines and types of all possible samples explicit.

We encode our genealogies by (U Ty s /4:)

and evaluate samples via test functions of the form

07T (X, o) = [ () (601) - (F o) (W)

with

pu e (r(ug, ug) )1<i<j<n

113
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The state space including types: more formal

U® .= {mark function invariant isometry classes of ultra metric probability spaces}.

Depperschmidt, Greven & Pfaffelhuber (2011)

We equip U® with the marked Gromov-weak topology which means
convergence in the sense of convergence of all polynomials (with

continuous bounded test functions).
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Well-posed martingale problem

Consider the operator

QA’MCID(U, T, 1, n) = oMM (T, r,p, k) + oMM (T, r,p, k) + oMM (T, r,u, k)

repro growth mutation

acting on the set

IT' := polynomials with “smooth” bounded test functions ¢ and f,

where

QA,M

mut

S(T,r, u, k)

:m/u®n(du)¢og(g) ’ Z/ M(’{'(ui)7dyi){f(’{'(ul)7°-'7yi7°-'7’{(un)) - f('{'(ul)v"'a’{'(ui%"'v&(un)):
i=1"K

Theorem 5. (Greven, Klimovsky & W.) Let Py be a probability measure
on UX . The (Pg, QMM (IT¥)!) -martingale problem is well-posed
provided that the “dust-free” property holds. The solution U/ is a
strong Markov process with the Feller property.
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The equilibrium with mutation

Assume that M (-, ) is ergodic, i.e., there is a probability measure
™ € My (K) with 1M = 7 and M) (x,.) = 7, foral = € K.

n— o0

Theorem 6. Greven, Klimovsky & W. Under these assumptions, the
sequence

(utA’M>tzo

converges for all initial L{é\ M ast — 00,
The equilibrium /2™ can be represented by first realizing the the

A -coalescent tree /2, and then given the latter, realizing a tree-indexed

mutation random walk in equilibrium.
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The spatial A-Cannings model

Geographic space. G, discrete

We consider a multi-type asexual population of fixed size N which
individuals placed at a site z € GG

e Migration. The individuals perform independently rate 1 random
walks with transition kernel a(z, y)

e Reproduction. Ateachsite x € G, foreach k € {2,..., N} atrate
ANk »
— k-individuals {1, ..., 7} currently situated in G are killed, and

— replaced by £ copies of the individual 7, chosen at random
among {i1, ..., %%} . That is, the offspring inherits the type from i, .

e Mutation. For each individual of type x, at rate m, the type mutates
from x to y with probability M (z,dy).
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... and its dual spatial A-coalescent

Spatial A-coalescent is a strong Markov process which takes values
in the set of partitions of all individuals where each partition element
IS assigned a site in GG such that any “locally finite”
subpopulation/-partition behaves as follows:

e Migration. Partition elements change their position according to
a rate 1 random walk with transition probabilities

a(z,y) = a(y, z).
e /\-coalescence. Each local partition performs a A -coalescent.
Constructions of the A -coalescent.

o Limic & Sturm (2006) for finite G

e via Donnelly & Kurtz (1990ies)’s look-down
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Observing genealogies

For observing the genealogies as marked metric measure spaces,
we have different choices:

o One sampling measure
for the whole population.
— Start with locally finite populations on a finite G.
— Take the uniform distribution . on all individuals.
— Let the local intensity tend to infinity.
o One sampling measure for each local
population.
— Start with locally finite populations on possible infinite G.

— Take in each site = € G the uniform distribution 1, on all
individuals placed at site x.

— Let the local intensity tend to infinity.
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Well-posed martingale problem; G finite

Consider the operator

QA,M’Q - QA’M + Q?nigration
with » : U — K x G and
Q?nigrationq)n,qs,f (U’ T My K“) = /M®n(du) ¢ o 2(2) ) Z A(l)f © ’{(2)
i=1

and A being the generator of a single individual random walk
acting on the n'® individual in the sample.

Theorem 7. (Greven, Klimovsky & W.) For each initial tree in UK*& |
the (QNM-e (IIF*E)1).martingale problem is well-posed.

Call its solution U/*:@ the spatial tree-valued A -Fleming-Viot.
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“Wrapping around torus™; d > 3

Gy :=[-N,N]*NZ%, an(z,y) = Dzt 2—y mod g @0, 2)

UM N .= rescaled tree-valued spatial A -Fleming-Viot dynamics:
e speed up time by a factor (2N + 1)¢
e scale down distances by a factor of (2N + 1)~¢

Ki=2- (,0 + )\22’2)_1, p := escape probability on Z<

Theorem 8. (Greven, Klimovsky and W.) If the initial states converges in
Uand > 5. a(0,2)|z)*" < oo, then

AN

(ui/\’aN)tzo o (Uféo)tm'

proof uses techniques from Dawson, Greven & Vaillancourt (1995),

Greven, Limic & W. (2005), Limic & Sturm (2006)
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Infinite geographic space

Countable infinite geographic space requires o -finite sample

measures.

Localization. Fix a sequence G,, T G with #G,, < oo. We refer to
(U, r, u, k) as marked mm-space iff for every n € N, the restriction
(Un,n, kn) to all individuals with a spatial mark in G,, together with
'LL‘Un is a marked metric probability space.

1
Hn "= ZG,
Define the spatial tree-valued A -Fleming-Viot

(ui/\,M,a)t>0 = ((Utarh {:utxa (S G}7Rt))t>0

via the look-down process and local approximation.
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The associated measure-valued A-Fleming-Viot

U™rMa - tree-valued A-Fleming-Viot.
Put for each x € G,

T = i fu € Up + ke(u) =+ x {z}} € M1 (K).

Theorem 10. (Greven, Klimovsky & W.) Assume that the underlying
symmetrized random walk is irreducible, and that {X""**; 2 € G}
is translation invariant and ergodic with intensity 0 € M (K ). Then
there is a translation invariant measure vy with intensity 6 such that

A, M
xAMa sy,

t— o0
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Tree-valued equilibrium (including mutation)

since distances can tend to oo, put 7 (x,y) :=1 — e "(@Y)

write UMM

for the tree-valued dynamics with shrinked distances

Theorem 10. (Greven, Klimovsky & W.) For every intensity
6 € My(K) there is a invariant measure

z/;{/AﬁM)a'?\l/?Q
o :
If the associate measure-valued process of the initial state is
translation invariant and ergodic with intensity measure 6, then

Ut ) ya ; Ué\oaMaaa\lf?Q.

t— o0
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The local finite system scheme; d > 3

Theorem 11. (Greven, Klimovsky & W.) If the associated
measure-valued process is initially translation invariant and ergodic
with intensity 8, then for all ¢ > 0,

~AM,an aéxo,M,a,i,et /A, M ,a
(ut-(2N+1)d+s>320 N:\_mo L (us )szo ’

where the intensity 6, of the equilibrium equals in law a (non-spatial)
rate ks Fleming-Viot started in 6.
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