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Outline

♣ Driver’s integration by parts formula

♣ Shift-Harnack inequality

♣ Backward coupling method

♣ Stochastic Hamiltonian systems

♣ Stochastic Functional differential equations

♣ Semi-linear SPDEs
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Bismut’s formula

• Bismut’s formula (1984): Let Pt be the heat semigroup on
a Riemannian manifold with curvature bounded below. For
fixed t > 0 and vector v, one has

∇vPtf = E
[
f(Xt)Mt

]
, f ∈ Bb,

• Xt: the Brownian motion on the manifold;

• Mt is a random variable explicitly given by v and the
curvature.

Let pt(x, y) be the heat kernel w.r.t. the volume measure.
This formula implies

∇v log pt(·, y) = E
(
Mt

∣∣Xt = y
)
.

• Application: regularity of heat kernel in the first variable.
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Driver’s formula

• Driver’s formula (1997): Let Pt be the heat semigroup on
a Riemannian manifold with curvature bounded up to first
order derivatives. For fixed t > 0 and smooth vector field V
with compact support, one has

Pt(∇V f)(x) = E
[
f(Xt)Nt

]
, f ∈ C1,

• Xt: the Brownian motion on the manifold starting at x;

• Nt is a random variable given by V , the curvature and
its derivatives.

Then
∇V log pt(x, ·)(y) = E

(
Nt

∣∣Xt = y
)

provided divV (y) = 0.
• Application: regularity of heat kernel in the second variable.

Bismut’s formula has been well studied for SDEs and SPDEs,
but much less is known on Driver’s formula.
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Shift-Harnack inequality

For simplicity, we only consider a diffusion semigroup Pt on
Rd. By Young inequality, Driver’s formula

Pt(∇ef) = E[f(Xt)Nt]

for a vector e ∈ Rd implies

|Pt(∇ef)| ≤ δ
{
Ptf log f−(Ptf) logPtf

}
+δ logEeNt/δ, δ > 0

for any positive f ∈ C1
b . Combining this with the following

result one derives the shift-Harnack inequality from Driver’s
formula.
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Shift-Harnack inequality

Proposition

Let P be a Markov operator on Bb(E) for some Banach space
E. Let e ∈ E and βe ∈ C((0,∞)× E; [0,∞)). Then

|P (∇ef)| ≤ δ
{
P (f log f)− (Pf) logPf

}
+ βe(δ, ·)Pf, δ > 0

holds for any positive f ∈ C1
b (E) if and only if

(Pf)p(·) ≤
(
P{fp(re+ ·)}

)
× exp

[ ∫ 1

0

pr

1 + (p− 1)s
βe

( p− 1

r + r(p− 1)s
, ·+ sre

)
ds

]
holds for any positive f ∈ Bb(E), r ∈ (0,∞) and p > 1.
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Backward coupling

Differently from known Harnack inequalities, in this the shift-
Harnack inequality the reference function rather than the
variable is shifted. There are a number applications of the
shift-Harnack inequality to heat kernel estimates and ultra-
contractivity property w.r.t. the Lebesgue measure.

♣ Classical coupling: Construct two processes starting at dif-
ferent points such that they move together as soon as possible.
In particular, to establish Bismut’s formula and Harnack in-
equalities, we need to ensure that they move together before
a fixed time.

♣ Backward coupling: Construct two processes starting at a
same point such that at a given time the difference of these
processes reaches a given vector.



Integration
by Parts
Formula
and Shift
Harnack

Inequality
for

Stochastic
Equations

Feng-Yu
Wang

Integration
by parts
formula

Shift-
Harnack
inequality

Backward
coupling

Stochastic
Hamiltonian
system

Functional
stochastic
differential
equations

Semi-linear
SPDEs

For the shift-Harnack inequality

Let Pt be a Markov semigroup. For fixed T > 0 and x, e ∈ Rd,
let Xt and Yt be two process such that

(i) X0 = Y0 = x and YT = XT + e;

(ii) under probability P the process Xt is associated to Pt,
i.e. Ptf(x) = EPf(Xt) for f ∈ Bb;

(iii) under a weighted probability Q := RP, the process Yt is
associated to Pt.

Then for any p > 1 and positive f ∈ Bb,

(PT f)p(x) =
(
EQf(YT )

)p
=
(
EP[f(XT + e)R]

)p
≤
(
EPf

p(XT + e)
)(
EPR

p/(p−1)
)p−1

=
(
EPR

p/(p−1)
)p−1

PT {fp(e+ ·)}(x).

This gives a shift-Harnack inequality for PT .
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For Driver’s formula

Suppose that we have constructed a family of couplings (Xt, Y
ε
t )

and a family weighted probability measures Qε := RεP, ε > 0
such that

(i) X0 = Y ε
0 = x and Y ε

T = XT + εe;

(ii) under probability P the process Xt is associated to Pt,
i.e. Ptf(x) = EPf(Xt) for f ∈ Bb;

(iii) under Qε the process Y ε
t is associated to Pt;

(iv) NT := limε↓0
1−Rε
ε exists in L1(P).

Then for f ∈ C1
b ,

PT (∇ef)(x) = PT

(
lim
ε↓0

f(·+ εe)− f
ε

)
(x)

= lim
ε↓0

EPf(XT + εe)− EQεf(Y ε
T )

ε

= lim
ε↓0

EP

[
f(XT + εe)− f(XT + εe)Rε

ε

]
= EP[f(XT )NT ].
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Stochastic Hamiltonian system

Consider the following degenerate stochastic differential equa-
tion for (X(t), Y (t)) ∈ Rm+d = Rm × Rd(m, d ≥ 1):{

dX(t) =
{
AX(t) +BY (t)

}
dt,

dY (t) = Z(X(t), Y (t))dt+ σdW (t),

• A: m×m-matrix;

• B: m× d-matrix;

• Z ∈ C1(Rm+d;Rd);
• σ: invertible d× d-matrix;

• W (t): d-dimensional Brownian motion.

The Hörmander condition holds if and only if
(H) There exists 0 ≤ k ≤ m− 1 such that

Rank[B,AB, · · · , AkB] = m.
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Stochastic Hamiltonian system

We only consider Driver’s integration by parts formula, since
it is easier to establish the shift-Harnack. To this end, let
T > 0 and e = (e1, e2) ∈ Rm+d be fixed. Assume that

sup
t∈[0,T ]

E
{

sup
B(X(t),Y (t);r)

|∇Z|2
}
<∞

holds for some r > 0. For non-negative φ ∈ C([0, T ]) with
φ > 0 in (0, T ), define

Qφ =

∫ T

0
φ(t)e(T−t)ABB∗e(T−t)A∗

dt.

Then (H) implies that Qφ is invertible.
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Stochastic Hamiltonian system

Theorem

Let φ, ψ ∈ C1([0, T ]) such that φ(0) = φ(T ) = 0, φ > 0 in

(0, T ), and ψ(T ) = 1, ψ(0) = 0,
∫ T

0 ψ(t)e(T−t)ABdt = 0.
Moreover, let

h(t) = φ(t)B∗e(T−t)A∗
Q−1
φ e1 + ψ(t)e2 ∈ Rd,

Θ(t) =

(∫ t

0
e(t−s)ABh(s)ds, h(t)

)
∈ Rm+d, t ∈ [0, T ].

Then for any f ∈ C1
b (Rm+d),

PT (∇ef) = E
{
f(X(T ), Y (T ))NT

}
holds for

NT =

∫ T

0

〈
σ−1

{
h′(t)−∇Θ(t)Z(X(t), Y (t))

}
, dW (t)

〉
.
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Sketch of proof

For ε ∈ (0, 1], let (Xε(t), Y ε(t)) solve the equation{
dXε(t) =

{
AXε(t) +BY ε(t)

}
dt,

dY ε(t) = σdW (t) +
{
Z(X(t), Y (t)) + εh′(t)

}
dt

with (Xε(0), Y ε(0)) = (X(0), Y (0)). Then{
Y ε(t) = Y (t) + εh(t),

Xε(t) = X(t) + ε
∫ t

0 e(t−s)ABh(s)ds.

In particular,

(Xε(T ), Y ε(T )) = (X(T ), Y (T )) + εe

and

(*)
d

dε
(Xε(t), Y ε(t))

∣∣∣
ε=0

=
(
h(t),

∫ t
0 e(t−s)ABh(s)ds

)
.
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Sketch of proof

Moreover, by the Girsanov theorem, (Xε(T ), Y ε(T )) is asso-
ciated to PT under the weighted probability RεP, where

Rε = exp

[
−
∫ T

0

〈
σ−1ξε(s),dW (s)

〉
− 1

2

∫ T

0
|σ−1ξε(s)|2ds

]
,

ξε(s) := εh′(s) + Z(s,X(s), Y (s))− Z(s,Xε(s), Y ε(s))

Then the proof is completed since (*) and the assumption
on ∇Z imply that

lim
ε↓0

1−Rε
ε

= NT

holds in L1(P).
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Stochastic Functional differential equations

Let τ > 0 be a fixed number, let C = C([−τ, 0];Rd) be
equipped with uniform norm ‖·‖∞. For a path γ : [−τ,∞)→
Rd and t ≥ 0, γt ∈ C is given by

γt(s) = γ(t+ s), s ∈ [−τ, 0].

Consider the stochastic functional equation

dX(t) = b(Xt)dt+ σdW (t), t ≥ 0,

• W (t): Brownaian motion on Rd;
• b ∈ C1

b (C;Rd);
• σ: invertible d× d-matrix.

The segment solution Xt is Markovian with semigroup Pt
given by

Ptf(ξ) := E
(
f(Xt)

∣∣X0 = ξ
)
, ξ ∈ C, t ≥ 0, f ∈ Bb(C).
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Stochastic Functional differential equations

Introduce the Carmeron-Martin space
H :=

{
h ∈ C : ‖h‖2H :=

∫ 0
−τ |h

′(t)|2dt <∞
}
.

Theorem

Let T > τ and η ∈ H be fixed. For any φ ∈ Bb([0, T − τ ])

such that
∫ T−τ

0 φ(t)dt = 1, let

Γ(t) = φ(t)η(−τ)1[0,T−τ ](t) + η′(t− T )1(T−τ,T ](t),

Θ(t) =

∫ t∨0

0
Γ(s)ds, t ∈ [−τ, T ].

Then for any f ∈ C1
b (C),

PT (∇ηF ) = E
(
F (XT )

∫ T

0

〈
σ−1

(
Γ(t)−∇Θtb(Xt)

)
, dW (t)

〉)
.
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Sketch of proof

For fixed ξ ∈ C, let X(t) solve the equation for X0 = ξ. For
any ε ∈ [0, 1], let Xε(t) solve the equation

dXε(t) = {b(t,Xt) + εΓ(t)}dt+ σdW (t), t ≥ 0, Xε
0 = ξ.

Then
Xε
t = Xt + εΘt, t ∈ [0, T ].

So,

Xε
T = XT + εη,

d

dε
Xε
t

∣∣∣
ε=0

= Θt.

Let

Rε = exp

[
−
∫ T

0

〈
σ−1

{
εΓ(t) + b(Xt)− b(Xε

t )
}
, dW (t)

〉
− 1

2

∫ T

0

∣∣∣σ−1
{
εΓ(t) + b(Xt)− b(Xε

t )
}∣∣∣2dt

]
.
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Sketch of the proof

By the Girsanov theorem, under the weighted probability
RεP, Xε

t is associated to Pt. Then the proof is completed
by noting that

lim
ε↓0

1−Rε
ε

=

∫ T

0

〈
σ−1

(
Γ(t)−∇Θtb(Xt)

)
, dW (t)

〉
holds in L1(P).
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Semi-linear SPDEs

Let (H, 〈·, ·〉) be a real separable Hilbert space, (W (t))t≥0 a
cylindrical Wiener process on H. Consider the semi-linear
equation on H:

dX(t) = {AX(t) + b(X(t))}dt+ σdW (t),

• (A,D(A)) : linear operator on H generating a contrac-
tive C0-semigroup such that

∫ 1
0 ‖e

sA‖2HSds <∞;

• b ∈ C1
b (H;H);

• σ: bounded and invertible operator on H.
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Semi-linear SPDEs

The equation has a unique mild solution, and let Pt be the
associated semigroup.

Theorem

Let T > 0 and e ∈ H be fixed. For any f ∈ C1
b (H),

PT (∇ef) = E
(
f(X(T ))

∫ T

0

〈
σ−1

( e
T
−∇ te

T
b(X(t))

)
,dW (t)

〉)
.
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Sketch of the proof

For ε > 0, let Xε(t) solve the equation

dXε(t) =
{
b(t,X(t))+

ε

T
e
}

dt+σdW (t), t ≥ 0, Xε(0) = X(0).

Then

Xε(t) = X(t) +
tε

T
e, t ∈ [0, T ].

In particular, Xε(T ) = X(T ) + εe. Moreover, let

Rε = exp

[
−
∫ T

0

〈
σ−1

{εe
T

+ b(X(t))− b(Xε(t))
}
, dW (t)

〉
− 1

2

∫ T

0

∣∣∣σ−1
{εe
T

+ b(X(t))− b(Xε(t))
}∣∣∣2dt

]
.

Then under weighted probability RεP the process Xε(t) is
associated to Pt. The proof is done.
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Final remark

The argument may work also for many other models, for in-
stance

• SPDEs;

• Multiplicative noises;

• Degenerate SFDEs;

• SDEs driven by Lévy processes, fractional BM;
....
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Thank You
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