Generalized time-changes and Continuous-State Branching Processes with Immigration

> Gerónimo URIBE BRAVO geronimo@matem.unam.mx

In collaboration with: M.E. CABALLERO and J.L. PÉREZ-GARMENDIA

Instituto de Matemáticas, Universidad Nacional Autónoma de México

8th Workshop on Markov processes and Related Topics BNU and FJNU, China, July 2012

Breadth-first walks and profiles

- χ_i : # children of individual *i*.
- y_n : # immigrants up to generation n.
- c_n : # individuals up to generation *n*.

$$c_n = c_0 + y_n + \chi_1 + \cdots + \chi_{c_{n-1}}$$

Breadth-first walks and profiles

• χ_i : # children of individual *i*.

$$x_n = \chi_1 + \cdots + \chi_n - n.$$

- y_n : # immigrants up to generation n.
- c_n : # individuals up to generation *n*.
- > z_n : # individuals comprising generation n.

$$c_n = c_0 + y_n + \chi_1 + \dots + \chi_{c_{n-1}}$$
$$= z_0 + \dots + z_n$$
$$z_n = c_0 + x_{c_{n-1}} + y_n$$

• μ reproduction law, ν immigration law.

•
$$\tilde{\mu}(k) = \mu(k+1).$$

- X a random walk with step distribution $\tilde{\mu}$.
- Y an independent random walk with step distribution ν .

•
$$Z_0 = k$$
 and for $n \ge 1$:

$$Z_n = k + X_{Z_0 + \dots + Z_{n-1}} + Y_n$$

• μ reproduction law, ν immigration law.

•
$$\tilde{\mu}(k) = \mu(k+1).$$

- X a random walk with step distribution $\tilde{\mu}$.
- Y an independent random walk with step distribution ν .

•
$$Z_0 = k$$
 and for $n \ge 1$:

$$Z_n = k + X_{Z_0 + \dots + Z_{n-1}} + Y_n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• μ reproduction law, ν immigration law.

•
$$\tilde{\mu}(k) = \mu(k+1).$$

- X a random walk with step distribution $\tilde{\mu}$.
- Y an independent random walk with step distribution ν .

•
$$Z_0 = k$$
 and for $n \ge 1$:

$$Z_n = k + X_{Z_0 + \dots + Z_{n-1}} + Y_n.$$

- μ reproduction law, ν immigration law.
- $\tilde{\mu}(k) = \mu(k+1).$
- X a random walk with step distribution $\tilde{\mu}$.
- Y an independent random walk with step distribution ν .
- $Z_0 = k$ and for $n \ge 1$:

$$Z_n = k + X_{Z_0 + \dots + Z_{n-1}} + Y_n.$$

Proposed extension:

X a SPLP, Y an independent subordinator and $x \ge 0$

$$Z_t = x + X_{\int_0^t Z_s \, ds} + Y_t.$$

CB Processes with Immigration

Definition

- Z: Markov process on $[0, \infty)$ with regular paths.
- Associated laws: $\mathbb{P}_x, x \ge 0$.
- Z is a CBI process if

$$\mathbb{E}_{\mathsf{x}}\left(e^{-\lambda Z_t}\right) = e^{-\mathsf{x}u_t(\lambda)-v_t(\lambda)}.$$

Kawazu-Watanabe, 1971:

$$\frac{\partial}{\partial t}u_t(\lambda) = -\psi \circ u_t(\lambda) \quad \frac{\partial}{\partial t}v_t(\lambda) = \varphi \circ u_t(\lambda).$$

• Branching property: $\mathbb{P}_{x}^{\psi,\varphi} * \mathbb{P}_{y}^{\psi,\tilde{\varphi}} = \mathbb{P}_{x+y}^{\psi,\varphi+\tilde{\varphi}}$.

An initial value problem

$$Z_t = x + X_{\int_0^t Z_s \, ds} + Y_t$$

Initial Value Problem:

Let f, g be càdlàg with $\Delta f \ge 0$, g increasing and $f(0) + g(0) \ge 0$. A function c solves IVP(f, g) if

$$c_+'=f\circ c+g\quad\text{and}\quad c_0=0.$$

- f: reproduction function
- g: immigration function
- c: cumulative population
- $h = c'_+$: profile

Obvious problems

- 1. Existence?
- 2. Uniqueness?

The Lamperti transformation, existence, and uniqueness

$$c'_{+} = f \circ c.$$
 $i = c^{-1}$ $i' = \frac{1}{f \circ c \circ i} = \frac{1}{f} !!!$

Problem: $f(x) = \sqrt{|1 - x|}$. Then there are many solutions: their derivatives are

$$\left(\frac{2-x}{2}\right)^{+} \text{ and } \begin{cases} \frac{2-x}{2} & x < 2\\ 0 & 2 \le x \le 2+l\\ \frac{x-2-l}{2} & x \ge 2+l \end{cases}$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

Existence and uniqueness for IVP(f, g)

$$c'_+=f\circ c+g$$

Theorem

Let f, g be càdlàg $\Delta f \ge 0$, g increasing, $f(0) + g(0) \ge 0$. There exists a non-decreasing c which satisfies IVP(f, g). If g is strictly increasing the solution is unique.

Existence and uniqueness for IVP(f, g)

$$c'_+=f\circ c+g$$

Theorem

Let f, g be càdlàg $\Delta f \ge 0$, g increasing, $f(0) + g(0) \ge 0$. There exists a non-decreasing c which satisfies IVP(f, g). If g is strictly increasing the solution is unique.

Corollary

Let X be an α stable spectrally positive Lévy process $(\psi(\lambda) = c\lambda^{\alpha})$ and Y and independent strictly increasing stochastic process. Then weak existence and uniqueness holds for

$$Z_t = x + \int_0^t |Z_s|^{1/\alpha} dX_s + Y_t.$$

In particular, weak existence and uniqueness holds for Lambert's SDE: Y is an α – 1-stable subordinator whose Laplace exponent is ψ' .

The Lamperti type representation of CBI

Theorem

Let X be a SPLP and Y and independent subordinator. For any $x \ge 0$ there exists a unique solution to

$$Z_t = x + X_{\int_0^t Z_s \, ds} + Y_s.$$

It is a CBI whose branching and immigration mechanisms are the Laplace exponents of X and Y.

Applications of the representation theorem

$$Z_t = x + X_{\int_0^t Z_s \, ds} + Y_t$$

- 1. Given ψ and φ , there exists a $\mathsf{CBI}(\psi, \varphi)$.
- 2. A CBI(ψ, φ) does not jump downwards.
- 3. A CBI(ψ, φ) can reach ∞ by a jump if and only if $\psi(0) > 0$ or $\varphi(0) > 0$.
- 4. A CBI(ψ, φ) can reach ∞ continuously (explodes) if and only if $\int^{\infty} 1/\psi < \infty$.
- 5. Let x > 0, $\tilde{\varphi} = \psi^{-1}$ and

$$f(t) = \frac{\log |\log t|}{\tilde{\varphi}(t^{-1} \log |\log t|)}.$$

Then there exists $c \neq 0$ such that

$$\liminf_{t\to 0}\frac{Z_t-x}{f(xt)}=c.$$

Discretization: Euler's method

•
$$\sigma_n \rightarrow 0$$

•
$$t_i = i\sigma_n, i \ge 0.$$

•
$$c^n(0) = 0.$$

•
$$c^n(t) = c^{\sigma}(t_{i-1}) + (t - t_{i-1}) [f_n \circ c^n(t_{i-1}) + g_n(t_{i-1})]^+$$
.

• If $\sigma_n = 0$, we let c^n be any solution to $IVP(f_n, g_n)$.

Stability theorem

If there exists a unique continuous function c such that

$$\int_s^t f_-\circ c(r)+g(r)\;dr\leq c(t)-c(s)\leq \int_s^t f\circ c(r)+g(r)\;dr$$

and $f_n \to f$ and $g_n \to g$ then $c^n \to c$. Furthermore, if $f \circ c$ and g do not jump at the same time then $D_+c^n \to D_+c$.

Weak continuity of CBI laws

Corollary

Let $\psi_n \to \psi$ and $\varphi_n \to \varphi$ pointwise and $x_n \to x$. Then $CBI_{x_n}(\psi_n, \varphi_n) \to CBI_x(\psi, \varphi)$.

Limit theorems for GWI processes

Corollary

- ▶ X^n random walk with step distribution $\mu_{k+1}^n, k \ge -1$.
- Y^n random walk with step distribution $\nu_k^n, k \ge 0$.
- $X_{c_n}^n/n \to \mu$ (μ is sP ID with Laplace exponent ψ).
- $Y_{d_n}^n/n \rightarrow \nu$ (ν corresponds to a subordinator with Laplace exponent φ).

$$\blacktriangleright Z^n \text{ is } \mathrm{GW}(\mu^n, \nu^n), \ Z_0^n = k_n$$

$$\quad \bullet \quad \frac{\kappa_n d_{\frac{k_n}{x}}}{xc_{\frac{k_m}{x}}} \to c \in [0,\infty)$$

• $\frac{x}{k_n} Z_{d_{\frac{k_n}{x}}}^n$ converges weakly to $CBI_x(c\psi,\varphi)$.

Limit theorems for Conditioned GW processes

Theorem

- μ critical and aperiodic offspring law.
- ▶ *S* random walk with step distribution $\mu_{k+1}, k \ge -1$.
- S_n/a_n converges weakly to (sp) stable law of index $\alpha \in (1, 2]$.
- Z^{n,k_n} with law $GW_{k_n}(\mu)$ and conditioned on

$$\sum_{i} Z_i^{n,k_n} = n.$$

- $\blacktriangleright k_n/a_n \to l > 0.$
- F': first passage bridge of α stable spLp.

Then

$$\left(\frac{a_n}{n}Z_{nt}^{n,k_n}\right)_{t\geq 0}$$
 \rightarrow solution of $\mathsf{IVP}(F',0)$.