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1. Introduction-1

We consider X (c)(t):

(1.1) dX (c)(t) = cb(X (c)(t))dt + dB(t).

B(t) is the d-dim Brownian motion.
b(·) is a smooth vector field with period 1.
b is divergence free. That is,

(1.2) div(b) = 0.

X (c)(t) is a diffusion process on d-dim torus.
X (c)(t) has the Lebesgue measure as the invariance
measure.
We are interested in the behaviors of X (c)(t) as c →∞.
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1. Introduction-2

We denote φ(t) the trajectory of the dynamical system:

(1.3)
dφ
dt

= b(φ(t)).

When c is large, we see the following picture for (1.1).
In a short time interval after t , X (c) traces a curve
containing X (c)(t) following (1.3).
Due to the noise induced by B(·), we will have a random
movement of curve of (1.3).

Question:
How to describe this rigorously?
Why is this interesting?
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1. Introduction-3

This is a particular example of a more general class of diffusion
processes,

dX (c)(t) = (−∇U(X (c)(t)) + cb(X (c)(t))dt + dB(t),

with U,b periodic and satisfying

div(b exp(−2U)) = 0,

such that they have µ as the invariance measure,

dµ =
1
Z

exp(−2U(x))dx .

Such diffusion processes appear in MCMC(Markov Chain
Monte Carlo).
One chooses particular b to simulate µ.
We may also consider µ on Rd and we do not assume
periodicity of U.
How good is the approximation of µ using X (c)(t)? How to
choose a better b?
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1. Introduction-4

Why b(·) 6= 0 and c is large?

(I) For b 6= 0, as t →∞, X (c)(t) converges to the equilibrium
faster when comparing with X (0)(t).
This explains why the case b 6= 0 is interesting.

(IIa) For b 6= 0 and c 6= 0, the diffusion X (c)(t) is nonreversible.
Calculation of the convergence rate of X (c)(t) to the
equilibrium is in general impossible.

(IIb) For b 6= 0, as c →∞, it is possible to give an expression of
the convergence rate of X (c)(t) asympototically.
This explains why to study the problem as c →∞ is
interesting.
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2. Convergence Rate-1

We assume b(·) 6= 0.

We denote
T (c)

t f (x) = Ex [f (X (c)(t))],

L(c)f (x) =
1
2

∆f (x) + cb(x)∇f (x).

We consider the largest ρ ( denoted as ρ(c)) such that∫
|T (c)

t f (x)|2dx ≤ cf exp(−ρt)

for large t and f satisfying∫
f (x)dx = 0,

∫
|f (x)|2dx <∞.
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2. Convergence Rate-2

We have

ρ(c) = inf{−Re(ρ); ρ 6= 0 is in the spectrum of L(c) }.

ρ(c) is also called spectral gap
This is the gap between 0 and the rest of spectrum
ρ(c) is used to measure the convergence rate of X (c)(t) to
the equilibrium.∫

T
|T (c)

t f (x)− π(f )|2dx ≤ cf exp(−ρ(c)t).

Here
π(f ) =

∫
T

f (x)dx .
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2. Convergence Rate-3

The spectral gap for a self-adjoint operator can be
expressed by a variational form.
This is the case for c = 0.

ρ(0) = 2π2 = inf{1
2

∫
T |∇f (x)|2dx ;

∫
T f (x)dx = 0,

1
2

∫
T f (x)2dx = 1}.

For c 6= 0, we can not have such expression for ρ(c).
This causes difficulty to calculate ρ(c) and the difference
ρ(c)− ρ(0).
However, we always have ρ(c) ≥ ρ(0).
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2. Convergence Rate-4

ρ(c) ≥ ρ(0):

Here is a simple argument.
We assume π(f ) = 0. Consider

d
dt

∫
T |T

(c)
t f (x)|2dx = 2

∫
T T (c)

t f (x)L(c)T (c)
t f (x)dx

= −
∫

T∇T (c)
t f (x)∇T (c)

t f (x)dx
≤ −2ρ(0)

∫
T |T

(c)
t f (x)|2dx .

Then ∫
T
|T (c)

t f (x)|2dx ≤ exp(−2ρ(0))

∫
T
|f (x)|2dx .

Therefore,
ρ(c) ≥ ρ(0).

What is the gap of ρ(c) and ρ(0)?
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3. Limit of ρ(c)-1

The following result is proved in Franke-Hwang-Pai-Sheu
(2010).

Theorem 3.1.

limc→∞ ρ(c) = inf{1
2

∫
T |∇ψ(x)|2dx ;∃µ,b∇ψ = iµψ,∫

T ψ(x)dx = 0,
∫

T |ψ(x)|2dx = 1}.

In this expression, ψ = ψ1 + iψ2, i =
√
−1.

Using such expression in some examples, ρ(c) can be
calculated approximately.
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3. Limit of ρ(c)-2

This result and our approach are both interesting.

A lower estimate (an easier part):

Theorem 3.2 We have

(3.1)

lim infc→∞ ρ(c)

≥ inf{1
2

∫
T |∇ψ(x)|2dx ;∃µ,b∇ψ = iµψ,∫

T ψ(x)dx = 0,
∫

T |ψ(x)|2dx = 1}.
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3. Limit of ρ(c)-3

An upper estimate:

The upper estimate gives some interesting information about
the spectrum of L(c).
To describe, we need some notations.

(3.2)
H1 = {ψ = ψ1 + iψ2;ψ,∇ψ ∈ L2,∫

T ψ1(x)dx = 0 =
∫

T ψ2(x)dx = 0},

(3.3) H1
µ = {ψ ∈ H1; b∇ψ = iµψ}, µ ∈ R.

Using these notations, Theorem 3.1 can be stated

(3.4)

limc→∞ ρ(c)

≥ inf{1
2

∫
|∇ψ1|2 + |∇ψ2|2;

∫
T ψ

2
1 + ψ2

2dx = 1,
∃µ such that ψ = ψ1 + iψ2 ∈ H1

µ}.
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3. Limit of ρ(c)-4

Let µ ∈ R. Assume H1
µ has nonzero element. Define

ρµ = inf{
1
2

∫
T |∇ψ(x)|2dx∫
T |ψ(x)|2dx

;ψ 6= 0 ∈ H1
µ}

Theorem 3.3. Let µ, ρµ be defined as above. Then for any
r > 0, there is c0 = c0(r) such that for all c ≥ c0, there is
−ρ̄+ iµ̄ in the spectrum of L(c) such that

(ρ̄− ρµ)2 + (µ̄− cµ)2 < r2.
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3. Limit of ρ(c)-5

This theorem implies L(c) has an eigenvalue with large
imaginary part near cµ, if µ 6= 0 and H1

µ contains nonzero
elements.
As another consequence of this theorem, we have

lim sup
c→∞

ρ(c) ≤ ρµ,

if H1
µ contains nonzero elements. Together with (3.4), we

have Theorem 3.1:

lim
c→∞

ρ(c) = inf
µ
{ρµ}
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4. The Convergence of X (c)-1

We show the convergence of X (c)(·) in the following sense.
We consider the resolvent of X (c)(t):

R(c)
λ g(x) =

∫ ∞
0

e−λtT (c)
t g(x)dt .

We show the convergence of R(c)
λ g(x) as c →∞.

The limit is denoted by R∗λg(x).
R∗λ is a selfadjoint pseudo-resolvent on L2(T ).
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4. The convergence of X (c)-2

The selfajointness of R∗λ give a hope to use theory of
Dirichlet form to construct a Markov process X ∗(t) with
resolvent R∗λ.
On the other hand, the closure of the common range of R∗λ
in general is not the full space of L2(T ).

On possible solution:

Find a space X and a measure µX such that

R(R∗λ) is isometric to L2(X , µX ) .

R(R∗λ) is the range of R∗λ.
Then we can construct a Markov process X ∗(t) on X .
The result is a random movement of the trajectory

dφ(t)
dt

= b(φ(t)).
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4. The convergence of X (c)-3

Small random pertubation of Hamiltonian system is studied
in several papers by Freidlin, Weber, Sower and others.

dX (ε)(t) = Hy (X (ε)(t),Y (ε)(t))dt
dY (ε)(t) = −Hx (X (ε)(t),Y (ε)(t))dt +

√
εdB(t),

B(t) is a Brownian motion, ε is a small number,

Hx =
∂H
∂x

, Hy =
∂H
∂y

.

Large time asymptotics: X̄ (ε) = X (ε)( t
ε), Ȳ (ε) = Y (ε)( t

ε)

dX̄ (ε)(t) = 1
εHy (X̄ (ε)(t), Ȳ (ε)(t))dt

dȲ (ε)(t) = −1
εHx (X̄ (ε)(t), Ȳ (ε)(t))dt + dB(t),

This is a system similar to (1.1).
Only two dimensional space is considered where the
geometry of the trajectoris is simpler.
It may be possible to use our approach to generalize these
results to the high dimensional spaces.
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5. The Convergence of Resolvents-1

On d-dimensional torus, we consider

(5.1) ψn1(x1)ψn2(x2) · · ·ψnd (xd ),

where ψ0(x) = 1
2π and for k 6= 0,

ψk (x) =
1√
π

sin(kx), or
1√
π

cos(kx).

Each (5.1) is an eigenfunction of 1
2∆. The eigenvalue is

−1
2

(n2
1 + n2

2 + · · ·+ n2
d ).
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5. The Convergence of Resolvents-2

We use φk ,−λk to denote the collection of these
eigenfunctions and eigenvalues.
φk , k = 1,2, · · · is an orthonormal basis of L2(T ).
λk →∞, k →∞.
We denote

Hm = {ψ =
∞∑

k=0

akψk ;
∞∑

k=0

|ak |2λm
k <∞}.

For ψ ∈ H, ∆ψ ∈ L2(T ).
If m is sufficiently large and ψ ∈ Hm, then ψ is continuous.
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5. The Convergence of Resolvents-3

Theorem 5.1 For g ∈ H1 and λ > 0, R(c)
λ g converges to a ψ∗ in

H1 as c →∞.
(a) Bψ∗ = 0, where we denote

Bψ = b∇ψ.
(b) We define

R∗λg = ψ∗.

Then R∗λ is selfadjoint pseudo-resolvent.
The resolvent relation:

(λ1 − λ2)R∗λ1
R∗λ2

= R∗λ2
− R∗λ1

, λ1, λ2 > 0.

The selfadjointness:

< R∗λg1,g2 >=< g1,R∗λg2 > .

Here we denote

< f1, f2 >=

∫
T

f1(x)f2(x)dx .
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5. The Convergence of Resolvents-4

Since ψc = R(c)
λ g satisfies

1
2
ψc + cb∇ψc − λψc = −g,

we expect (a).
Theorem 5.2 For all λ > 0,

Range(R∗λ) = Ker(B) ∩ H1.

We see the Range(R∗λ) is not L2(T ).
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6. State Space-1

Let Φt (x) be the solution of

dφ(t)
dt

= b(φ(t)), φ(0) = x .

We define an equivalent relation on T as follows.
x , y are equivalent if for all ε > 0 there is

z1, z2, · · · , zn, t0, t1, · · · , tn, s1, s2, · · · , sn+1,

such that

d(Φt0(x),Φs1(z1))+d(Φt1(z1),Φs2(z2))+· · · d(Φtn (zn),Φsn+1(y)) ≤ ε.

The equivalent class containing x is denoted by [x ].
X is the collection of all equivalent classes.
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6. State Space-2

We define d([x ], [y ]) equal to

inf{d(Φt0 (x),Φs1 (z1))+d(Φt1 (z1),Φs2 (z2))+· · · d(Φtn (zn),Φsn+1 (y))}

over all possible n and

z1, z2, · · · , zn, t0, t1, · · · , tn, s1, s2, · · · , sn+1.

X is a metric space with metric d([x ], [y ]).
We define pX : T → X , pX (x) = [x ].
Define µ = πop−1

X a probability measure on (X ,B(X )).
π is the Lebesgue measure on T .
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6. State Space-3

Theorem 6.1 The spaces Ker(B) ∩ H1 and L2(X , µ) are
isometric.

We define
Σ = {p−1

X (A); A ∈ B(X )}.

I2
X = {ψ ∈ L2(T ): ψ is Σ- measurable} .

PI : L2(T )→ I2 is the projection.
For any Σ measurable ψ, there is a unique B(X )
measurable ψX on X such that

ψ(x) = ψX (pX (x)).

We write
ψX = R(ψ).

The isometry in Theorem 6.1 is given by ψ → R(PI(ψ)).
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