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1. Introduction-1

We consider X(©)(t):
(1.1) dx(O(t) = cb(X©)(t))dt + dB(t).

B(t) is the d-dim Brownian motion.

@ b(-) is a smooth vector field with period 1.
b is divergence free. That is,

(1.2) div(b) = 0.

o X()(t) is a diffusion process on d-dim torus.

e X(©)(t) has the Lebesgue measure as the invariance
measure.

@ We are interested in the behaviors of X(°)(t) as ¢ — oc.
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1. Introduction-2

We denote ¢(t) the trajectory of the dynamical system:

(13) 99— blo()

When c is large, we see the following picture for (1.1).
@ In a short time interval after t, X(¢) traces a curve
containing X(°)(t) following (1.3).
@ Due to the noise induced by B(-), we will have a random
movement of curve of (1.3).
Question:
@ How to describe this rigorously?
@ Why is this interesting?
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1. Introduction-3

This is a particular example of a more general class of diffusion
processes,
dX©(t) = (=VU(XO(t)) + cb(XO(t))dt + dB(t),
with U, b periodic and satisfying
div(bexp(—2U)) =0,
such that they have p as the invariance measure,
dp = 1?exp(—ZU(x))dx.
@ Such diffusion processes appear in MCMC(Markov Chain
Monte Carlo).

@ One chooses particular b to simulate .
@ We may also consider . on R and we do not assume

periodicity of U.
@ How good is the approximation of . using X(°)(t)? How to
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1. Introduction-4

Why b(-) # 0 and c is large?

(I) For b# 0, as t — oo, X(°)(t) converges to the equilibrium
faster when comparing with X(©)(¢).
This explains why the case b # 0 is interesting.

(lla) For b # 0 and ¢ # 0, the diffusion X(°)(t) is nonreversible.
Calculation of the convergence rate of X(°)(¢) to the
equilibrium is in general impossible.

(llb) For b0, as ¢ — oo, it is possible to give an expression of
the convergence rate of X(°)(t) asympototically.

This explains why to study the problem as ¢ — oo is
interesting.
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2. Convergence Rate-1

We assume b(-) # 0.

@ We denote
TLO(x) = Ef(XO(1))],

L@ f(x) = %Af(x) + cb(X)V(x).

@ We consider the largest p ( denoted as p(c)) such that

[ 1910020 < o exp(—pt

for large t and f satisfying

/f(x)dx — (1, /|f(x)|2dx < 0.
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2. Convergence Rate-2

@ We have
p(c) = inf{—Re(p); p # 0 is in the spectrum of L(®) }.

p(c) is also called spectral gap
This is the gap between 0 and the rest of spectrum

@ p(c) is used to measure the convergence rate of X(°)(t) to
the equilibrium.

/ ITL9F(x) — m(£)|2dx < c;exp(—p(c)t).

— /Tf(x)dx
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2. Convergence Rate-3

@ The spectral gap for a self-adjoint operator can be
expressed by a variational form.

@ This is the case for ¢ = 0.

p(0) = 272 = inf{%fTWf |2dx J; f(x)dx =0,
3 7 f(x)%dx =1},

@ For ¢ # 0, we can not have such expression for p(c).
This causes difficulty to calculate p(c) and the difference

p(c) — p(0).
@ However, we always have p(c) > p(0).
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2. Convergence Rate-4

p(c) = p(0):

Here is a simple argument.
We assume 7(f) = 0. Consider

& JITOT00RAx = 2 [; TEOTO)LE T f(x)dx
= — [ VTOHx)VTOf(x)dx
< —2p(0) f¢ | T{V#(x)20x.

Then

[ 1T Rax < exp(-20(0) [ [£x)ax.
T T

Therefore,
p(c) = p(0).
What is the gap of p(c) and p(0)?
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3. Limit of p(c)-1

The following result is proved in Franke-Hwang-Pai-Sheu
(2010).

Theorem 3.1.

liMeso0 p(C) = INF{L 7 [Veb(x)[2ax; Ty, V) = ipuep,
Jr(x)ax =0, [;](x)[2dx = 1}.

In this expression, ¢ = ¢ + ihp, i = v —1.

Using such expression in some examples, p(c) can be
calculated approximately.
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3. Limit of p(c)-2

This result and our approach are both interesting.
A lower estimate (an easier part):

Theorem 3.2 We have

liminfe_o p(c)
(3.1) > inf{%fT\Vzp(x)\zdx Jp, bVY = i,
Jr(x)dx =0, fr lp(x)[2ax = 1}.
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3. Limit of p(c)-3

An upper estimate:

The upper estimate gives some interesting information about
the spectrum of L(°).
To describe, we need some notations.

H' = {¢ =1 + io; 9, Vi € L2,

(3.2) Jr1(x)dx =0 = fr1ba(x)dx = 0},

(3.3) H) = {y € H'; bV = iu}, p € R.
Using these notations, Theorem 3.1 can be stated
lime_ o0 p(C)

(3.4) > inf{} [ V12 + [Vepol?; 742 + yax =1,
I such that ¢ = ¢4 + iz € H1}.
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3. Limit of p(c)-4

Let u € R. Assume HL has nonzero element. Define

Vi (x)[2dx
mf{zf:'w(‘”)| ¥ 2 0e Hiy

Theorem 3.3. Let 1, p, be defined as above. Then for any
r > 0, there is ¢y = cy(r) such that for all ¢ > ¢y, there is
—7 + i in the spectrum of L(°) such that

(P —pu)?+(B—cp)? <r
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3. Limit of p(c)-5

@ This theorem implies L(¢) has an eigenvalue with large
imaginary part near cp, if u # 0 and H:L contains nonzero
elements.

@ As another consequence of this theorem, we have

limsup p(C) < py.

C—00

if H; contains nonzero elements. Together with (3.4), we
have Theorem 3.1:

Jm_p(e) =inf{p,)}
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4. The Convergence of X(°)-1

We show the convergence of X(°)(.) in the following sense.
@ We consider the resolvent of X(©)(t):

ROg(x) = /0 e MTOg(x)at.

@ We show the convergence of R{%g(x) as ¢ — cc.
The limit is denoted by R;g(x).

@ R; is a selfadjoint pseudo-resolvent on L2(T).
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4. The convergence of X(¢)-2

@ The selfajointness of A} give a hope to use theory of
Dirichlet form to construct a Markov process X*(t) with
resolvent Ry.

@ On the other hand, the closure of the common range of R}
in general is not the full space of L2(T).

On possible solution:
@ Find a space X and a measure px such that

R(Ry) is isometric to L2(X, pux) -

R(Ry) is the range of R;.
@ Then we can construct a Markov process X*(t) on X.
@ The result is a random movement of the trajectory

do(t) _
N CO)]
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4. The convergence of X(¢)-3

@ Small random pertubation of Hamiltonian system is studied
in several papers by Freidlin, Weber, Sower and others.
dX()(t) = Hy (XO(1), YO (1)t
Y(t) = —H(X©(t), YE(1)dlt + v/edB(¢),

B(t) is a Brownian motion, € is a small number,

oH oH
HX — 57 y — 87}/
@ Large time asymptotics: X(9 = X (1), y(9) = y(e)(L)

aX((f) = LHy(X¢ ()Y(E())d
dYO(t) = “LH(XO(8), V(1)) dt + dB(1),

This is a system similar to (1.1).

@ Only two dimensional space is considered where the
geometry of the trajectoris is simpler.

@ It may be possible to use our approach to generalize these

results to the high dimensional spaces.
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5. The Convergence of Resolvents-1

On d-dimensional torus, we consider

(51 ) wm (X1 )¢n2(X2) o 1/Jnd(Xd)a
where () = 5~ and for k # 0,

Ur(x) = \}7? sin(kx), or \;7? cos(kx).

Each (5.1) is an eigenfunction of %A. The eigenvalue is

1
—5 (M + M+ +11g).
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5. The Convergence of Resolvents-2

@ We use ¢k, — )\ to denote the collection of these
eigenfunctions and eigenvalues.

@ ¢x,k=1,2,--- is an orthonormal basis of L?(T).
Ak — 00, K — .

@ We denote
H? = {0 = awhk; > |ak/PAf < oo}
k=0 k=0

@ Forey € H, Ay € L2(T).
@ If mis sufficiently large and ¢» € H™, then v is continuous.
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5. The Convergence of Resolvents-3

Theorem 5.1 For g € H' and \ > 0, R&C)g converges to a v, in
H' as ¢ — .
(a) By, =0, where we denote

By = bV.
(b) We define
H;g = w*
Then R is selfadjoint pseudo-resolvent.
The resolvent relation:

(M = X2)R3, A, = Ay, — AL, A, A2 >0,
The selfadjointness:
< R391,92 >=< g1, R\g2 > .
Here we denote

< fi,h >= / f1(X)f2(X)dX.
T
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5. The Convergence of Resolvents-4

Since . = R{%g satisfies

1
§¢c + vaq,bc - )\d}c = 797

we expect (a).
Theorem 5.2 For all A > 0,

Range(R;) = Ker(B) N H'.

We see the Range(R;) is not L2(T).
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6. State Space-1

Let ®+(x) be the solution of

do(t) _
—at b(¢(t)), ¢(0) = x.

We define an equivalent relation on T as follows.
X, y are equivalent if for all ¢ > 0 there is

Z17227"' 7Zn7 t07t1a"' )tﬂys‘IaSQ?"' 7SI’H-17
such that

d(®4(X), Ps,(21))+d(P1(21), Ps,(22))+ - - d(P1(2n), D5, (V) < €

@ The equivalent class containing x is denoted by [x].
@ X is the collection of all equivalent classes.
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6. State Space-2

@ We define d([x], [y]) equal to
inH{d(®g,(X), Ps, (21))+d(Pr,(21), Ps,(22))+ - - d(P1,(2n), Ps,., (¥))}
over all possible n and
21,20, ,Zn, fo, b1, -+ , 0, 81,82, -+, Spt1-

@ X is a metric space with metric d([x], [y]).
@ We define px : T — X, px(x) = [x].

@ Define p = 7rop)‘(1 a probability measure on (X, B(X)).
7 is the Lebesgue measure on T.

Shuenn-Jyi Sheu Resolvents of Diffusions



6. State Space-3

Theorem 6.1 The spaces Ker(B) N H' and L?(X, 1) are
isometric.

@ We define
T = {px'(A); A B(X)}.

2 = {¢ € L3(T): 4 is £- measurable} .

@ P;: L2(T) — I? is the projection.
@ For any X measurable 1, there is a unique B(X)
measurable 1 x on X such that

Y(x) = ¥x(px(x)).

We write

¥x = R(Y).
@ The isometry in Theorem 6.1 is given by v — R(P(v)).
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