Measure-valued continuous curves and processes in total

variation norm

Jinghai Shao

Beijing Normal University

$$
\text { July 17, } 2012
$$

Theorem (Kolmogorov continuity theorem)
Let $X:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{n}$ be a stochastic process, and suppose for all time $T>0$, there exist positive constants α, β, K such that

$$
\mathbb{E}\left[\left|X_{t}-X_{s}\right|^{\alpha}\right] \leq K|t-s|^{1+\beta}
$$

for all $0 \leq s, t \leq T$. Then there exists a continuous version of X.

- A purely atomic measure-valued stochastic process has a continuous version in the total variation norm.
- geometric properties of the space of purely atomic probability measures.
- S., (2012), Measure-valued continuous curves and processes in total variation norm, J. Math. Analysis and Applications

Notations

Let (S, d) be a Polish space. Borel σ-algebra $\mathscr{B}(S)$.

- $\mathscr{M}(S)$: the set of all finite measures on S.
- $\mathscr{M}_{a}(S) \subset \mathscr{M}(S)$ contains all purely atomic ones. i.e.

$$
\mathscr{M}_{a}(S)=\left\{\mu=\sum_{i=1}^{\infty} p_{i} \delta_{x_{i}} ; p_{i} \geq 0, \sum_{i=1}^{\infty} p_{i}<\infty, x_{i} \in S\right\} .
$$

- $\mathscr{M}_{1}(S)$: probability measures on S.
- $\mathscr{M}_{1, a}(S)$ probability measures in $\mathscr{M}_{a}(S)$.

Total variation distance (norm):

$$
\text { For } \mu, \nu \in \mathscr{M}(S),\|\mu-\nu\|_{\mathrm{Var}}=\sup _{B \in \mathscr{B}(S)}|\mu(B)-\nu(B)| \text {. }
$$

Notations

Let (S, d) be a Polish space. Borel σ-algebra $\mathscr{B}(S)$.

- $\mathscr{M}(S)$: the set of all finite measures on S.
- $\mathscr{M}_{a}(S) \subset \mathscr{M}(S)$ contains all purely atomic ones. i.e.

$$
\mathscr{M}_{a}(S)=\left\{\mu=\sum_{i=1}^{\infty} p_{i} \delta_{x_{i}} ; p_{i} \geq 0, \sum_{i=1}^{\infty} p_{i}<\infty, x_{i} \in S\right\}
$$

- $\mathscr{M}_{1}(S)$: probability measures on S.
- $\mathscr{M}_{1, a}(S)$ probability measures in $\mathscr{M}_{a}(S)$.

Total variation distance (norm):

$$
\text { For } \mu, \nu \in \mathscr{M}(S),\|\mu-\nu\|_{\operatorname{Var}}=2 \sup _{B \in \mathscr{B}(S)}|\mu(B)-\nu(B)| \text {. }
$$

Proposition

(i) $\left(\mathscr{M}_{1, a}(S),\|\cdot\|_{\mathrm{Var}}\right)$ is separable iff S is countable.
(ii) $\left(\mathscr{M}_{1, a}(S),\|\cdot\|_{V a r}\right)$ is compact iff S contains only finite number of points.

Proposition

(i) $\left(\mathscr{M}_{1, a}(S),\|\cdot\|_{\text {Var }}\right)$ is separable iff S is countable.
(ii) $\left(\mathscr{M}_{1, a}(S),\|\cdot\|_{V a r}\right)$ is compact iff S contains only finite number of points.

Proof: Suppose S is uncountable, then for every countable subset of \mathbb{D} of $\mathscr{M}_{1, a}(S)$, (since the totality of support points of all prob. in \mathbb{D} is at most countable,) we can find a point $x \in S$, which doesn't belong to the support of any $\nu \in \mathbb{D}$. Put $\mu=\delta_{x}$, then for any $\nu \in \mathbb{D}$,

$$
\|\mu-\nu\|_{\operatorname{Var}}=\sup _{B \in \mathscr{B}(S)}|\mu(B)-\nu(B)| \geq 1-\nu(\{x\})=1
$$

Therefore, when S is uncountable, $\left(\mathscr{M}_{1, a}(S),\|\cdot\|_{\mathrm{Var}}\right)$ is not separable.

Completeness

Proposition

$\left(\mathscr{M}_{1, a}(S),\|\cdot\|_{\mathrm{Var}}\right)$ is complete.
In particular, a sequence of $\left(\mu_{n}\right)_{n}$ in $\mathscr{M}_{1, a}(S)$ converges in $\|\cdot\|_{\text {Var }}$ to some $\mu \in \mathscr{M}_{1}(S)$, then μ is also in $\mathscr{M}_{1, a}(S)$.
$\mathscr{M}_{1, a}(S)$ is not complete under the weak topology.

Geodesic space

Proposition

$\left(\mathscr{M}_{1, a}(S),\|\cdot\|_{\mathrm{Var}}\right)$ is a geodesic space. Namely, for each pair of $\mu, \nu \in$ $\mathscr{M}_{1, a}(S)$, there is a curve $t \mapsto \mu_{t}$ from $[0,1]$ to $\mathscr{M}_{1, a}(S)$ s.t. $\mu_{0}=\mu$, $\mu_{1}=\nu$ and

$$
\left\|\mu_{t}-\mu_{s}\right\|_{\mathrm{Var}}=|t-s|\|\mu-\nu\|_{\mathrm{Var}}, \quad s, t \in[0,1] .
$$

For $\mu, \nu \in \mathscr{M}_{1, a}(S)$, it's said $\mu \ll \nu$ if $\nu(\{x\})=0$ yields $\mu(\{x\})=0$. For $\mu \ll \nu$ in the form $\mu=\sum_{i} p_{i} \delta_{x_{i}}, \nu=\sum_{i} q_{i} \delta_{x_{i}}$ with $p_{i} \geq 0$ and $q_{i}>0$, define

$$
\operatorname{Ent}(\mu \mid \nu)=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}, \quad 0 \log 0:=0
$$

to ν. Then
$\operatorname{Ent}\left(\mu_{t} \mid \nu\right) \leq(1-t) \operatorname{Ent}(\mu \mid \nu)-2 t(1-t)\|\mu-\nu\|_{\mathrm{Var}}^{2}, \quad t \in[0,1]$.

For $\mu, \nu \in \mathscr{M}_{1, a}(S)$, it's said $\mu \ll \nu$ if $\nu(\{x\})=0$ yields $\mu(\{x\})=0$. For $\mu \ll \nu$ in the form $\mu=\sum_{i} p_{i} \delta_{x_{i}}, \nu=\sum_{i} q_{i} \delta_{x_{i}}$ with $p_{i} \geq 0$ and $q_{i}>0$, define

$$
\operatorname{Ent}(\mu \mid \nu)=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}, \quad 0 \log 0:=0
$$

Proposition

Let $\mu, \nu \in \mathscr{M}_{1, a}(S)$, and $\mu \ll \nu$. Let $(\mu)_{t \in[0,1]}$ be a geodesic connecting μ to ν. Then

$$
\begin{equation*}
\operatorname{Ent}\left(\mu_{t} \mid \nu\right) \leq(1-t) \operatorname{Ent}(\mu \mid \nu)-2 t(1-t)\|\mu-\nu\|_{\text {Var }}^{2}, \quad t \in[0,1] \tag{1}
\end{equation*}
$$

- Lott-Villani-Sturm generalization of lower bound of Ricci curvature.

Pinsker's inequality

Corollary

Let $\mu, \nu \in \mathscr{M}_{1, a}(S)$ and $\mu \ll \nu$, then

$$
\begin{equation*}
2\|\mu-\nu\|_{\mathrm{Var}}^{2} \leq \operatorname{Ent}(\mu \mid \nu) \tag{2}
\end{equation*}
$$

Proof: If (2) does not hold, i.e. $\operatorname{Ent}(\mu \mid \nu)<2\|\mu-\nu\|_{\text {Var }}^{2}$, then $\exists \varepsilon>0$ such that $\operatorname{Ent}(\mu \mid \nu)<2\|\mu-\nu\|_{\text {Var }}^{2}-\varepsilon$. Substituting it into (1),

$$
0<\operatorname{Ent}\left(\mu_{t} \mid \nu\right)<(1-t)\left(2(1-t)\|\mu-\nu\|_{\mathrm{Var}}^{2}-\varepsilon\right)<-(1-t) \varepsilon / 2<0
$$

as t close enough to 1 s.t. $2(1-t)\|\mu-\nu\|_{\text {Var }}^{2}<\varepsilon / 2$.

Continuous curves in total variation norm

Conclusion: Given a curve $\mu:[0, \infty) \rightarrow \mathcal{M}_{a}(S)$, the following assertions are equivalent:
(i) $\left(\mu_{t}\right)_{t \geq 0}$ is continuous in total variation norm.
(ii) For every $B \in \mathscr{B}(S), t \mapsto \mu_{t}(B)$ is continuous.

For every $x \in S, t \mapsto \mu_{t}(\{x\})$ is cont., and $t \mapsto \mu_{t}(S)$ is cont.
For every $B \in \mathscr{B}(S)$, the curves $t \mapsto \operatorname{sun}_{x \in B} \mu_{t}(\{x\})$ and $t \mapsto \mu_{t}(S)$
are cont..

Continuous curves in total variation norm

Conclusion: Given a curve $\mu:[0, \infty) \rightarrow \mathcal{M}_{a}(S)$, the following assertions are equivalent:
(i) $\left(\mu_{t}\right)_{t \geq 0}$ is continuous in total variation norm.
(ii) For every $B \in \mathscr{B}(S), t \mapsto \mu_{t}(B)$ is continuous.
iii) For every $x \in S, t \mapsto \mu_{t}(\{x\})$ is cont., and $t \mapsto \mu_{t}(S)$ is cont..

For every $B \in \mathscr{B}(S)$, the curves $t \mapsto \sup _{x \in B} \mu_{t}(\{x\})$ and $t \mapsto \mu_{t}(S)$
are cont.

Continuous curves in total variation norm

Conclusion: Given a curve $\mu:[0, \infty) \rightarrow \mathcal{M}_{a}(S)$, the following assertions are equivalent:
(i) $\left(\mu_{t}\right)_{t \geq 0}$ is continuous in total variation norm.
(ii) For every $B \in \mathscr{B}(S), t \mapsto \mu_{t}(B)$ is continuous.
(iii) For every $x \in S, t \mapsto \mu_{t}(\{x\})$ is cont., and $t \mapsto \mu_{t}(S)$ is cont..

For every $B \in \mathscr{B}(S)$, the curves $t \mapsto \sup _{x \in B} \mu_{t}(\{x\})$ and $t \mapsto \mu_{t}(S)$
are cont.

Continuous curves in total variation norm

Conclusion: Given a curve $\mu:[0, \infty) \rightarrow \mathcal{M}_{a}(S)$, the following assertions are equivalent:
(i) $\left(\mu_{t}\right)_{t \geq 0}$ is continuous in total variation norm.
(ii) For every $B \in \mathscr{B}(S), t \mapsto \mu_{t}(B)$ is continuous.
(iii) For every $x \in S, t \mapsto \mu_{t}(\{x\})$ is cont., and $t \mapsto \mu_{t}(S)$ is cont..
(iv) For every $B \in \mathscr{B}(S)$, the curves $t \mapsto \sup _{x \in B} \mu_{t}(\{x\})$ and $t \mapsto \mu_{t}(S)$ are cont..

Continuous curves in total variation norm

Conclusion: Given a curve $\mu:[0, \infty) \rightarrow \mathcal{M}_{a}(S)$, the following assertions are equivalent:
(i) $\left(\mu_{t}\right)_{t \geq 0}$ is continuous in total variation norm.
(ii) For every $B \in \mathscr{B}(S), t \mapsto \mu_{t}(B)$ is continuous.
(iii) For every $x \in S, t \mapsto \mu_{t}(\{x\})$ is cont., and $t \mapsto \mu_{t}(S)$ is cont..
(iv) For every $B \in \mathscr{B}(S)$, the curves $t \mapsto \sup _{x \in B} \mu_{t}(\{x\})$ and $t \mapsto \mu_{t}(S)$ are cont..
(i) \Longrightarrow (ii) \Longrightarrow (iii), and (iv) \Longrightarrow (iii), are clear. To show (iii) \Longrightarrow (i) and
(i) \Longrightarrow (iv) needs some trick.

Continuous curves in total variation norm

If assume further \exists a positive measure m on S s.t. $m(B(x, r))>0$, and $m(S(x, r))=0, \forall x \in S, r>0$. Then above assertions are also equivalent to
(v) \exists dense subset $\left(x_{i}\right)_{i \in \mathbb{N}} \subset S$ and dense subset $\left(r_{j}\right)_{j \in \mathbb{N}} \subset[0, \infty)$ s.t. for every $t \geq 0$
(1) $\mu_{t}\left(\bigcup_{i j} S_{i j}\right)=0, i, j \in \mathbb{N}$, where $S_{i j}=\left\{y \in S ; d\left(x_{i}, y\right)=r_{j}\right\}$;
(2) $t \mapsto \mu_{t}$ is weakly continuous;
(0) $t \mapsto \sup _{x \in B_{i j}} \mu_{t}(\{x\})$ is cont. where $B_{i j}=\left\{y \in S ; d\left(x_{i}, y\right)<r_{j}\right\}$.

Let's introduce a family of disjoint partition $\mathscr{A}=\left(A_{j}^{n}\right)_{j, n=1}^{\infty}$ of S.
(1) for every fixed $n,\left(A_{j}^{n}\right)_{j=1^{\infty}}$ is a disjoint partitions of S.
(2) $\operatorname{diam}\left(A_{j}^{n}\right) \leq 1 / n$, for $j \geq 1$.
(3) $\left(A_{j}^{n+1}\right)_{j=1}^{\infty}$ is a refinement of $\left(A_{j}^{n}\right)_{j=1}^{\infty}$.

With this \mathscr{A},

$$
\inf _{n} \sup _{j} \mu\left(A_{j}^{n} \bigcap B\right)=\sup _{x \in B} \mu(\{x\}), \quad B \in \mathscr{B}(S) .
$$

L. Overbeck, M. Röckner, B. Schmuland, An analytic approach to FlemingViot processes with interactive selection. Ann. Probab. 1995.

Kolmogorov's type continuity theorem

Theorem: Let $\left(X_{t}\right)_{t \geq 0}$ be a $\mathcal{M}_{a}(S)$-valued process, continuous in weak topology. Suppose \exists dense subsets $\left\{x_{i}\right\}_{i \geq 1} \subset S$ and $\left\{r_{j}\right\}_{j \geq 1} \subset[0, \infty)$ so that

$$
\forall t \geq 0, \quad X_{t}\left(\bigcup_{i j} S_{i j}\right)=0, \quad S_{i j}=\left\{y \in S ; d\left(x_{i}, y\right)=r_{j}\right\} .
$$

If \exists positive const. $\alpha, \beta, C_{L},(L=1,2, \ldots)$ such that

$$
\sum_{j=1}^{\infty} \mathbb{E}\left|X_{t}\left(A_{j}^{n} \bigcap B_{k \ell}\right)-X_{s}\left(A_{j}^{n} \bigcap B_{k \ell}\right)\right|^{\alpha} \leq C_{L}|t-s|^{1+\beta}
$$

$\forall n, k, \ell \in \mathbb{N}$ and $t, s \in[0, L](L=1,2, \ldots)$. Then $\left(X_{t}\right)_{t \geq 0}$ has a version $\left(\hat{X}_{t}\right)_{t \geq 0}$ owning cont. pathes in $\|\cdot\|_{\text {Var }}$.

An example of its application

T. Shiga (1990): A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes. J. Math. Kyoto Univ. 30, 245-279. constructed measure-valued branching diffusions with immigrations generated by operator \mathcal{L},

Theorem: Under suitable condition on μ and V, the $\mathcal{M}_{a}(S)$-valued branching diffusion $\left(X_{t}\right)_{t>0}$ corresponding to operator \mathcal{L} admits a continuous version w.r.t. || • |Var

An example of its application

T. Shiga (1990): constructed measure-valued branching diffusions with immigrations generated by operator \mathcal{L},

$$
\mathcal{L} F(\mu)=\frac{1}{2} \int_{S} \mu(\mathrm{~d} x) \beta(x) \frac{\delta^{2} F(\mu)}{\delta \mu(x)^{2}}+\int_{S}(\mu(\mathrm{~d} x) \gamma(x)+V(\mathrm{~d} x)) \frac{\delta F(\mu)}{\delta \mu(x)},
$$

Theorem: Under suitable condition on μ and V, the $\mathcal{M}_{a}(S)$-valued branching diffusion $\left(X_{t}\right)_{t>0}$ corresponding to operator \mathcal{L} admits a continuous version w.r.t. $\|\cdot\|_{V a r}$.

The End

Thank you for your attention!

