Measure-valued continuous curves and processes in total variation norm

Jinghai Shao

Beijing Normal University

July 17, 2012

Jinghai Shao (Math of BNU)

Continuous measure-valued process

July 17, 2012 1 / 15

Theorem (Kolmogorov continuity theorem)

Let $X : [0, \infty) \times \Omega \to \mathbb{R}^n$ be a stochastic process, and suppose for all time T > 0, there exist positive constants α , β , K such that

$$\mathbb{E}\left[|X_t - X_s|^{\alpha}\right] \le K|t - s|^{1+\beta}$$

for all $0 \le s, t \le T$. Then there exists a continuous version of X.

- A purely atomic measure-valued stochastic process has a continuous version in the total variation norm.
- geometric properties of the space of purely atomic probability measures.
- S., (2012), Measure-valued continuous curves and processes in total variation norm, J. Math. Analysis and Applications

Notations

Let (S,d) be a Polish space. Borel $\sigma\text{-algebra }\mathcal{B}(S).$

- $\mathcal{M}(S)$: the set of all finite measures on S.
- $\mathcal{M}_a(S) \subset \mathcal{M}(S)$ contains all purely atomic ones. i.e.

$$\mathcal{M}_a(S) = \Big\{ \mu = \sum_{i=1}^{\infty} p_i \delta_{x_i}; \ p_i \ge 0, \ \sum_{i=1}^{\infty} p_i < \infty, \ x_i \in S \Big\}.$$

- $\mathcal{M}_1(S)$: probability measures on S.
- $\mathcal{M}_{1,a}(S)$ probability measures in $\mathcal{M}_a(S)$.

Total variation distance (norm):

For
$$\mu, \nu \in \mathscr{M}(S), \ \|\mu - \nu\|_{\operatorname{Var}} = \sup_{B \in \mathscr{B}(S)} |\mu(B) - \nu(B)|.$$

Notations

Let (S,d) be a Polish space. Borel σ -algebra $\mathscr{B}(S)$.

- $\mathcal{M}(S)$: the set of all finite measures on S.
- $\mathscr{M}_a(S)\subset \mathscr{M}(S)$ contains all purely atomic ones. i.e.

$$\mathcal{M}_a(S) = \Big\{ \mu = \sum_{i=1}^{\infty} p_i \delta_{x_i}; \ p_i \ge 0, \ \sum_{i=1}^{\infty} p_i < \infty, \ x_i \in S \Big\}.$$

- $\mathcal{M}_1(S)$: probability measures on S.
- $\mathcal{M}_{1,a}(S)$ probability measures in $\mathcal{M}_a(S)$.

Total variation distance (norm):

For
$$\mu, \nu \in \mathscr{M}(S)$$
, $\|\mu - \nu\|_{\operatorname{Var}} = 2 \sup_{B \in \mathscr{B}(S)} |\mu(B) - \nu(B)|$.

Proposition

- (i) $(\mathscr{M}_{1,a}(S), \|\cdot\|_{\operatorname{Var}})$ is separable iff S is countable.
- (*M*_{1,a}(S), || · ||_{Var}) is compact iff S contains only finite number of points.

Proposition

- (i) $(\mathscr{M}_{1,a}(S), \|\cdot\|_{\operatorname{Var}})$ is separable iff S is countable.
- (*M*_{1,a}(S), || · ||_{Var}) is compact iff S contains only finite number of points.

PROOF: Suppose S is uncountable, then for every countable subset of \mathbb{D} of $\mathcal{M}_{1,a}(S)$, (since the totality of support points of all prob. in \mathbb{D} is at most countable,) we can find a point $x \in S$, which doesn't belong to the support of any $\nu \in \mathbb{D}$. Put $\mu = \delta_x$, then for any $\nu \in \mathbb{D}$,

$$\|\mu - \nu\|_{\operatorname{Var}} = \sup_{B \in \mathscr{B}(S)} |\mu(B) - \nu(B)| \ge 1 - \nu(\{x\}) = 1.$$

Therefore, when S is uncountable, $(\mathcal{M}_{1,a}(S), \|\cdot\|_{\operatorname{Var}})$ is not separable.

Proposition $(\mathcal{M}_{1,a}(S), \|\cdot\|_{\operatorname{Var}})$ is complete.

In particular, a sequence of $(\mu_n)_n$ in $\mathscr{M}_{1,a}(S)$ converges in $\|\cdot\|_{\operatorname{Var}}$ to some $\mu \in \mathscr{M}_1(S)$, then μ is also in $\mathscr{M}_{1,a}(S)$. $\mathscr{M}_{1,a}(S)$ is not complete under the weak topology.

Proposition

 $(\mathscr{M}_{1,a}(S), \|\cdot\|_{\operatorname{Var}})$ is a geodesic space. Namely, for each pair of $\mu, \nu \in \mathscr{M}_{1,a}(S)$, there is a curve $t \mapsto \mu_t$ from [0,1] to $\mathscr{M}_{1,a}(S)$ s.t. $\mu_0 = \mu$, $\mu_1 = \nu$ and

$$\|\mu_t - \mu_s\|_{\text{Var}} = |t - s| \|\mu - \nu\|_{\text{Var}}, \quad s, t \in [0, 1].$$

For $\mu, \nu \in \mathscr{M}_{1,a}(S)$, it's said $\mu \ll \nu$ if $\nu(\{x\}) = 0$ yields $\mu(\{x\}) = 0$. For $\mu \ll \nu$ in the form $\mu = \sum_{i} p_i \delta_{x_i}, \ \nu = \sum_{i} q_i \delta_{x_i}$ with $p_i \ge 0$ and $q_i > 0$,

define

$$\operatorname{Ent}(\mu|\nu) = \sum_{i} p_i \log \frac{p_i}{q_i}, \quad 0 \log 0 := 0.$$

Proposition

Let μ , $\nu \in \mathscr{M}_{1,a}(S)$, and $\mu \ll \nu$. Let $(\mu)_{t \in [0,1]}$ be a geodesic connecting μ to ν . Then

 $\operatorname{Ent}(\mu_t|\nu) \le (1-t)\operatorname{Ent}(\mu|\nu) - 2t(1-t)\|\mu - \nu\|_{\operatorname{Var}}^2, \quad t \in [0,1].$ (1)

• Lott-Villani-Sturm generalization of lower bound of Ricci curvature.

For $\mu, \nu \in \mathscr{M}_{1,a}(S)$, it's said $\mu \ll \nu$ if $\nu(\{x\}) = 0$ yields $\mu(\{x\}) = 0$. For $\mu \ll \nu$ in the form $\mu = \sum_{i} p_i \delta_{x_i}, \ \nu = \sum_{i} q_i \delta_{x_i}$ with $p_i \ge 0$ and $q_i > 0$,

define

$$\operatorname{Ent}(\mu|\nu) = \sum_{i} p_i \log \frac{p_i}{q_i}, \quad 0 \log 0 := 0.$$

Proposition

Let μ , $\nu \in \mathcal{M}_{1,a}(S)$, and $\mu \ll \nu$. Let $(\mu)_{t \in [0,1]}$ be a geodesic connecting μ to ν . Then

$$\operatorname{Ent}(\mu_t|\nu) \le (1-t)\operatorname{Ent}(\mu|\nu) - 2t(1-t)\|\mu - \nu\|_{\operatorname{Var}}^2, \quad t \in [0,1].$$
(1)

• Lott-Villani-Sturm generalization of lower bound of Ricci curvature.

Corollary

Let $\mu, \nu \in \mathscr{M}_{1,a}(S)$ and $\mu \ll \nu$, then

$$2\|\mu - \nu\|_{\operatorname{Var}}^2 \le \operatorname{Ent}(\mu|\nu).$$
(2)

Proof: If (2) does not hold, i.e. $\operatorname{Ent}(\mu|\nu) < 2\|\mu - \nu\|_{\operatorname{Var}}^2$, then $\exists \varepsilon > 0$ such that $\operatorname{Ent}(\mu|\nu) < 2\|\mu - \nu\|_{\operatorname{Var}}^2 - \varepsilon$. Substituting it into (1),

$$0 < \operatorname{Ent}(\mu_t | \nu) < (1 - t) (2(1 - t) \| \mu - \nu \|_{\operatorname{Var}}^2 - \varepsilon) < -(1 - t)\varepsilon/2 < 0$$

as t close enough to 1 s.t. $2(1-t)\|\mu-\nu\|_{\mathrm{Var}}^2<\varepsilon/2.$

(i) $(\mu_t)_{t\geq 0}$ is continuous in total variation norm.

- (ii) For every $B \in \mathscr{B}(S)$, $t \mapsto \mu_t(B)$ is continuous.
- (iii) For every $x \in S$, $t \mapsto \mu_t(\{x\})$ is cont., and $t \mapsto \mu_t(S)$ is cont..

(iv) For every $B \in \mathscr{B}(S)$, the curves $t \mapsto \sup_{x \in B} \mu_t(\{x\})$ and $t \mapsto \mu_t(S)$ are cont..

(i) $(\mu_t)_{t\geq 0}$ is continuous in total variation norm. (ii) For every $B \in \mathscr{B}(S)$, $t \mapsto \mu_t(B)$ is continuous. (iii) For every $x \in S$, $t \mapsto \mu_t(\{x\})$ is cont., and $t \mapsto \mu_t(S)$ is cont.. (iv) For every $B \in \mathscr{B}(S)$, the curves $t \mapsto \sup_{x \in B} \mu_t(\{x\})$ and $t \mapsto \max_{x \in B} \mu_t(\{x\})$ and $t \mapsto \max_{x \in B} \mu_t(\{x\})$ and $t \mapsto \max_{x \in B} \mu_t(\{x\})$

(i) $(\mu_t)_{t\geq 0}$ is continuous in total variation norm. (ii) For every $B \in \mathscr{B}(S)$, $t \mapsto \mu_t(B)$ is continuous. (iii) For every $x \in S$, $t \mapsto \mu_t(\{x\})$ is cont., and $t \mapsto \mu_t(S)$ is cont..

(iv) For every $B \in \mathscr{B}(S)$, the curves $t \mapsto \sup_{x \in B} \mu_t(\{x\})$ and $t \mapsto \mu_t(S)$ are cont..

- (i) $(\mu_t)_{t\geq 0}$ is continuous in total variation norm.
- (ii) For every $B \in \mathscr{B}(S)$, $t \mapsto \mu_t(B)$ is continuous.
- (iii) For every $x \in S$, $t \mapsto \mu_t(\{x\})$ is cont., and $t \mapsto \mu_t(S)$ is cont..
- (iv) For every $B \in \mathscr{B}(S)$, the curves $t \mapsto \sup_{x \in B} \mu_t(\{x\})$ and $t \mapsto \mu_t(S)$ are cont..

- (i) $(\mu_t)_{t\geq 0}$ is continuous in total variation norm.
- (ii) For every $B \in \mathscr{B}(S)$, $t \mapsto \mu_t(B)$ is continuous.
- (iii) For every $x \in S$, $t \mapsto \mu_t(\{x\})$ is cont., and $t \mapsto \mu_t(S)$ is cont..
- $({\rm iv}) \mbox{ For every } B \in \mathscr{B}(S) \mbox{, the curves } t \mapsto \sup_{x \in B} \mu_t(\{x\}) \mbox{ and } t \mapsto \mu_t(S) \mbox{ are cont.}$
- (i) \implies (ii) \implies (iii), and (iv) \implies (iii), are clear. To show (iii) \implies (i) and (i) \implies (iv) needs some trick.

If assume further \exists a positive measure m on S s.t. m(B(x,r)) > 0, and m(S(x,r)) = 0, $\forall x \in S, r > 0$. Then above assertions are also equivalent to

(v) \exists dense subset $(x_i)_{i\in\mathbb{N}}\subset S$ and dense subset $(r_j)_{j\in\mathbb{N}}\subset [0,\infty)$ s.t. for every $t\geq 0$

1
$$\mu_t \left(\bigcup_{ij} S_{ij} \right) = 0, \ i, j \in \mathbb{N}, \text{ where } S_{ij} = \{ y \in S; \ d(x_i, y) = r_j \};$$

- 2 $t \mapsto \mu_t$ is weakly continuous;
- $\textbf{ o } t \mapsto \sup_{x \in B_{ij}} \mu_t(\{x\}) \text{ is cont. where } B_{ij} = \left\{ y \in S; \ d(x_i, y) < r_j \right\}.$

Let's introduce a family of disjoint partition $\mathscr{A} = (A_j^n)_{j,n=1}^{\infty}$ of S. • for every fixed n, $(A_j^n)_{j=1^{\infty}}$ is a disjoint partitions of S. • diam $(A_j^n) \leq 1/n$, for $j \geq 1$. • $(A_j^{n+1})_{j=1}^{\infty}$ is a refinement of $(A_j^n)_{j=1}^{\infty}$. With this \mathscr{A} ,

$$\inf_{n} \sup_{j} \mu(A_{j}^{n} \bigcap B) = \sup_{x \in B} \mu(\{x\}), \quad B \in \mathscr{B}(S).$$

L. Overbeck, M. Röckner, B. Schmuland, *An analytic approach to Fleming-Viot processes with interactive selection*. Ann. Probab. 1995.

Theorem: Let $(X_t)_{t\geq 0}$ be a $\mathcal{M}_a(S)$ -valued process, continuous in weak topology. Suppose \exists dense subsets $\{x_i\}_{i\geq 1} \subset S$ and $\{r_j\}_{j\geq 1} \subset [0,\infty)$ so that

$$\forall t \ge 0, \quad X_t \left(\bigcup_{ij} S_{ij} \right) = 0, \quad S_{ij} = \{ y \in S; \ d(x_i, y) = r_j \}.$$

If \exists positive const. α , β , C_L , (L = 1, 2, ...) such that

$$\sum_{j=1}^{\infty} \mathbb{E} \left| X_t \left(A_j^n \bigcap B_{k\ell} \right) - X_s \left(A_j^n \bigcap B_{k\ell} \right) \right|^{\alpha} \le C_L |t-s|^{1+\beta},$$

 $\forall n, k, \ell \in \mathbb{N} \text{ and } t, s \in [0, L] \ (L = 1, 2, ...).$ Then $(X_t)_{t \ge 0}$ has a version $(\hat{X}_t)_{t \ge 0}$ owning cont. pathes in $\| \cdot \|_{\text{Var}}$.

T. Shiga (1990): A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes. J. Math. Kyoto Univ. 30, 245-279. constructed measure-valued branching diffusions with immigrations generated by operator \mathcal{L} ,

$$\mathcal{L}F(\mu) = \frac{1}{2} \int_{S} \mu(\mathrm{d}x)\beta(x) \frac{\delta^{2}F(\mu)}{\delta\mu(x)^{2}} + \int_{S} \left(\mu(\mathrm{d}x)\gamma(x) + V(\mathrm{d}x)\right) \frac{\delta F(\mu)}{\delta\mu(x)},$$

Theorem: Under suitable condition on μ and V, the $\mathcal{M}_a(S)$ -valued branching diffusion $(X_t)_{t>0}$ corresponding to operator \mathcal{L} admits a continuous version w.r.t. $\|\cdot\|_{\text{Var}}$.

T. Shiga (1990): constructed measure-valued branching diffusions with immigrations generated by operator \mathcal{L} ,

$$\mathcal{L}F(\mu) = \frac{1}{2} \int_{S} \mu(\mathrm{d}x)\beta(x) \frac{\delta^{2}F(\mu)}{\delta\mu(x)^{2}} + \int_{S} \left(\mu(\mathrm{d}x)\gamma(x) + V(\mathrm{d}x)\right) \frac{\delta F(\mu)}{\delta\mu(x)},$$

Theorem: Under suitable condition on μ and V, the $\mathcal{M}_a(S)$ -valued branching diffusion $(X_t)_{t>0}$ corresponding to operator \mathcal{L} admits a continuous version w.r.t. $\|\cdot\|_{\operatorname{Var}}$.

The End

Thank you for your attention!

Jinghai Shao (Math of BNU)

Continuous measure-valued process

July 17, 2012 15 / 15