BSDE driven by G-Brownian Motion

Shige Peng, Shandong University, China

Joint work with

Mingshang HU, Shaolin JI and Yongsheng SONG

The 8th Workshop on Markov Processes and Related Topics

16, July, 2012, Beijing Normal University

• How to understand uncertainty in order to quantitatively control risks become a worldwide main concerned problem.

.

- How to understand uncertainty in order to quantitatively control risks become a worldwide main concerned problem.
- This problem is even urgent since 2008 after the last financial crisis which caused a worldwide economic disaster.

- How to understand uncertainty in order to quantitatively control risks become a worldwide main concerned problem.
- This problem is even urgent since 2008 after the last financial crisis which caused a worldwide economic disaster.
- new mathematical concept and calculation tool called nonlinear expectation theory which take the risk of model uncertainty (Knightian uncertainty) into account.

- How to understand uncertainty in order to quantitatively control risks become a worldwide main concerned problem.
- This problem is even urgent since 2008 after the last financial crisis which caused a worldwide economic disaster.
- new mathematical concept and calculation tool called nonlinear expectation theory which take the risk of model uncertainty (Knightian uncertainty) into account.
- Important: The existing results in probability theory, stochastic controls, mathematical finance, risk measures and risk controls are our rich sources.

- Title: Nonlinear Expectations, Stochastic Calculus under Knightian Uncertainty and Related Topics
- Time period (around): 3rd Jun to 12th Jul 2013
- (6 weeks, summer school and two workshops)

Proposed by: M. Dai, H. Föllmer, J. Hinz (NUS)
S. Peng, (SDU) J. Xia (AMSS, China) J. Zhang (USC)

• L. Bachelier (1900) Théorie de la Spéculation, Thesis.

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, **132** 1025-1028

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, **132** 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, **17** 549-560

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, **132** 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, **17** 549-560
- P. Daniell (1918-1920): Daniell's integral

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, **132** 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, **17** 549-560
- P. Daniell (1918-1920): Daniell's integral

()

• R. Wiener (1921-1923, 1924) Brownian motion (Wiener process) using Daniell's integral

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, **132** 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, **17** 549-560
- P. Daniell (1918-1920): Daniell's integral
- R. Wiener (1921-1923, 1924) Brownian motion (Wiener process) using Daniell's integral
- A. N. Kolmogorov (1933) Grundbegrie der Wahrscheinlichkeitsrechnung, Springer Berlin

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, **132** 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, **17** 549-560
- P. Daniell (1918-1920): Daniell's integral
- R. Wiener (1921-1923, 1924) Brownian motion (Wiener process) using Daniell's integral
- A. N. Kolmogorov (1933) Grundbegrie der Wahrscheinlichkeitsrechnung, Springer Berlin

()

• K. Itô (1942) Differential equations determining a Markov process, J. Pan-Japan Math. Colloq. (in Japanese)

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, **132** 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, **17** 549-560
- P. Daniell (1918-1920): Daniell's integral
- R. Wiener (1921-1923, 1924) Brownian motion (Wiener process) using Daniell's integral
- A. N. Kolmogorov (1933) Grundbegrie der Wahrscheinlichkeitsrechnung, Springer Berlin
- K. Itô (1942) Differential equations determining a Markov process, J. Pan-Japan Math. Colloq. (in Japanese)
- W. Doeblin (1940, Pli cacheté)

()

Kolmogorov's Probability Space (Ω, \mathcal{F}, P) A fundamental and powerful theory and methodology to treat uncertainties

 A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933 (Foundations of the Theory of Probability, Chelsea, New York),

Kolmogorov's Probability Space (Ω, \mathcal{F}, P) A fundamental and powerful theory and methodology to treat uncertainties

 A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933 (Foundations of the Theory of Probability, Chelsea, New York),

• Probability Space (Ω, \mathcal{F}, P)

Kolmogorov's Probability Space (Ω, \mathcal{F}, P) A fundamental and powerful theory and methodology to treat uncertainties

- A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933 (Foundations of the Theory of Probability, Chelsea, New York),
- Probability Space (Ω, \mathcal{F}, P)
- Hilbert's 6th problem

• The von Neumann-Morgenstern utility axioms (1953) E[U(X)]; Theory of Games and Economic Behavior, Princeton;

> < = > < = >

- The von Neumann-Morgenstern utility axioms (1953) E[U(X)]; Theory of Games and Economic Behavior, Princeton;
- P. A. Samuelson, Rational theory of warrant pricing, 1964

- The von Neumann-Morgenstern utility axioms (1953) *E*[*U*(*X*)]; Theory of Games and Economic Behavior, Princeton;
- P. A. Samuelson, Rational theory of warrant pricing, 1964
- Black-Scholes-Merton option pricing: $C(S, t) = N(d_1) - N(d_2)Ke^{-r(T-1)}$,

- The von Neumann-Morgenstern utility axioms (1953) E[U(X)]; Theory of Games and Economic Behavior, Princeton;
- P. A. Samuelson, Rational theory of warrant pricing, 1964
- Black-Scholes-Merton option pricing: $C(S, t) = N(d_1) - N(d_2)Ke^{-r(T-1)}$,
- $dS(t) = \mu S(t)dt + \sigma S(t)dW(t)$

Knight, 1921

()

• " Mathematical, or a priori, type of probability is practically never met with in business ..."

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."
- "Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated."

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."
- "Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated."

Knightian's Risk

()

Probability (and prob. distribution) are known.

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."
- "Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated."

Knightian's Risk

Probability (and prob. distribution) are known.

Knightian uncertainty

()

The prob. and distr. are unknown—"uncertainty of probability measures".

F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, F, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;

- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, F, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.

- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, F, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);

- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, F, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);

- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, F, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- Kahneman & Tversky (1979-1992): prospective theory by distorted probability;

- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, F, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- Kahneman & Tversky (1979-1992): prospective theory by distorted probability;
- Gilboa & Schmeidler (1989) Maximin expected utility; Hansen & Sargent (2000) Multiplier preference.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, F, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- Kahneman & Tversky (1979-1992): prospective theory by distorted probability;
- Gilboa & Schmeidler (1989) Maximin expected utility; Hansen & Sargent (2000) Multiplier preference.
- Hansen & Sargent: Robust control method.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Given r.v. $X(\omega)$, solve the BSDE

()

 $dy(t) = -g(y(t), z(t))dt + z(t)dB(t), \quad y(T) = X(\omega).$

- 《聞》 《注》 《注》 三注

• Given r.v. $X(\omega)$, solve the BSDE

$$dy(t) = -g(y(t), z(t))dt + z(t)dB(t), \quad y(T) = X(\omega).$$

Then define:

()

$$\mathbb{E}^{g}[\mathbf{X}] := y(0), \quad \mathbb{E}^{g}[\mathbf{X}|(B(s))_{s\in[0,t]}] := y(t).$$

> < = > < = >

• Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.

()

-

> < = > < = >

- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Coquet-Hu-Memin-P.: dominated dynamic expectations are gexpectations;

- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Coquet-Hu-Memin-P.: dominated dynamic expectations are *g*-expectations;
- Delbaen-P.-Rosazza, 2008: If a dynamic expectation *E* is absolutely continuous w.r.t. *P* then there exists a unique *g* such that *E* = *E_g*.

- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Coquet-Hu-Memin-P.: dominated dynamic expectations are *g*-expectations;
- Delbaen-P.-Rosazza, 2008: If a dynamic expectation \mathcal{E} is absolutely continuous w.r.t. P then there exists a unique g such that $\mathcal{E} = \mathcal{E}_{g}$.
- Serious problem: under volatility uncertainty, it is impossible to find a reference probability measure

- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Coquet-Hu-Memin-P.: dominated dynamic expectations are *g*-expectations;
- Delbaen-P.-Rosazza, 2008: If a dynamic expectation \mathcal{E} is absolutely continuous w.r.t. P then there exists a unique g such that $\mathcal{E} = \mathcal{E}_{g}$.
- Serious problem: under volatility uncertainty, it is impossible to find a reference probability measure
- State dependent Markovian case: Avellaneda, M., Levy, A. and Paras A. (1995), T. Lyons (1995).
- Longtime blockage...

- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, **20**(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)

- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, **20**(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium2005 (Springer2007).

- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, **20**(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium2005 (Springer2007).
- Denis, L. and Martini, C. (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, The Ann. of Appl. Probability

- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, **20**(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium2005 (Springer2007).
- Denis, L. and Martini, C. (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, The Ann. of Appl. Probability
- [Peng2008-SPA] Multi-Dim G-Brownian Motion and Related Stochastic Calculus.

- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, **20**(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium2005 (Springer2007).
- Denis, L. and Martini, C. (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, The Ann. of Appl. Probability
- [Peng2008-SPA] Multi-Dim G-Brownian Motion and Related Stochastic Calculus.

()

• [Denis-Hu-Peng2008] Capacity related to Sublinear Expectations: appl. to G-Brownian Motion Paths.

()

• [Peng2009] Survey on *G*-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.

- [Peng2009] Survey on *G*-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion · · ·

- [Peng2009] Survey on *G*-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion · · ·
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT

- [Peng2009] Survey on *G*-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion · · ·
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081- 1110.

- [Peng2009] Survey on *G*-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion · · ·
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081- 1110.
- Soner, H. M. Touzi, N. and Zhang, J. (2011) Dual Formulation of Second Order Target Problems, arxiv: 1003.6050.

- [Peng2009] Survey on *G*-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion · · ·
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081- 1110.
- Soner, H. M. Touzi, N. and Zhang, J. (2011) Dual Formulation of Second Order Target Problems, arxiv: 1003.6050.
- 2BSDE: by A. Matoussi, Possamai, Zhao, ...

- [Peng2009] Survey on *G*-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion · · ·
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081- 1110.
- Soner, H. M. Touzi, N. and Zhang, J. (2011) Dual Formulation of Second Order Target Problems, arxiv: 1003.6050.
- 2BSDE: by A. Matoussi, Possamai, Zhao, ...
- L. Epstein and S. Ji (2012) Ambiguous volatility, possibility and utility in continuous time, (by random *G*-expectations).

- (注) - (注)

()

• M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations
- M. Nutz (2010) Random G-expectations,

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations
- M. Nutz (2010) Random G-expectations,
- S. Cohen (2011) Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces.

()

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations
- M. Nutz (2010) Random G-expectations,
- S. Cohen (2011) Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces.
- P.-Song-Zhang (2012) A Complete Representation Theorem for G-martingales;

・ 同 ト ・ ヨ ト ・ ヨ ト …

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations
- M. Nutz (2010) Random G-expectations,
- S. Cohen (2011) Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces.
- P.-Song-Zhang (2012) A Complete Representation Theorem for G-martingales;
- Nutz & van Handel (2012) Constructing Sublinear Expectations on

- Chen, Z. J. and Xiong, J., Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- F. Gao, A variational representation and large deviations for functionals of *G*-Brownian motion, 2012, preprint.

- Chen, Z. J. and Xiong, J., Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- F. Gao, A variational representation and large deviations for functionals of *G*-Brownian motion, 2012, preprint.
- F. Gao, Pathwise properties and homeomorphic for stochastic differential equatios driven by *G*-Brownian motion. SPA, 119(2009)

- Chen, Z. J. and Xiong, J., Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- F. Gao, A variational representation and large deviations for functionals of *G*-Brownian motion, 2012, preprint.
- F. Gao, Pathwise properties and homeomorphic for stochastic differential equatios driven by *G*-Brownian motion. SPA, 119(2009)
- Large Deviations for Stochastic Differential Equations Driven by G-Brownian Motion. Stoch. Proc. Appl., 120 (2010)

- Chen, Z. J. and Xiong, J., Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- F. Gao, A variational representation and large deviations for functionals of *G*-Brownian motion, 2012, preprint.
- F. Gao, Pathwise properties and homeomorphic for stochastic differential equatios driven by *G*-Brownian motion. SPA, 119(2009)
- Large Deviations for Stochastic Differential Equations Driven by G-Brownian Motion. Stoch. Proc. Appl., 120 (2010)
- M. Hu, S. Ji, S. P. & S. Song, (2012) Backward Stochastic Differential Equations driven by *G*-Brownian Motions.

• Peng, S. Notes: Nonlinear Expectations and Stochastic Calculus under Uncertainty, arxiv 2010.

- Peng, S. Notes: Nonlinear Expectations and Stochastic Calculus under Uncertainty, arxiv 2010.
- Mingshang Hu, Shaolin Ji, Shige Peng, Yongsheng Song Backward Stochastic Differential Equations Driven by G-Brownian Motion, arXiv:1206.5889v1 [math.PR] (26 Jun.) 2012.

Expectation framework-G-framework

• Ω : space of scenarios;

()

A B + A B +

• Ω: space of scenarios;

()

H a linear space of risk positions or (risk losses) containing constants (real functions defined on Ω) s.t.

$$X \in \mathcal{H} \implies |X| \in \mathcal{H}$$

Ω: space of scenarios;

()

 H a linear space of risk positions or (risk losses) containing constants (real functions defined on Ω) s.t.

$$X \in \mathcal{H} \implies |X| \in \mathcal{H}$$

• We often "equivalently" assume:

$$X_1, \cdots, X_n \in \mathcal{H} \implies \varphi(X_1, \cdots, X_n) \in \mathcal{H}, \quad \forall \varphi \in C_{Lip}(\mathbb{R}^n)$$

 $X \in \mathcal{H} \implies |X| \in \mathcal{H}$ (a) $E[X] \ge E[Y]$, if $X \ge Y$

()

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

```
\begin{array}{ll} X \in \mathcal{H} \implies |X| \in \mathcal{H} \\ \text{(a) } E[X] \geq E[Y], & \text{if } X \geq Y \\ \text{(b) } E[c] = c, \end{array}
```

()

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

- $X \in \mathcal{H} \implies |X| \in \mathcal{H}$ (a) $E[X] \ge E[Y]$, if $X \ge Y$ (b) E[c] = c, (c) $E[X] \ge M$
- (c) E[X + Y] = E[X] + E[Y],

()

イロト イポト イヨト イヨト 二日

- $\begin{array}{ll} X \in \mathcal{H} \implies |X| \in \mathcal{H} \\ (a) \ E[X] \geq E[Y], & \text{if } X \geq Y \\ (b) \ E[c] = c, \end{array}$
- (c) E[X + Y] = E[X] + E[Y],
- (d) $E[\lambda X] = \lambda E[X], \quad \lambda \ge 0.$

()

イロト (得) (き) (き) う
Daniell's Expectation: $(\Omega, \mathcal{H}, \mathbb{E})$ v.s. $(\Omega, \mathcal{F}, \mathbb{P})$

$$\begin{split} X \in \mathcal{H} \implies |X| \in \mathcal{H} \\ \text{(a)} \ E[X] \geq E[Y], \quad \text{if} \quad X \geq Y \\ \text{(b)} \ E[c] = c, \\ \text{(c)} \ E[X+Y] = E[X] + E[Y], \\ \text{(d)} \ E[\lambda X] = \lambda E[X], \quad \lambda \geq 0. \\ E[X_i] \downarrow 0, \quad \text{if} \ X_i(\omega) \downarrow 0, \quad \forall \omega \end{split}$$

()

Daniell's Expectation: $(\Omega, \mathcal{H}, \mathbb{E})$ v.s. $(\Omega, \mathcal{F}, \mathbb{P})$

$$\begin{split} X \in \mathcal{H} \implies |X| \in \mathcal{H} \\ \text{(a)} \ E[X] \geq E[Y], \quad \text{if} \quad X \geq Y \\ \text{(b)} \ E[c] = c, \\ \text{(c)} \ E[X+Y] = E[X] + E[Y], \\ \text{(d)} \ E[\lambda X] = \lambda E[X], \quad \lambda \geq 0. \\ E[X_i] \downarrow 0, \quad \text{if} \ X_i(\omega) \downarrow 0, \quad \forall \omega \end{split}$$

Theorem (Daniell-Stone Theorem)

()

There exists a unique prob. measure P on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$E[X] = \int_{\Omega} X(\omega) P(\omega).$$

()

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

 $\begin{array}{ll} X \in \mathcal{H} \implies |X| \in \mathcal{H} \\ \text{(a)} \ \hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y], \quad \text{if} \quad X \geq Y \\ \text{(b)} \ \hat{\mathbb{E}}[X+c] = \hat{\mathbb{E}}[X] + c, \end{array}$

()

★聞▶ ★理▶ ★理▶ → 理

$$\begin{array}{ll} X \in \mathcal{H} & \Longrightarrow & |X| \in \mathcal{H} \\ \text{(a)} & \hat{\mathbb{E}}[X] \ge \hat{\mathbb{E}}[Y], \quad \text{if} \quad X \ge Y \\ \text{(b)} & \hat{\mathbb{E}}[X+c] = \hat{\mathbb{E}}[X] + c, \\ \text{(c)} & \hat{\mathbb{E}}[X+Y] \le \hat{\mathbb{E}}[X] + \hat{\mathbb{E}}[Y] & " \le " \implies \text{sublinear} \end{array}$$

()

르

$$\begin{array}{ll} X \in \mathcal{H} \implies |X| \in \mathcal{H} \\ \text{(a)} \ \hat{\mathbb{E}}[X] \ge \hat{\mathbb{E}}[Y], \quad \text{if} \quad X \ge Y \\ \text{(b)} \ \hat{\mathbb{E}}[X+c] = \hat{\mathbb{E}}[X] + c, \\ \text{(c)} \ \hat{\mathbb{E}}[X+Y] \le \hat{\mathbb{E}}[X] + \hat{\mathbb{E}}[Y] \quad " \le " \implies \text{sublinear} \\ \text{(d)} \ \hat{\mathbb{E}}[\lambda X] = \lambda \hat{\mathbb{E}}[X], \quad \lambda \ge 0. \end{array}$$

()

르

$$\begin{array}{ll} X \in \mathcal{H} & \Longrightarrow & |X| \in \mathcal{H} \\ \text{(a)} & \hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y], \quad \text{if} \quad X \geq Y \\ \text{(b)} & \hat{\mathbb{E}}[X+c] = \hat{\mathbb{E}}[X] + c, \\ \text{(c)} & \hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X] + \hat{\mathbb{E}}[Y] \quad " \leq " \implies \text{sublinear} \\ \text{(d)} & \hat{\mathbb{E}}[\lambda X] = \lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0. \\ & & \hat{\mathbb{E}}[X_i] \downarrow 0, \quad \text{if} \quad X_i(\omega) \downarrow 0, \quad \forall \omega \end{array}$$

()

르

Theorem (Robust Daniell-Stone Theorem)

()

• There exists a family of $\{P_{\theta}\}_{\theta \in \Theta}$ of prob. measures on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$\hat{\mathbb{E}}[X] = \sup_{\theta \in \Theta} E_{\theta}[X] = \sup_{\theta \in \Theta} \int_{\Omega} X(\omega) P_{\theta}(\omega), \quad \textit{for each } X \in \mathcal{H}$$

Theorem (Robust Daniell-Stone Theorem)

• There exists a family of $\{P_{\theta}\}_{\theta \in \Theta}$ of prob. measures on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$\hat{\mathbb{E}}[X] = \sup_{\theta \in \Theta} E_{\theta}[X] = \sup_{\theta \in \Theta} \int_{\Omega} X(\omega) P_{\theta}(\omega), \quad \textit{for each } X \in \mathcal{H}$$

• For each given $X \in \mathcal{H}$,

$$\hat{\mathbb{E}}[\varphi(X)] = \sup_{\theta \in \Theta} \int_{\mathbb{R}} \varphi(x) dF_{\theta}(x), \quad F_{\theta}(x) = P_{\theta}(X \le x).$$

Robust representation of a coherent risk measure

- Huber Robust Statistics (1981), for finite state case.
- Artzner-Delbean, Eber-Heath (1999), Delbean2002,
- Föllmer & Schied (2002, 2004), Fritelli & Rosazza-Gianin (2002)

Robust representation of a coherent risk measure

- Huber Robust Statistics (1981), for finite state case.
- Artzner-Delbean, Eber-Heath (1999), Delbean2002,
- Föllmer & Schied (2002, 2004), Fritelli & Rosazza-Gianin (2002)

Theorem (Robust Representation of coherent risk measure)

()

 $\hat{\mathbb{E}}[\cdot]$ is a sublinear expectation iff there exists a family $\{E_{\theta}\}_{\theta \in \Theta}$ of linear expectations s.t.

$$\hat{\mathbb{E}}[X] = \sup_{\theta \in \Theta} E_{\theta}[X], \quad \forall X \in \mathcal{H}.$$

Robust representation of a coherent risk measure

- Huber Robust Statistics (1981), for finite state case.
- Artzner-Delbean, Eber-Heath (1999), Delbean2002,
- Föllmer & Schied (2002, 2004), Fritelli & Rosazza-Gianin (2002)

Theorem (Robust Representation of coherent risk measure)

 $\hat{\mathbb{E}}[\cdot]$ is a sublinear expectation iff there exists a family $\{E_{\theta}\}_{\theta\in\Theta}$ of linear expectations s.t.

$$\hat{\mathrm{E}}[X] = \sup_{\theta \in \Theta} E_{\theta}[X], \quad \forall X \in \mathcal{H}.$$

Meaning:

()

Sublinear expectation corresponds the Knightian uncertainty of probabilities: $\{P_{\theta}\}_{\theta\in\Theta}$

Uncertainty version of distributions in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

Definition

()

• *X* ~ *Y* if they have the same distribution uncertainty

$$X \sim Y \iff \hat{\mathbb{E}}[\varphi(X)] = \hat{\mathbb{E}}[\varphi(Y)], \quad \forall \varphi \in C_b(\mathbb{R}^n)$$

Uncertainty version of distributions in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

Definition

()

• *X* ~ *Y* if they have the same distribution uncertainty

$$X \sim Y \iff \hat{\mathbb{E}}[\varphi(X)] = \hat{\mathbb{E}}[\varphi(Y)], \quad \forall \varphi \in C_b(\mathbb{R}^n).$$

 Y Indenp. of X if each realization "X = x" does not change the distribution of Y:

Uncertainty version of distributions in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

Definition

٥

()

• *X* ~ *Y* if they have the same distribution uncertainty

$$X \sim Y \iff \hat{\mathbb{E}}[\varphi(X)] = \hat{\mathbb{E}}[\varphi(Y)], \quad \forall \varphi \in C_b(\mathbb{R}^n).$$

 Y Indenp. of X if each realization "X = x" does not change the distribution of Y:

$$Y \text{ indenp. of } X \iff \hat{\mathbb{E}}[\varphi(X,Y)] = \hat{\mathbb{E}}[\hat{\mathbb{E}}[\varphi(x,Y)]_{x=X}].$$

Central Limit Theorem (CLT) under Knightian Uncertainty

Theorem

Let
$$\{X_i\}_{i=1}^{\infty}$$
 in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ be i.i.d.: $X_i \sim X_1$ and X_{i+1} Indep. (X_1, \dots, X_i) . Assume:

$$\hat{\mathbb{E}}[|X_1|^{2+lpha}] < \infty$$
 , $\hat{\mathbb{E}}[X_1] = \hat{\mathbb{E}}[-X_1] = 0.$

Then:

$$\lim_{n\to\infty} \hat{\mathbb{E}}[\varphi(\frac{X_1+\cdots+X_n}{\sqrt{n}})] = \hat{\mathbb{E}}[\varphi(X)], \ \forall \varphi \in C_b(\mathbb{R}),$$

with $X \sim N(0, [\underline{\sigma}^2, \overline{\sigma}^2])$, where

()

$$\overline{\sigma}^2 = \hat{\mathbb{E}}[X_1^2], \quad \underline{\sigma}^2 = -\hat{\mathbb{E}}[-X_1^2].$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Normal distributions under Knightian uncertainty

Definition

A loss position X in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is normally in uncertainty distribution if

$$aX + b\bar{X} \sim \sqrt{a^2 + b^2}X, \quad \forall a, b \ge 0.$$

where \bar{X} is an independent copy of X.

Normal distributions under Knightian uncertainty

Definition

A loss position X in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is normally in uncertainty distribution if

$$aX + b\bar{X} \sim \sqrt{a^2 + b^2}X$$
, $\forall a, b \ge 0$.

where \bar{X} is an independent copy of X.

•
$$\hat{\mathbb{E}}[X] = \hat{\mathbb{E}}[-X] = 0.$$

Normal distributions under Knightian uncertainty

Definition

A loss position X in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is normally in uncertainty distribution if

$$aX + bar{X} \sim \sqrt{a^2 + b^2}X, \quad orall a, b \geq 0.$$

where \bar{X} is an independent copy of X.

•
$$\hat{\mathbb{E}}[X] = \hat{\mathbb{E}}[-X] = 0.$$

• $X \stackrel{d}{=} N(0, [\underline{\sigma}^2, \overline{\sigma}^2])$, where

$$\overline{\sigma}^2 := \mathbb{\hat{E}}[X^2], \quad \underline{\sigma}^2 := -\mathbb{\hat{E}}[-X^2].$$

Definition

()

B is called aG-Brownian motion if:

Definition

()

B is called aG-Brownian motion if:

• For each
$$t_1 \leq \cdots \leq t_n$$
, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.

Definition

()

B is called aG-Brownian motion if:

- For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.
- $B_t \stackrel{d}{=} B_{s+t} B_s$, for all $s, t \ge 0$

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Definition

B is called aG-Brownian motion if:

• For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.

•
$$B_t \stackrel{d}{=} B_{s+t} - B_s$$
, for all $s, t \geq 0$

•
$$\hat{\mathbb{E}}[|B_t|^3] = o(t)$$
.

()

イロト 不聞 とくぼと 不足と 一定

Definition

B is called aG-Brownian motion if:

• For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.

•
$$B_t \stackrel{a}{=} B_{s+t} - B_s$$
, for all $s, t \geq 0$

•
$$\hat{\mathbb{E}}[|B_t|^3] = o(t)$$
. .

()

Theorem.

If $(B_t(\omega))_{t\geq 0}$ is a *G*-Brownian motion and $\hat{\mathbb{E}}[B_t] = \hat{\mathbb{E}}[-B_t] \equiv 0$ then: $B_{t+s} - B_s \stackrel{d}{=} N(0, [\underline{\sigma}^2 t, \overline{\sigma}^2 t]), \forall s, t \geq 0$

• $\Omega := C(0, \infty; \mathbb{R}), B_t(\omega) = \omega_t$

()

• • • • • • • • •

• $\Omega := C(0, \infty; \mathbb{R}), B_t(\omega) = \omega_t$ • $\mathcal{H} := \{X(\omega) = \varphi(B_{t_1}, B_{t_2}, \cdots, B_{t_n}), t_i \in [0, \infty), \varphi \in C_{Lip}(\mathbb{R}^n), n \in \mathbb{Z}\}$

•
$$\Omega := C(0, \infty; \mathbb{R}), B_t(\omega) = \omega_t$$

• $\mathcal{H} := \{X(\omega) = \varphi(B_{t_1}, B_{t_2}, \cdots, B_{t_n}), t_i \in [0, \infty), \varphi \in C_{Lip}(\mathbb{R}^n), n \in \mathbb{Z}\}$

• For each $X(\omega) = \varphi(B_{t_1}, B_{t_2} - B_{t_1}, \cdots, B_{t_n} - B_{t_{n-1}})$, with $t_i < t_{i+1}$, we set

$$\hat{\mathbb{E}}[X] := \tilde{\mathbb{E}}[\varphi(\sqrt{t_1}\xi_1, \sqrt{t_2 - t_1}\xi_2, \cdots, \sqrt{t_n - t_{n-1}}\xi_n)]$$

where

()

$$\xi_i \stackrel{d}{=} N(0, [\underline{\sigma}^2, \overline{\sigma}^2]), \ \xi_{i+1} \text{ is indep. of } (\xi_1, \cdots, \xi_i) \text{ under } \tilde{\mathbb{E}}.$$

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ― 圖

•
$$\Omega := C(0, \infty; \mathbb{R}), B_t(\omega) = \omega_t$$

• $\mathcal{H} := \{X(\omega) = \varphi(B_{t_1}, B_{t_2}, \cdots, B_{t_n}), t_i \in [0, \infty), \varphi \in C_{Lip}(\mathbb{R}^n), n \in \mathbb{Z}\}$

• For each $X(\omega) = \varphi(B_{t_1}, B_{t_2} - B_{t_1}, \cdots, B_{t_n} - B_{t_{n-1}})$, with $t_i < t_{i+1}$, we set

$$\hat{\mathbb{E}}[X] := \tilde{\mathbb{E}}[\varphi(\sqrt{t_1}\xi_1, \sqrt{t_2 - t_1}\xi_2, \cdots, \sqrt{t_n - t_{n-1}}\xi_n)]$$

where

$$\xi_i \stackrel{d}{=} N(0, [\underline{\sigma}^2, \overline{\sigma}^2]), \ \xi_{i+1} \text{ is indep. of } (\xi_1, \cdots, \xi_i) \text{ under } \tilde{\mathbb{E}}.$$

• Conditional expectation:

()

$$\hat{\mathbb{E}}_{t_1}[X] = \tilde{\mathbb{E}}[\varphi(x, \sqrt{t_2 - t_1}\xi_2, \cdots, \sqrt{t_n - t_{n-1}}\xi_n)]_{x = B_{t_1}}$$

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ― 圖

Probability v.s. Nonlinear Expectation

()

Probability Space	Nonlinear Expectation Space
(Ω, \mathcal{F}, P)	$(\Omega, \mathcal{H}, \mathbb{E})$: (sublinear is basic)
Distributions: $X \stackrel{d}{=} Y$	$X \stackrel{d}{=} Y$,
Independence: Y indep. of X	Y indep. of X , (non-symm.)
LLN and CLT	LLN + CTL
Normal distributions	G-Normal distributions
Brownian motion $B_t(\omega) = \omega_t$	G-B.M. $B_t(\omega) = \omega_t$,
Qudratic variat. $\langle B \rangle_t = t$	$\langle B \rangle_t$: still a <i>G</i> -Brownian motion
Lévy process	G-Lévy process

Probability v.s. Nonlinear Expectation

()

Probability Space	Nonlinear Expectation Space
Itô's calculus for BM	Itô's calculus for G-BM
SDE $dx_t = b(x_t)dt + \sigma(x_t)dB_t$	$dx_t = \cdots + \beta(x_t) d\langle B \rangle_t$
Diffusion: $\partial_t u - \mathcal{L} u = 0$	$\partial_t u - G(Du, D^2u) = 0$
Markovian pro. and semi-grou	Nonlinear Markovian
Martingales	G-Martingales
$E[X \mathcal{F}_t] = E[X] + \int_0^T z_s dB_s$	$\mathbb{E}[X \mathcal{F}_t] = \mathbb{E}[X] + \int_0^t z_s dB_s + K_t$
	$K_t \stackrel{?}{=} \int_0^t \eta_s d \langle B \rangle_s - \int_0^t 2G(\eta_s) ds$

▶ ★ 문 ▶ ★ 문 ▶

Probability Space	Nonlinear Expectation Space
<i>P</i> -almost surely analysis	ĉ-quasi surely analysis
	$\hat{c}(A) = \sup_{ heta} E_{P_{ heta}}[1_A]$
$X(\omega)$: <i>P</i> -quasi continuous	$X(\omega)$: \hat{c} -quasi surely
$\iff X \text{ is } \mathcal{B}(\Omega)\text{-meas.}$	continuous $\implies X$ is $\mathcal{B}(\Omega)$ -meas.

-

()

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

()

Backward stochastic differential equations (BSDE) driven by a G-Brownian motion $(B_t)_{t\geq 0}$ in the following form:

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds + \int_{t}^{T} g(s, Y_{s}, Z_{s}) d\langle B \rangle_{s}$$
$$- \int_{t}^{T} Z_{s} dB_{s} - (K_{T} - K_{t}).$$

Under a Lipschitz condition of f and g in Y and Z. The existence and uniqueness of the solution (Y, Z, K) is proved, where K is a decreasing G-martingale.

G-martingale M is of the form

()

$$M_{t} = M_{0} + \bar{M}_{t} + K_{t},$$

$$\bar{M}_{t} := \int_{0}^{t} z_{s} B_{s},$$

$$K_{t} := \int_{0}^{t} \eta_{s} \langle B \rangle_{s} - \int_{0}^{t} 2G(\eta_{s}) ds$$

・聞き ・ 思と ・ 思と

()

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds + \int_{t}^{T} g(s, Y_{s}, Z_{s}) d\langle B \rangle_{s}$$
$$- \int_{t}^{T} Z_{s} dB_{s} - (K_{T} - K_{t}).$$

크

・ロン ・聞 と ・ 聞 と ・ 聞 と

Existing results on fully nonlinear BSDEs

•
$$f$$
 independent of z (and $g = 0$):

$$Y_t^i = \hat{\mathbb{E}}_t^{G_i} [\xi^i + \int_t^T f^i(s, Y_s) ds].$$

Peng [2005,07,10]. BSDE corresponding to (path-depedent) system of PDE:

$$\partial_t u^i + G^i(u^i, Du^i, D^2 u^i) + f^i(t, x, u^1, \cdots, u^k) = 0,$$
$$u^i(x, T) = \varphi^i(x),$$
$$i = 1, \cdots, k.$$

 G^i satisfy the dominate condition:

()

$$G^{i}(x,y,p,A) - G^{i}(x,\bar{y},\bar{p},\bar{A}) \leq c(|y-\bar{y}|+|p-p|) + \hat{G}(A-\bar{A}),$$

Existing results on fully nonlinear BSDEs

[Soner, Touzi and Zhang, 2BSDE]

• $(Y, Z, K^{\mathbb{P}})_{\mathbb{P} \in \mathcal{P}_{H}^{\kappa}}, \mathbb{P} \in \mathcal{P}_{H}^{\kappa}$, the following BSDE

$$Y_t = \xi + \int_t^T F_s(Y_s, Z_s) ds - \int_t^T Z_s dB_s + (K_T^{\mathbb{P}} - K_t^{\mathbb{P}}), \quad \mathbb{P}\text{-a.s.},$$

with

()

۲

 $\mathcal{K}^{\mathbb{P}}_t = \mathrm{ess}\inf_{\mathbb{P}'\in\mathcal{P}^{\kappa}_H(t+,\mathbb{P})}\mathbb{E}^{\mathbb{P}'}_t[\mathcal{K}^{\mathbb{P}}_T], \quad \mathbb{P}\text{-a.s.}, \quad \forall \mathbb{P}\in\mathcal{P}^{\kappa}_H, \ t\in[0,\,T].$

▲聞▶ ▲ 国▶ ▲ 国▶ 二 国
A priori estimates

•
$$(\Omega_T, L^1_G(\Omega_T), \hat{\mathbb{E}})$$

• $\Omega_T = C_0([0, T], \mathbb{R}),$
• $\overline{\sigma}^2 = \hat{\mathbb{E}}[B_1^2] \ge -\hat{\mathbb{E}}[-B_1^2] = \underline{\sigma}^2 > 0.$

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s - (K_T - K_t), \quad (\text{GBSDE})$$

where

()

$$f(t, \omega, y, z) : [0, T] \times \Omega_T \times \mathbb{R}^2 \to \mathbb{R}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Assumption: some $\beta > 1$ such that

()

(H1) for any y, z,
$$f(\cdot, \cdot, y, z) \in M_{G}^{\beta}(0, T)$$
,
(H2) $|f(t, \omega, y, z) - f(t, \omega, y', z')| \le L(|y - y'| + |z - z'|)$.

For sim(Y, Z, K) such that $Y \in S_G^{\alpha}(0, T)$, $Z \in H_G^{\alpha}(0, T)$, K: a decreasing G-martingale with $K_0 = 0$ and $K_T \in L_G^{\alpha}(\Omega_T)$.

・聞き ・ 国を ・ 国を … 国

Lemma 3.3.

()

Let X_t , X_t^n be as in the above Lemma and $\alpha^* = \frac{\alpha}{\alpha - 1}$. Assume that K is a decreasing *G*-martingale with $K_0 = 0$ and $K_T \in L_G^{\alpha^*}(\Omega_T)$. Then we have

$$\hat{\mathbb{E}}[\sup_{t\in[0,T]}|\int_0^t X_s^n dK_s - \int_0^t X_s dK_s|] \to 0 \text{ as } n \to \infty.$$

Lemma 3.4.

Let $X \in S_G^{\alpha}(0, T)$ for some $\alpha > 1$ and $\alpha^* = \frac{\alpha}{\alpha - 1}$. Assume that K^j , j = 1, 2, are two decreasing *G*-martingales with $K_0^j = 0$ and $K_T^j \in L_G^{\alpha^*}(\Omega_T)$. Then the process defined by

$$\int_0^t X_s^+ dK_s^1 + \int_0^t X_s^- dK_s^2$$

is also a decreasing G-martingale.

()

()

•
$$-dY_t^i = f(s, Y_s^i, Z_s^i)ds - Z_s^i dB_s - dK_t^i$$
, $i = 1, 2$

크

▲圖▶ ▲屋▶ ▲屋▶

()

•
$$-dY_t^i = f(s, Y_s^i, Z_s^i)ds - Z_s^i dB_s - dK_t^i$$
, $i = 1, 2$
• $|\hat{Y}_T|^2 - \int_t^T 2\hat{Y}_s \hat{f}_s ds - \int_t^T |\hat{Z}_t|^2 d\langle B \rangle_t + \int_t^T 2\hat{Y}_s \hat{Z}_s dB_s$

크

▲圖▶ ▲屋▶ ▲屋▶

()

•
$$-dY_t^i = f(s, Y_s^i, Z_s^i)ds - Z_s^i dB_s - dK_t^i$$
, $i = 1, 2$
• $|\hat{Y}_T|^2 - \int_t^T 2\hat{Y}_s \hat{f}_s ds - \int_t^T |\hat{Z}_t|^2 d\langle B \rangle_t + \int_t^T 2\hat{Y}_s \hat{Z}_s dB_s$
• $= |\hat{Y}_t|^2 + \int_t^T 2\hat{Y}_s d(K_t^1 - K_t^2)$

크

▲圖▶ ▲屋▶ ▲屋▶

()

•
$$-dY_t^i = f(s, Y_s^i, Z_s^i)ds - Z_s^i dB_s - dK_t^i$$
, $i = 1, 2$
• $|\hat{Y}_T|^2 - \int_t^T 2\hat{Y}_s \hat{f}_s ds - \int_t^T |\hat{Z}_t|^2 d\langle B \rangle_t + \int_t^T 2\hat{Y}_s \hat{Z}_s dB_s$
• $= |\hat{Y}_t|^2 + \int_t^T 2\hat{Y}_s d(K_t^1 - K_t^2)$
• $= |\hat{Y}_t|^2 + 2\int_t^T [(\hat{Y}_s)^+ dK_t^1 + (\hat{Y}_s)^- dK_t^2] - 2\int_t^T [(\hat{Y}_s)^- dK_t^1 + (\hat{Y}_s)^+ dK_t^2]$

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

()

•
$$-dY_t^i = f(s, Y_s^i, Z_s^i)ds - Z_s^i dB_s - dK_t^i$$
, $i = 1, 2$
• $|\hat{Y}_T|^2 - \int_t^T 2\hat{Y}_s \hat{f}_s ds - \int_t^T |\hat{Z}_t|^2 d\langle B \rangle_t + \int_t^T 2\hat{Y}_s \hat{Z}_s dB_s$
• $= |\hat{Y}_t|^2 + \int_t^T 2\hat{Y}_s d(K_t^1 - K_t^2)$
• $= |\hat{Y}_t|^2 + 2\int_t^T [(\hat{Y}_s)^+ dK_t^1 + (\hat{Y}_s)^- dK_t^2] - 2\int_t^T [(\hat{Y}_s)^- dK_t^1 + (\hat{Y}_s)^+ dK_t^2]$
• $\geq |\hat{Y}_t|^2 + 2\int_t^T [(\hat{Y}_s)^+ dK_t^1 + (\hat{Y}_s)^- dK_t^2]$

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国

()

•
$$-dY_t^i = f(s, Y_s^i, Z_s^i)ds - Z_s^i dB_s - dK_t^i$$
, $i = 1, 2$
• $|\hat{Y}_T|^2 - \int_t^T 2\hat{Y}_s \hat{f}_s ds - \int_t^T |\hat{Z}_t|^2 d\langle B \rangle_t + \int_t^T 2\hat{Y}_s \hat{Z}_s dB_s$
• $= |\hat{Y}_t|^2 + \int_t^T 2\hat{Y}_s d(K_t^1 - K_t^2)$
• $= |\hat{Y}_t|^2 + 2\int_t^T [(\hat{Y}_s)^+ dK_t^1 + (\hat{Y}_s)^- dK_t^2] - 2\int_t^T [(\hat{Y}_s)^- dK_t^1 + (\hat{Y}_s)^+ dK_t^2]$
• $\geq |\hat{Y}_t|^2 + 2\int_t^T [(\hat{Y}_s)^+ dK_t^1 + (\hat{Y}_s)^- dK_t^2]$
• Thus

$$|\hat{Y}_t|^2 \leq \hat{\mathbb{E}}_t[|\hat{Y}_T|^2 - \int_t^T 2\hat{Y}_s \hat{f}_s ds - \int_t^T |\hat{Z}_t|^2 d\langle B \rangle_t]$$

르

イロン 不聞 とくぼ とくぼ とう

Proposition 3.5.

()

Assume (H1)-(H2) and $(Y, Z, K_T) \in S^{\alpha}(0, T) \times \mathbb{H}^{\alpha}(0, T) \times S^{\alpha}(\Omega_T)$ solves

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s - (K_T - K_t),$$

where K is a decreasing process with $K_0 = 0$. Then

$$\hat{\mathbb{E}}[(\int_{0}^{T} |Z_{s}|^{2} ds)^{\frac{\alpha}{2}}] \leq C_{\alpha} \{ \hat{\mathbb{E}}[\sup_{t \in [0,T]} |Y_{t}|^{\alpha}]$$

$$+ (\hat{\mathbb{E}}[\sup_{t \in [0,T]} |Y_{t}|^{\alpha}])^{\frac{1}{2}} (\hat{\mathbb{E}}[(\int_{0}^{T} |f_{s}^{0}| ds)^{\alpha}])^{\frac{1}{2}} \},$$

$$\hat{\mathbb{E}}[|\mathcal{K}_{\mathcal{T}}|^{\alpha}] \leq C_{\alpha}\{\hat{\mathbb{E}}[\sup_{t\in[0,\mathcal{T}]}|Y_t|^{\alpha}] + \hat{\mathbb{E}}[(\int_0^T |f_s^0 ds)^{\alpha}]\},\$$
$$f_s^0 := |f(s,0,0)| + L^w \varepsilon$$

Proposition 3.7.

We assume (H1) and (H2). Assume that $(Y, Z, K) \in \mathfrak{S}^{\alpha}_{G}(0, T)$ for some $1 < \alpha < \beta$ is a solution (GBSDE). Then

• There exists a constant $C_{\alpha} := C(\alpha, T, \underline{\sigma}, L^{w}) > 0$ such that

$$|Y_t|^{\alpha} \leq C_{\alpha} \hat{\mathbb{E}}_t[|\xi|^{\alpha} + \int_t^T |f_s^0|^{\alpha} ds],$$

$$\hat{\mathbb{E}}[\sup_{t\in[0,T]}|Y_t|^{\alpha}] \leq C_{\alpha}\hat{\mathbb{E}}[\sup_{t\in[0,T]}\hat{\mathbb{E}}_t[|\xi|^{\alpha} + \int_0^T |f_s^0|^{\alpha}ds]],$$

where $f_s^0 = |f(s, 0, 0)| + L^w \varepsilon$.

Ő

For any given α' with α < α' < β, there exists a constant C_{α,α'} depending on α, α', Τ, <u>σ</u>, L^w such that

$$\hat{\mathbb{E}}[\sup_{t\in[0,T]}|Y_t|^{\alpha}] \leq C_{\alpha,\alpha'}\{\hat{\mathbb{E}}[\sup_{t\in[0,T]}\hat{\mathbb{E}}_t[|\xi|^{\alpha}]] + (\hat{\mathbb{E}}[\sup_{t\in[0,T]}\hat{\mathbb{E}}_t[(\int_0^T f_s^0 ds)^{\alpha'}]])^{\frac{\alpha}{\alpha'}}$$

Proposition 3.8.

()

Let f_i , i = 1, 2, satisfy (H1) and (H2). Assume

$$Y_t^i = \xi^i + \int_t^T f_i(s, Y_s^i, Z_s^i) ds - \int_t^T Z_s^i dB_s - (K_T^i - K_t^i),$$

where $Y^i \in \mathbb{S}^{\alpha}(0, T)$, $Z^i \in \mathbb{H}^{\alpha}(0, T)$, K^i is a decreasing process with $\mathcal{K}_0^i = 0$ and $\mathcal{K}_T^i \in \mathbb{L}^{\alpha}(\Omega_T)$ for some $\alpha > 1$. Set $\hat{Y}_t = Y_t^1 - Y_t^2$, $\hat{Z}_t = Z_t^1 - Z_t^2$ and $\hat{K}_t = \mathcal{K}_t^1 - \mathcal{K}_t^2$. Then there exists a constant $C_{\alpha} := C(\alpha, T, \underline{\sigma}, L^w) > 0$ such that

$$\hat{\mathbb{E}}[(\int_{0}^{T} |\hat{Z}_{s}|^{2} ds)^{\frac{\alpha}{2}}] \leq C_{\alpha}\{\|\hat{Y}\|_{S^{\alpha}}^{\alpha} + \|\hat{Y}\|_{S^{\alpha}}^{\frac{\alpha}{2}} \sum_{i=1}^{2}[||Y^{i}||_{S^{\alpha}}^{\frac{\alpha}{2}} + ||\int_{0}^{T} f_{s}^{i,0} ds||_{\alpha,G}^{\frac{\alpha}{2}}]\},$$

where $f_{s}^{i,0} = |f_{i}(s,0,0)| + L^{w}\varepsilon, \ i = 1, 2.$

Proposition 3.9.

Ő

Let $\xi^i \in L^{\beta}_{G}(\Omega_{\mathcal{T}})$ with $\beta > 1$, i = 1, 2, and f_i satisfy (H1) and (H2). Assume that $(Y^i, Z^i, K^i) \in \mathfrak{S}^{\alpha}_{G}(0, \mathcal{T})$ for some $1 < \alpha < \beta$ are the solutions of equation (GBSDE) to ξ^i and f_i . Then

(i)
$$|\hat{Y}_t|^{\alpha} \leq C_{\alpha} \hat{\mathbb{E}}_t[|\hat{\xi}|^{\alpha} + \int_t^T |\hat{f}_s|^{\alpha} ds]$$
, where
 $\hat{f}_s = |f_1(s, Y_s^2, Z_s^2) - f_2(s, Y_s^2, Z_s^2)| + L_1^w \varepsilon$

(ii) For any given α' with $\alpha < \alpha' < \beta$, there exists a constant $C_{\alpha,\alpha'}$ depending on α , α' , T, $\underline{\sigma}$, L^w such that

$$\begin{split} \hat{\mathbb{E}}[\sup_{t\in[0,T]}|\hat{Y}_t|^{\alpha}] &\leq C_{\alpha,\alpha'}\{\hat{\mathbb{E}}[\sup_{t\in[0,T]}\hat{\mathbb{E}}_t[|\hat{\xi}|^{\alpha}]] \\ &+ (\hat{\mathbb{E}}[\sup_{t\in[0,T]}\hat{\mathbb{E}}_t[(\int_0^T \hat{f}_s ds)^{\alpha'}]])^{\frac{\alpha}{\alpha'}} \\ &+ \hat{\mathbb{E}}[\sup_{t\in[0,T]}\hat{\mathbb{E}}_t[(\int_0^T \hat{f}_s ds)^{\alpha'}]]\}. \end{split}$$

Existence and uniqueness of G-BSDEs

()

$$\partial_t u + G(\partial_{xx}^2 u) + h(u, \partial_x u) = 0, \quad u(T, x) = \varphi(x).$$
 (GPDE)

르

・ロト ・聞 と ・ 聞 と ・ 聞 と …

We approximate the solution f by those of equations (GBSDE) with much simpler $\{f_n\}$. More precisely, assume that $||f_n - f||_{M^{\beta}_G} \to 0$ and (Y^n, Z^n, K^n) is the solution of the following *G*-BSDE

$$Y_t^n = \xi + \int_t^T f_n(s, Y_s^n, Z_s^n) ds - \int_t^T Z_s^n dB_s - (K_T^n - K_t^n).$$

We try to prove that (Y^n, Z^n, K^n) converges to (Y, Z, K) and (Y, Z, K) is the solution of the following *G*-BSDE

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s - (K_T - K_t).$$

()

()

Theorem

Assume that $\xi \in L_{G}^{\beta}(\Omega_{T})$, $\beta > 1$ and f satisfies (H1) and (H2). Then equation (G-BSDE) has a unique solution (Y, Z, K). Moreover, for any $1 < \alpha < \beta$ we have $Y \in S_{G}^{\alpha}(0, T)$, $Z \in H_{G}^{\alpha}(0, T)$ and $K_{T} \in L_{G}^{\alpha}(\Omega_{T})$.

()

Step 1.
$$f(t, \omega, y, z) = h(y, z), h \in C_0^{\infty}(\mathbb{R}^2)$$
.
Part 1) $\xi = \varphi(B_T - B_{t_1})$: $\exists \alpha \in (0, 1)$ s.t.,
 $||u||_{C^{1+\alpha/2,2+\alpha}([0, T-\kappa] \times \mathbb{R})} < \infty, \kappa > 0$.
Itô's formula to $u(t, B_t - B_{t_1})$ on $[t_1, T - \kappa]$, we get
 $u(t, B_t - B_{t_1}) = u(T - \kappa, B_{T-\kappa} - B_{t_1}) + \int_t^{T-\kappa} h(u, \partial_x u)(s, B_s - B_{t_1}) ds$
 $- \int_t^{T-\kappa} \partial_x u(s, B_s - B_{t_1}) dB_s - (\kappa_{T-\kappa} - \kappa_t),$

3

(日) (同) (三) (三)

where

$$\begin{aligned} \mathcal{K}_t &= \frac{1}{2} \int_{t_1}^t \partial_{xx}^2 u(\cdot) d\langle B \rangle_s - \int_{t_1}^t G(\partial_{xx}^2 u(\cdot)) ds \\ |u(t,x) - u(s,y)| &\leq L_1(\sqrt{|t-s|} + |x-y|). \end{aligned}$$

 \tilde{u} is the solution of PDE:

()

$$\partial_t \tilde{u} + G(\partial_{xx}^2 \tilde{u}) + h(\tilde{u}, \partial_x \tilde{u}) = 0,$$

 $\tilde{u}(T, x) = \varphi(x + x_0).$

3

(日) (同) (三) (三)

()

$$u(t, x + x_0) \leq u(t, x) + L_{\varphi}|x_0| \exp(L_h(T - t))$$

Since x_0 is arbitrary, we get $|u(t, x) - u(t, y)| \le \hat{L}|x - y|$, where $\hat{L} = L_{\varphi} \exp(L_h T)$. From this we can get $|\partial_x u(t, x)| \le \hat{L}$ for each $t \in [0, T]$, $x \in \mathbb{R}$. On the other hand, for each fixed $\bar{t} < \hat{t} < T$ and $x \in \mathbb{R}$, applying Itô's formula to $u(s, x + B_s - B_{\bar{t}})$ on $[\bar{t}, \hat{t}]$, we get

$$u(\bar{t},x) = \hat{\mathbb{E}}[u(\hat{t},x+B_{\hat{t}}-B_{\bar{t}}) + \int_{\bar{t}}^{\hat{t}} h(u,\partial_x u)(s,x+B_s-B_{\bar{t}})ds].$$

From this we deduce that

()

$$|u(\bar{t},x)-u(\hat{t},x)| \leq \hat{\mathbb{E}}[\hat{L}|B_{\hat{t}}-B_{\bar{t}}|+\tilde{L}|\hat{t}-\bar{t}|] \leq (\hat{L}\bar{\sigma}+\tilde{L}\sqrt{T})\sqrt{|\hat{t}-\bar{t}|},$$

where $\tilde{L} = \sup_{(x,y)\in\mathbb{R}^2} |h(x,y)|$. Thus we get (??) by taking $L_1 = \max\{\hat{L}, \hat{L}\bar{\sigma} + \tilde{L}\sqrt{T}\}$. Letting $\kappa \downarrow 0$ in Itô's equation, it is easy to verify that

$$\mathbb{\hat{E}}[|Y_{\mathcal{T}-\kappa}-\xi|^2+\int_{\mathcal{T}-\kappa}^{\mathcal{T}}|Z_t|^2dt+(K_{\mathcal{T}-\kappa}-K_{\mathcal{T}})^2]\rightarrow 0,$$

where $Y_t = u(t, B_t - B_{t_1})$ and $Z_t = \partial_X u(t, B_t - B_{t_1})$. Thus $(Y_t, Z_t, K_t)_{t \in [t_1, T]}$ is a solution of equation (GBSDE) with terminal value $\xi = \varphi(B_T - B_{t_1})$. Furthermore, it is easy to check that $Y \in S_G^{\alpha}(t_1, T)$, $Z \in H_G^{\alpha}(t_1, T)$ and $K_T \in L_G^{\alpha}(\Omega_T)$ for any $\alpha > 1$.

()

Part 2) $\xi = \psi(B_{t_1}, B_T - B_{t_1})$:

$$u(t, x, B_t - B_{t_1}) = u(T, x, B_T - B_{t_1}) + \int_t^T h(u, \partial_y u)(s, x, B_s - B_{t_1}) ds$$
$$- \int_t^T \partial_y u(\cdot) dB_s - (K_T^x - K_t^x),$$
$$K_t^x = \frac{1}{2} \int_{t_1}^t \partial_{yy}^2 u(\cdot) d\langle B \rangle_s - \int_{t_1}^t G(\partial_{yy}^2 u(\cdot)) ds.$$
$$Y_t = Y_T + \int_t^T h(Y_s, Z_s) ds - \int_t^T Z_s dB_s - (K_T - K_t),$$

()

where

$$Y_t := u(t, B_{t_1}, B_t - B_{t_1}), \quad Z_t := \partial_y u(\cdot),$$

$$K_t := \frac{1}{2} \int_{t_1}^t \partial_{yy}^2 u(\cdot) d\langle B \rangle_s - \int_{t_1}^t G(\partial_{yy}^2 u(\cdot)) ds$$

Need to prove $(Y, Z, K) \in \mathfrak{S}^{\alpha}_{G}(0, T)$. By partition of unity theorem, $\exists h_{i}^{n} \in C_{0}^{\infty}(\mathbb{R})$ s.t.

$$\lambda(\operatorname{supp}(h_i^n)) < 1/n, \quad 0 \le h_i^n \le 1,$$
$$I_{[-n,n]}(x) \le \sum_{i=1}^{k_n} h_i^n \le 1.$$

・ 「「」 ト ・ 三 ト ・ 三 ト

()

We have

$$Y_{t}^{n} = Y_{T}^{n} + \int_{t}^{T} \sum_{i=1}^{n} h(y_{s}^{n,i}, z_{s}^{n,i}) h_{i}^{n}(B_{t_{1}}) ds - \int_{t}^{T} Z_{s}^{n} dB_{s} - (K_{T}^{n} - K_{t}^{n}),$$

where

$$y_{t}^{n,i} = u(t, x_{i}^{n}, B_{t} - B_{t_{1}}), \quad z_{t}^{n,i} = \partial_{y}u(t, x_{i}^{n}, B_{t} - B_{t_{1}}),$$

$$Y_{t}^{n} = \sum_{i=1}^{n} y_{t}^{n,i}h_{i}^{n}(B_{t_{1}}), \quad Z_{t}^{n} = \sum_{i=1}^{n} z_{t}^{n,i}h_{i}^{n}(B_{t_{1}}),$$

$$K_{t}^{n} = \sum_{i=1}^{n} K_{t}^{x_{i}^{n}}h_{i}^{n}(B_{t_{1}}).$$

3

イロト イポト イヨト イヨト

Thus

$$\begin{aligned} |Y_t - Y_t^n| &\leq \sum_{i=1}^{k_n} h_i^n(B_{t_1}) |u(t, x_i^n, B_t - B_{t_1}) - u(t, B_{t_1}, B_t - B_{t_1})| \\ &+ |Y_t| I_{[|B_{t_1}| > n]} \leq \frac{L_2}{n} + \frac{||u||_{\infty}}{n} |B_{t_1}|. \end{aligned}$$

Thus

$$\mathbb{\hat{E}}[\sup_{t\in[t_1,T]}|Y_t-Y_t^n|^{\alpha}]\leq \mathbb{\hat{E}}[(\frac{L_2}{n}+\frac{||u||_{\infty}}{n}|B_{t_1}|)^{\alpha}]\to 0.$$

By the estimates

$$\hat{\mathbb{E}}[(\int_{t_1}^{T} |Z_s - Z_s^n|^2 ds)^{\alpha/2}] \le C_{\alpha}\{\hat{\mathbb{E}}[\sup_{t \in [t_1, T]} |Y_t - Y_t^n|^{\alpha}] + (\hat{\mathbb{E}}[\sup_{t \in [t_1, T]} |Y_t - Y_t^n|^{\alpha}])^{1/2}\} \to 0.$$

Thus $Z \in M^{\alpha}_{\mathcal{G}}(0,T), \ \mathcal{K}_t \in L^{\alpha}_{\mathcal{G}}(\Omega_t).$ () BSDE driven by

[Sketch of Proof of Theorem] prove K is G-martingale. Following [Li-P.], we take

$$h_i^n(x) = I_{[-n+\frac{i}{n}, -n+\frac{i+1}{n})}(x), \quad i = 0, \dots, \quad 2n^2 - 1$$
$$h_{2n^2}^n = 1 - \sum_{i=0}^{2n^2 - 1} h_i^n$$

$$\tilde{Y}_t^n = \sum_{i=0}^{2n^2} u(t, -n + \frac{i}{n}, B_t - B_{t_1}) h_i^n(B_{t_1}), \ \tilde{Z}_t^n = \sum_{i=0}^{2n^2} \partial_y u(\cdot) h_i^n(B_{t_1})$$

solves

()

$$ilde{Y}^n_t = ilde{Y}^n_T + \int_t^T h(ilde{Y}^n_s, ilde{Z}^n_s) ds - \int_t^T ilde{Z}^n_s dB_s - (ilde{K}^n_T - ilde{K}^n_t),$$

()

We have $\hat{\mathbb{E}}[(\int_{t_1}^T |Z_s - \tilde{Z}_s^n|^2 ds)^{\alpha/2}] \to 0$. Thus $\hat{\mathbb{E}}[|K_t - \tilde{K}_t^n|^{\alpha}] \to 0$ and $\hat{\mathbb{E}}_t[K_s] = K_t$. For $Y_{t_1} = u(t_1, B_{t_1}, 0)$, we can use the same method as Part 1 on $[0, t_1]$. Step 2) $f(t, \omega, y, z) = \sum_{i=1}^N f^i h^i(y, z)$ with $f^i \in M_G^0(0, T)$ and $h^i \in C_0^{\infty}(\mathbb{R}^2)$.

()

Step 3) $f(t, \omega, y, z) = \sum_{i=1}^{N} f^{i} h^{i}(y, z)$ with $f^{i} \in M_{G}^{\beta}(0, T)$ bounded and $h^{i} \in C_{0}^{\infty}(\mathbb{R}^{2}), h^{i} \geq 0$ and $\sum_{i=1}^{N} h^{i} \leq 1$: Choose

$$f_n^i \in M_G^0(0, T) ext{ s.t. } |f_n^i| \le \|f^i\|_{\infty}, \quad \sum_{i=1}^N \|f_n^i - f^i\|_{M_G^\beta} < 1/n.$$

Set $f_n := \sum_{i=1}^N f_n^i h^i(y, z)$. Let (Y^n, Z^n, K^n) be the solution of (GBSDE) with generator f_n .

$$\hat{f}_{s}^{m,n} := |f_{m}(s, Y_{s}^{n}, Z_{s}^{n}) - f_{n}(s, Y_{s}^{n}, Z_{s}^{n})| \\ \leq \sum_{i=1}^{N} |f_{n}^{i} - f^{i}| + \sum_{i=1}^{N} |f_{m}^{i} - f^{i}| =: \hat{f}_{n} + \hat{f}_{m},$$

We have, for any $1 < \alpha < \beta$,

$$\mathbb{\hat{E}}_t[(\int_0^T \hat{f}_s^{m,n} ds)^{\alpha}] \leq \mathbb{\hat{E}}_t[(\int_0^T (|\hat{f}_n(s)| + |\hat{f}_m(s)|) ds)^{\alpha}].$$

By Theorem 2.10, $\forall \alpha \in (1, \beta)$

()

$$\hat{\mathbb{E}}\left[\sup_{t}\hat{\mathbb{E}}_{t}\left[\left|\int_{0}^{T}\hat{f}_{s}^{m,n}ds\right|^{\alpha}\right]\right]\right]\rightarrow0, \ m,n\rightarrow\infty$$

By Proposition 3.9 $\{Y^n\}$ is Cauchy under $\|\cdot\|_{S^{\alpha}_G}$. By Proposition 3.7, 3.8, $\{Z^n\}$ is a also Cauchy under $\|\cdot\|_{H^{\alpha}_G}$ thus $\{\int_0^T f_n(s, Y^n_s, Z^n_s)ds\}$ under $\|\cdot\|_{L^{\alpha}_G}$ thus $\{K^n_T\}$ is also Cauchy under $\|\cdot\|_{L^{\alpha}_G}$.

()

Step 4). *f* is bounded, Lipschitz.
$$|f(t, \omega, y, z)| \leq CI_{B(R)}(y, z)$$
 for some $C, R > 0$. Here $B(R) = \{(y, z) | y^2 + z^2 \leq R^2\}$.
For any *n*, by the partition of unity theorem, there exists $\{h_n^i\}_{i=1}^{N_n}$ such that $h_n^i \in C_0^{\infty}(\mathbb{R}^2)$, the diameter of support $\lambda(\operatorname{supp}(h_n^i)) < 1/n, 0 \leq h_n^i \leq 1$, $I_{B(R)} \leq \sum_{i=1}^N h_n^i \leq 1$. Then $f(t, \omega, y, z) = \sum_{i=1}^N f(t, \omega, y, z) h_n^i$. Choose y_n^i, z_n^i such that $h_n^i(y_n^i, z_n^i) > 0$. Set

$$f_n(t,\omega,y,z) = \sum_{i=1}^N f(t,\omega,y_n^i,z_n^i)h_n^i(y,z)$$

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

()

Then

$$|f(t, \omega, y, z) - f_n(t, \omega, y, z)| \le \sum_{i=1}^{N} |f(t, \omega, y, z) - f(t, \omega, y_n^i, z_n^i)| h_n^i \le L/n$$

and

$$|f_n(t, \omega, y, z) - f_n(t, \omega, y', z')| \le L(|y - y'| + |z - z'| + 2/n).$$

Noting that $|f_m(s, Y_s^n, Z_s^n) - f_n(s, Y_s^n, Z_s^n)| \le (L/n + L/m)$,

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

()

we have

$$\hat{\mathbb{E}}_t\left[\left|\int_0^T \left(|f_m(s, Y_s^n, Z_s^n) - f_n(s, Y_s^n, Z_s^n)| + \frac{2L}{m}\right)ds|^{\alpha}\right] \leq T^{\alpha}\left(\frac{L}{n} + \frac{3L}{m}\right)^{\alpha}.$$

So by the estimates $\{Y^n\}$ cauchy under $\|\cdot\|_{S^{\alpha}_G}$. $\{Z^n\}$ is cauchy under $\|\cdot\|_{H^{\alpha}_G}$. is also cauchy $\{\int_0^T f_n(s, Y^n_s, Z^n_s)ds\}$ under $\|\cdot\|_{L^{\alpha}_G}$.

(日本) (日本) (日本) 日本

()

Step 5). f is bounded, Lipschitz. For any $n \in \mathbb{N}$, choose $h^n \in C_0^{\infty}(\mathbb{R}^2)$ such that $I_{B(n)} \leq h^n \leq I_{B(n+1)}$ and $\{h^n\}$ are uniformly Lipschitz w.r.t. n. Set $f_n = fh^n$, which are uniformly Lipschitz. Noting that for m > n

$$\begin{aligned} &|f_m(s, Y_s^n, Z_s^n) - f_n(s, Y_s^n, Z_s^n)| \\ &\leq |f(s, Y_s^n, Z_s^n)| I_{[|Y_s^n|^2 + |Z_s^n|^2 > n^2]} \\ &\leq ||f||_{\infty} \frac{|Y_s^n| + |Z_s^n|}{n}, \end{aligned}$$

()

we have

$$\begin{split} &\hat{\mathbb{E}}_t \left[\left(\int_0^T |f_m(s, Y_s^n, Z_s^n) - f_n(s, Y_s^n, Z_s^n)| ds \right)^{\alpha} \right] \\ &\leq \frac{\|f\|_{\infty}^{\alpha}}{n^{\alpha}} \hat{\mathbb{E}}_t \left[\left(\int_0^T |Y_s^n| + |Z_s^n| ds \right)^{\alpha} \right] \\ &\leq \frac{\|f\|_{\infty}^{\alpha}}{n^{\alpha}} C(\alpha, T) \hat{\mathbb{E}}_t \left[\int_0^T |Y_s^n|^{\alpha} ds + \left(\int_0^T |Z_s^n|^2 ds \right)^{\alpha/2} \right], \end{split}$$

where $C(\alpha, T) := 2^{\alpha-1}(T^{\alpha-1} + T^{\alpha/2}]).$

- 세례에 세계에 제공에 관

So by Theorem 2.10 and Proposition 3.4 we get $||\int_0^T \hat{f}_s^{m,n} ds||_{\alpha,\mathcal{E}} \to 0$ as $m, n \to \infty$ for any $\alpha \in (1, \beta)$. By Proposition 3.5, we conclude that $\{Y^n\}$ is cauchy under $\|\cdot\|_{S^{\alpha}_{G}}$. $\{Z^n\}$ cauchy sequence under $\|\cdot\|_{H^{\alpha}_{G}}$. $\{\int_0^T f_n(s, Y^n_s, Z^n_s) ds\}$ is cauchy under $\|\cdot\|_{L^{\alpha}_{G}}$:

$$\begin{aligned} &|f_n(s, Y^n, Z^n) - f_m(s, Y^m, Z^m)| \\ &\leq |f_m(s, Y^n, Z^n) - f_m(s, Y^m, Z^m)| + |f_n(s, Y^n, Z^n) - f_m(s, Y^n, Z^n)| \\ &\leq L(|\hat{Y}_s| + |\hat{Z}_s|) + |f(s, Y^n_s, Z^n_s)| \mathbf{1}_{[|Y^n_s| + |Z^n_s| > n]}, \end{aligned}$$

which implies the desired result.

()

Step 6). For the general f. Set $f_n = [f \lor (-n)] \land n$, which are uniformly Lipschitz. Choose $0 < \delta < \frac{\beta - \alpha}{\alpha} \land 1$. Then $\alpha < \alpha' = (1 + \delta)\alpha < \beta$. Since for m > n

$$|f_n(s, Y^n, Z^n) - f_m(s, Y^n, Z^n)| \le |f(s, Y^n_s, Z^n_s)| I_{[|f(s, Y^n_s, Y^n_s)| > n]} \le \frac{1}{n^{\delta}} |f(s, Y^n_s, Y^n_s)| \le \frac{1}{n^{\delta}} |f(s, Y^n_s, Y^n_s)| \le \frac{1}{n^{\delta}} |f(s, Y^n_s, Y^n_s)| \le \frac{1}{n^{\delta}} |f(s, Y^n_s, Y^n_s, Y^n_s, Y^n_s, Y^n_s)| \le \frac{1}{n^{\delta}} |f(s, Y^n_s, Y^n_s, Y^n_s, Y^n_s, Y^n_s, Y^n_s)| \le \frac{1}{n^{\delta}} |f(s, Y^n_s, Y^n_s, Y^n_s, Y^n_s, Y^n_s, Y^n_s)| \le \frac{1}{n^{\delta}} |f(s, Y^n_s, Y^n_s, Y^n_s, Y^n_s, Y^n_s, Y^n_s, Y^n_s)| \le \frac{1}{n^{\delta}} |f(s, Y^n_s, Y^n_s,$$

we have

()

$$\begin{split} &\hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}|f_{n}(s,Y^{n},Z^{n})-f_{m}(s,Y^{n},Z^{n})|ds\right)^{\alpha}\right]\\ &\leq\frac{1}{n^{\alpha\delta}}\hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}|f(s,Y^{n}_{s},Z^{n}_{s})|^{1+\delta}ds\right)^{\alpha}\right],\\ &\leq\frac{C(\alpha,T,L,\delta)}{n^{\alpha\delta}}\hat{\mathbb{E}}_{t}\left[\int_{0}^{T}|f(s,0,0)|^{\alpha'}ds+\int_{0}^{T}|Y^{n}_{s}|^{\alpha'}ds+\left(\int_{0}^{T}|Z^{n}_{s}|^{2}ds\right)^{\frac{\alpha'}{2}}\right],\\ &\text{where }C(\alpha,T,L,\delta):=3^{\alpha'-1}(T^{\alpha-1}+L^{\alpha'}T^{\frac{\alpha(1-\delta)}{2}}+T^{\alpha-1}L^{\alpha'}). \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト
Sketch of Proof of Theorem.

So by Song's estimate and a priori estimate, we get $||\int_0^T \hat{f}_s^{m,n} ds||_{\alpha,\mathcal{E}} \to 0$ as $m, n \to \infty$ for any $\alpha \in (1, \beta)$. We know that $\{Y^n\}$ is a cauchy sequence under the norm $||\cdot||_{S_G^{\alpha}}$. And consequently $\{Z^n\}$ is a cauchy sequence under the norm $||\cdot||_{H_G^{\alpha}}$. Now we prove $\{\int_0^T f_n(s, Y_s^n, Z_s^n) ds\}$ is a cauchy sequence under the norm $||\cdot||_{L_G^{\alpha}}$. In fact,

$$\begin{aligned} &|f_n(s, Y^n, Z^n) - f_m(s, Y^m, Z^m)| \\ &\leq |f_m(s, Y^n, Z^n) - f_m(s, Y^m, Z^m)| + |f_n(s, Y^n, Z^n) - f_m(s, Y^n, Z^n)| \\ &\leq L(|\hat{Y}_s| + |\hat{Z}_s|) + \frac{3^{\delta}}{n^{\delta}}(|f_s^0|^{1+\delta} + |Y_s^n|^{1+\delta} + |Z_s^n|^{1+\delta}), \end{aligned}$$

which implies the desired result.

Ő

- Avellaneda, M., Levy, A. and Paras A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2, 73-88.
- Bismut, J.M. (1973) Conjugate Convex Functions in Optimal Stochastic Control, J.Math. Anal. Apl. 44, 384–404.
- Coquet, F., Hu, Y., Memin J. and Peng, S. (2002) Filtration Consistent Nonlinear Expectations and Related g-Expectations, Probab. Theory Relat. Fields 123, 1-27.
- Denis, L. and Martini, C. (2006) A Theoretical Framework for the Pricing of Contingent Claims in the Presence of Model Uncertainty, The Annals of Applied Probability, vol. 16, No. 2, pp 827-852.
- Denis, L., Hu, M. and Peng S.(2011) Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes, Potential Anal., 34: 139-161.
- El Karoui, N., Peng, S., Quenez, M.C., Backward stochastic differential equations in finance, Math. Finance 7, 1-71, 1997.

ິ

▲御▶ ▲唐▶ ▲唐▶ 三唐

- Hu, M. and Peng, S.(2009) On representation theorem of *G-expectations and paths of G-Brownian motion*. Acta Math. Appl. Sin. Engl. Ser., 25,(3): 539-546, 2009.
- Krylov, N.V.(1987) Nonlinear Parabolic and Elliptic Equations of the Second Order, Reidel Publishing Company. (Original Russian Version by Nauka, Moscow, 1985).
- Li, X and Peng, S.(2011) *Stopping times and related Itô's calculus with G-Brownian motion,* Stochastic Processes and their Applications, 121: 1492-1508.
 - Pardoux E. and Peng, S.(1990) Adapted Solutions of Backward Stochastic Equations, Systerm and Control Letters, 14: 55-61.
- Peng, S. (1991) *Probabilistic Interpretation for Systems of Quasilinear Parabolic Partial Differential Equations*, Stochastics, 37, 61–74.
- Pardoux, E. and Peng, S. (1992) *Backward stochastic differential* equations and quasilinear parabolic partial differential equations,

Ő

Stochastic partial differential equations and their applications, Proc. IFIP, LNCIS 176, 200–217.

- Peng, S. (1992) A Generalized Dynamic Programming Principle and Hamilton-Jacobi-Bellmen equation, Stochastics, 38, 119–134.
- Peng, S. (1997) BSDE and related g-expectation, in Pitman Research Notes in Mathematics Series, No. 364, Backward Stochastic Differential Equation, N. El Karoui and L. Mazliak (edit.), 141-159.
- Peng, S. (2004) Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Mathematicae Applicatae Sinica, 20(2) 1–24.
- Peng, S. (2005) Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. 26B(2) 159–184.
- Peng, S.(2007) G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô type, Stochastic analysis and applications, 541-567, Abel Symp., 2, Springer, Berlin.

()

- Peng, S.(2007) G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty, arXiv:0711.2834v1 [math.PR].
- Peng, S.(2008) Multi-Dimensional G-Brownian Motion and Related Stochastic Calculus under G-Expectation, Stochastic Processes and their Applications, 118(12): 2223-2253.
- Peng, S.(2008) A New Central Limit Theorem under Sublinear Expectations, arXiv:0803.2656v1 [math.PR].
- Peng, S.(2009) Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, 52(7): 1391-1411.
- Peng, S.(2010) *Nonlinear Expectations and Stochastic Calculus under Uncertainty*, arXiv:1002.4546v1 [math.PR].
 - Peng, S.(2010) *Backward Stochastic Differential Equation, Nonlinear Expectation and Their Applications*, in Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010.

Ő

・ 同 ト ・ ヨ ト ・ ヨ ト

- Peng, S., Song, Y. and Zhang, J. (2012) A Complete Representation Theorem for G-martingales, Preprint, arXiv:1201.2629v1.
- Soner, M., Touzi, N. and Zhang, J.(2011) *Martingale Representation Theorem under G-expectation*, Stochastic Processes and their Applications, 121: 265-287.
- Soner M, Touzi N, Zhang J.(2012) Wellposedness of Second Order Backward SDEs, Probability Theory and Related Fields, 153(1-2): 149-190.
- Song, Y.(2011) Some properties on *G*-evaluation and its applications to *G*-martingale decomposition, Science China Mathematics, 54(2): 287-300.
- Song, Y.(2012) Uniqueness of the representation for G-martingales with finite variation, Electron. J. Probab. 17 no. 24 1-15.

Ő

Thanks!

()

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □