BSDE driven by G-Brownian Motion

Shige Peng, Shandong University, China Joint work with Mingshang HU, Shaolin JI and Yongsheng SONG

The 8th Workshop on Markov Processes and Related Topics

16, July, 2012, Beijing Normal University

Uncertainty and Risk

- How to understand uncertainty in order to quantitatively control risks become a worldwide main concerned problem.

Uncertainty and Risk

- How to understand uncertainty in order to quantitatively control risks become a worldwide main concerned problem.
- This problem is even urgent since 2008 after the last financial crisis which caused a worldwide economic disaster.

Uncertainty and Risk

- How to understand uncertainty in order to quantitatively control risks become a worldwide main concerned problem.
- This problem is even urgent since 2008 after the last financial crisis which caused a worldwide economic disaster.
- new mathematical concept and calculation tool called nonlinear expectation theory which take the risk of model uncertainty (Knightian uncertainty) into account.

Uncertainty and Risk

- How to understand uncertainty in order to quantitatively control risks become a worldwide main concerned problem.
- This problem is even urgent since 2008 after the last financial crisis which caused a worldwide economic disaster.
- new mathematical concept and calculation tool called nonlinear expectation theory which take the risk of model uncertainty (Knightian uncertainty) into account.
- Important: The existing results in probability theory, stochastic controls, mathematical finance, risk measures and risk controls are our rich sources.
- Title: Nonlinear Expectations, Stochastic Calculus under Knightian Uncertainty and Related Topics
- Time period (around): 3rd Jun to 12th Jul 2013
- (6 weeks, summer school and two workshops)
- Proposed by: M. Dai, H. Föllmer, J. Hinz (NUS) S. Peng, (SDU) J. Xia (AMSS, China) J. Zhang (USC)

Developments of research on uncertainty- an uncertain process?

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.

Developments of research on uncertainty- an uncertain process?

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, 132 1025-1028

Developments of research on uncertainty- an uncertain process?

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, 132 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, 17 549-560

Developments of research on uncertainty- an uncertain process?

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, 132 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, 17 549-560
- P. Daniell (1918-1920): Daniell's integral

Developments of research on uncertainty- an uncertain process?

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, 132 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, 17 549-560
- P. Daniell (1918-1920): Daniell's integral
- R. Wiener (1921-1923, 1924) Brownian motion (Wiener process) using Daniell's integral

Developments of research on uncertainty- an uncertain process?

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, 132 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, 17 549-560
- P. Daniell (1918-1920): Daniell's integral
- R. Wiener (1921-1923, 1924) Brownian motion (Wiener process) using Daniell's integral
- A. N. Kolmogorov (1933) Grundbegrie der Wahrscheinlichkeitsrechnung, Springer Berlin

Developments of research on uncertainty- an uncertain process?

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, 132 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, 17 549-560
- P. Daniell (1918-1920): Daniell's integral
- R. Wiener (1921-1923, 1924) Brownian motion (Wiener process) using Daniell's integral
- A. N. Kolmogorov (1933) Grundbegrie der Wahrscheinlichkeitsrechnung, Springer Berlin
- K. Itô (1942) Differential equations determining a Markov process, J. Pan-Japan Math. Colloq. (in Japanese)

Developments of research on uncertainty- an uncertain process?

- L. Bachelier (1900) Théorie de la Spéculation, Thesis.
- H. Lebesgue (1901) Sur une generalisation de l'integrale definie, CRAS, 132 1025-1028
- A. Einstein (1905) Investigations on the theory of the Brownian movement (originally in German), Annalen der Physik, 17 549-560
- P. Daniell (1918-1920): Daniell's integral
- R. Wiener (1921-1923, 1924) Brownian motion (Wiener process) using Daniell's integral
- A. N. Kolmogorov (1933) Grundbegrie der Wahrscheinlichkeitsrechnung, Springer Berlin
- K. Itô (1942) Differential equations determining a Markov process, J. Pan-Japan Math. Colloq. (in Japanese)
- W. Doeblin (1940, Pli cacheté)

Kolmogorov's Probability Space (Ω, \mathcal{F}, P)

A fundamental and powerful theory and methodology to treat uncertainties

- A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933
(Foundations of the Theory of Probability, Chelsea, New York),

Kolmogorov's Probability Space (Ω, \mathcal{F}, P)

A fundamental and powerful theory and methodology to treat uncertainties

- A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933
(Foundations of the Theory of Probability, Chelsea, New York),
- Probability Space (Ω, \mathcal{F}, P)

Kolmogorov's Probability Space (Ω, \mathcal{F}, P)

A fundamental and powerful theory and methodology to treat uncertainties

- A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933
(Foundations of the Theory of Probability, Chelsea, New York),
- Probability Space (Ω, \mathcal{F}, P)
- Hilbert's 6th problem

Impacts in Economics \& Math. Finance

- The von Neumann-Morgenstern utility axioms (1953) $E[U(X)]$; Theory of Games and Economic Behavior, Princeton;

Impacts in Economics \& Math. Finance

- The von Neumann-Morgenstern utility axioms (1953) $E[U(X)]$; Theory of Games and Economic Behavior, Princeton;
- P. A. Samuelson, Rational theory of warrant pricing, 1964
- The von Neumann-Morgenstern utility axioms (1953) $E[U(X)]$; Theory of Games and Economic Behavior, Princeton;
- P. A. Samuelson, Rational theory of warrant pricing, 1964
- Black-Scholes-Merton option pricing: $C(S, t)=N\left(d_{1}\right)-N\left(d_{2}\right) K e^{-r(T-1)}$,
- The von Neumann-Morgenstern utility axioms (1953) $E[U(X)]$; Theory of Games and Economic Behavior, Princeton;
- P. A. Samuelson, Rational theory of warrant pricing, 1964
- Black-Scholes-Merton option pricing: $C(S, t)=N\left(d_{1}\right)-N\left(d_{2}\right) K e^{-r(T-1)}$,
- $d S(t)=\mu S(t) d t+\sigma S(t) d W(t)$

Frank H. Knight (1921) "Risk, Uncertainty and Profit"

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."
- "Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated."

Frank H. Knight (1921) "Risk, Uncertainty and Profit"

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."
- "Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated."

Knightian's Risk
Probability (and prob. distribution) are known.

Frank H. Knight (1921) "Risk, Uncertainty and Profit"

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."
- "Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated."

Knightian's Risk

Probability (and prob. distribution) are known.

Knightian uncertainty

The prob. and distr. are unknown- "uncertainty of probability measures".

- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- Kahneman \& Tversky (1979-1992): prospective theory by distorted probability;
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- Kahneman \& Tversky (1979-1992): prospective theory by distorted probability;
- Gilboa \& Schmeidler (1989) Maximin expected utility; Hansen \& Sargent (2000) Multiplier preference.
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- Kahneman \& Tversky (1979-1992): prospective theory by distorted probability;
- Gilboa \& Schmeidler (1989) Maximin expected utility; Hansen \& Sargent (2000) Multiplier preference.
- Hansen \& Sargent: Robust control method.

Motivated from g-Expectation [P.1994-1997]

- Given r.v. $X(\omega)$, solve the BSDE

$$
d y(t)=-g(y(t), z(t)) d t+z(t) d B(t), \quad y(T)=X(\omega)
$$

Motivated from g-Expectation [P.1994-1997]

- Given r.v. $X(\omega)$, solve the BSDE

$$
d y(t)=-g(y(t), z(t)) d t+z(t) d B(t), \quad y(T)=X(\omega)
$$

- Then define:

$$
\mathbb{E}^{g}[X]:=y(0), \quad \mathbb{E}^{g}\left[X \mid(B(s))_{s \in[0, t]}\right]:=y(t)
$$

- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Coquet-Hu-Memin-P.: dominated dynamic expectations are g expectations;
- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Coquet-Hu-Memin-P.: dominated dynamic expectations are g expectations;
- Delbaen-P.-Rosazza, 2008: If a dynamic expectation \mathcal{E} is absolutely continuous w.r.t. P then there exists a unique g such that $\mathcal{E}=\mathcal{E}_{g}$.
- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Coquet-Hu-Memin-P.: dominated dynamic expectations are g expectations;
- Delbaen-P.-Rosazza, 2008: If a dynamic expectation \mathcal{E} is absolutely continuous w.r.t. P then there exists a unique g such that $\mathcal{E}=\mathcal{E}_{g}$.
- Serious problem: under volatility uncertainty, it is impossible to find a reference probability measure
- Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math. finance.
- g-expectations provides dynamic coherent risk measure, Rosazza (2005), S.P. (2004)
- Coquet-Hu-Memin-P.: dominated dynamic expectations are g expectations;
- Delbaen-P.-Rosazza, 2008: If a dynamic expectation \mathcal{E} is absolutely continuous w.r.t. P then there exists a unique g such that $\mathcal{E}=\mathcal{E}_{g}$.
- Serious problem: under volatility uncertainty, it is impossible to find a reference probability measure
- State dependent Markovian case: Avellaneda, M., Levy, A. and Paras A. (1995), T. Lyons (1995).
- Longtime blockage...
- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium 2005 (Springer2007).
- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium 2005 (Springer2007).
- Denis, L. and Martini, C. (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, The Ann. of Appl. Probability
- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium 2005 (Springer2007).
- Denis, L. and Martini, C. (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, The Ann. of Appl. Probability
- [Peng2008-SPA] Multi-Dim G-Brownian Motion and Related Stochastic Calculus.
- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium 2005 (Springer2007).
- Denis, L. and Martini, C. (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, The Ann. of Appl. Probability
- [Peng2008-SPA] Multi-Dim G-Brownian Motion and Related Stochastic Calculus.
- [Denis-Hu-Peng2008] Capacity related to Sublinear Expectations: appl. to G-Brownian Motion Paths.

Related works

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.

Related works

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT

Related works

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081-1110.

Related works

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081-1110.
- Soner, H. M. Touzi, N. and Zhang, J. (2011) Dual Formulation of Second Order Target Problems, arxiv: 1003.6050.

Related works

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081-1110.
- Soner, H. M. Touzi, N. and Zhang, J. (2011) Dual Formulation of Second Order Target Problems, arxiv: 1003.6050.
- 2BSDE: by A. Matoussi, Possamai, Zhao, ...

Related works

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081-1110.
- Soner, H. M. Touzi, N. and Zhang, J. (2011) Dual Formulation of Second Order Target Problems, arxiv: 1003.6050.
- 2BSDE: by A. Matoussi, Possamai, Zhao, ...
- L. Epstein and S. Ji (2012) Ambiguous volatility, possibility and utility in continuous time, (by random G-expectations).

Related works

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.

Related works

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF

Related works

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations

Related works

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations
- M. Nutz (2010) Random G-expectations,

Related works

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations
- M. Nutz (2010) Random G-expectations,
- S. Cohen (2011) Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces.

Related works

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations
- M. Nutz (2010) Random G-expectations,
- S. Cohen (2011) Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces.
- P.-Song-Zhang (2012) A Complete Representation Theorem for G-martingales;

Related works

- M. Soner, N. Touzi, and J. Zhang (2011) Martingale representation theorem for the G-expectation. in SPA.
- Soner, Touzi, Zhang, (2011) Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- Soner, Touzi, Zhang (2010) Well posedness of 2nd order BSDEs to appear in PTRF
- Song Y. 2007,2010, (2012Electronic JP) Uniqueness of the representation for G-martingales, (2011, SPA) Properties of hitting times for G-martingales
- Y. Dolinsky, M. Nutz, M. Soner, Weak Approximation of G-Expectations
- M. Nutz (2010) Random G-expectations,
- S. Cohen (2011) Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces.
- P.-Song-Zhang (2012) A Complete Representation Theorem for G-martingales;
- Nutz \& van Handel (2012) Constructing Sublinear Expectations on
- Chen, Z. J. and Xiong, J., Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- F. Gao, A variational representation and large deviations for functionals of G-Brownian motion, 2012, preprint.
- Chen, Z. J. and Xiong, J., Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- F. Gao, A variational representation and large deviations for functionals of G-Brownian motion, 2012, preprint.
- F. Gao, Pathwise properties and homeomorphic for stochastic differential equatios driven by G-Brownian motion. SPA, 119(2009)
- Chen, Z. J. and Xiong, J., Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- F. Gao, A variational representation and large deviations for functionals of G-Brownian motion, 2012, preprint.
- F. Gao, Pathwise properties and homeomorphic for stochastic differential equatios driven by G-Brownian motion. SPA, 119(2009)
- Large Deviations for Stochastic Differential Equations Driven by G-Brownian Motion. Stoch. Proc. Appl., 120 (2010)
- Chen, Z. J. and Xiong, J., Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- F. Gao, A variational representation and large deviations for functionals of G-Brownian motion, 2012, preprint.
- F. Gao, Pathwise properties and homeomorphic for stochastic differential equatios driven by G-Brownian motion. SPA, 119(2009)
- Large Deviations for Stochastic Differential Equations Driven by G-Brownian Motion. Stoch. Proc. Appl., 120 (2010)
- M. Hu, S. Ji, S. P. \& S. Song, (2012) Backward Stochastic Differential Equations driven by G-Brownian Motions.
- Peng, S. Notes: Nonlinear Expectations and Stochastic Calculus under Uncertainty, arxiv 2010.
- Peng, S. Notes: Nonlinear Expectations and Stochastic Calculus under Uncertainty, arxiv 2010.
- Mingshang Hu, Shaolin Ji, Shige Peng, Yongsheng Song Backward Stochastic Differential Equations Driven by G-Brownian Motion, arXiv:1206.5889v1 [math.PR] (26 Jun.) 2012.

Expectation framework-G-framework

- Ω : space of scenarios;

Expectation framework-G-framework

- Ω : space of scenarios;
- \mathcal{H} a linear space of risk positions or (risk losses) containing constants (real functions defined on Ω) s.t.

$$
X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}
$$

Expectation framework-G-framework

- Ω : space of scenarios;
- \mathcal{H} a linear space of risk positions or (risk losses) containing constants (real functions defined on Ω) s.t.

$$
X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}
$$

- We often "equivalently" assume:

$$
X_{1}, \cdots, X_{n} \in \mathcal{H} \Longrightarrow \varphi\left(X_{1}, \cdots, X_{n}\right) \in \mathcal{H}, \quad \forall \varphi \in C_{L i p}\left(\mathbb{R}^{n}\right)
$$

Daniell's Expectation: $(\Omega, \mathcal{H}, \mathbb{E})$ v.s. $(\Omega, \mathcal{F}, \mathbb{P})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $E[X] \geq E[Y]$, if $X \geq Y$

Daniell's Expectation: $(\Omega, \mathcal{H}, \mathbb{E})$ v.s. $(\Omega, \mathcal{F}, \mathbb{P})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $E[X] \geq E[Y]$, if $X \geq Y$
(b) $E[c]=c$,

Daniell's Expectation: $(\Omega, \mathcal{H}, \mathbb{E})$ v.s. $(\Omega, \mathcal{F}, \mathbb{P})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $E[X] \geq E[Y]$, if $X \geq Y$
(b) $E[c]=c$,
(c) $E[X+Y]=E[X]+E[Y]$,

Daniell's Expectation: $(\Omega, \mathcal{H}, \mathbb{E})$ v.s. $(\Omega, \mathcal{F}, \mathbb{P})$
$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $E[X] \geq E[Y]$, if $X \geq Y$
(b) $E[c]=c$,
(c) $E[X+Y]=E[X]+E[Y]$,
(d) $E[\lambda X]=\lambda E[X], \quad \lambda \geq 0$.

Daniell's Expectation: $(\Omega, \mathcal{H}, \mathbb{E})$ v.s. $(\Omega, \mathcal{F}, \mathbb{P})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $E[X] \geq E[Y]$, if $X \geq Y$
(b) $E[c]=c$,
(c) $E[X+Y]=E[X]+E[Y]$,
(d) $E[\lambda X]=\lambda E[X], \quad \lambda \geq 0$. $E\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Daniell's Expectation: $(\Omega, \mathcal{H}, \mathbb{E})$ v.s. $(\Omega, \mathcal{F}, \mathbb{P})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $E[X] \geq E[Y]$, if $X \geq Y$
(b) $E[c]=c$,
(c) $E[X+Y]=E[X]+E[Y]$,
(d) $E[\lambda X]=\lambda E[X], \quad \lambda \geq 0$. $E\left[X_{i}\right] \downarrow 0, \quad$ if $\quad X_{i}(\omega) \downarrow 0, \forall \omega$

Theorem (Daniell-Stone Theorem)

There exists a unique prob. measure P on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$
E[X]=\int_{\Omega} X(\omega) P(\omega) .
$$

Extension: Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$

Extension: Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y], \quad$ if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,

Extension: Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear

Extension: Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.

Extension: Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.
$\hat{\mathbb{E}}\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Extension: Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.
$\hat{\mathbb{E}}\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Theorem (Robust Daniell-Stone Theorem)

- There exists a family of $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ of prob. measures on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$
\hat{\mathbb{E}}[X]=\sup _{\theta \in \Theta} E_{\theta}[X]=\sup _{\theta \in \Theta} \int_{\Omega} X(\omega) P_{\theta}(\omega), \quad \text { for each } X \in \mathcal{H} .
$$

Extension: Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.
$\hat{\mathbb{E}}\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Theorem (Robust Daniell-Stone Theorem)

- There exists a family of $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ of prob. measures on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$
\hat{\mathbb{E}}[X]=\sup _{\theta \in \Theta} E_{\theta}[X]=\sup _{\theta \in \Theta} \int_{\Omega} X(\omega) P_{\theta}(\omega), \quad \text { for each } X \in \mathcal{H} .
$$

- For each given $X \in \mathcal{H}$,

$$
\hat{\mathbb{E}}[\varphi(X)]=\sup _{\theta \in \Theta} \int_{\mathbb{R}} \varphi(x) d F_{\theta}(x), \quad F_{\theta}(x)=P_{\theta}(X \leq x) .
$$

- Huber Robust Statistics (1981), for finite state case.
- Artzner-Delbean, Eber-Heath (1999), Delbean2002,
- Föllmer \& Schied $(2002,2004)$, Fritelli \& Rosazza-Gianin (2002)

Robust representation of a coherent risk measure

- Huber Robust Statistics (1981), for finite state case.
- Artzner-Delbean, Eber-Heath (1999), Delbean2002,
- Föllmer \& Schied $(2002,2004)$, Fritelli \& Rosazza-Gianin (2002)

Theorem (Robust Representation of coherent risk measure)

$\hat{\mathbb{E}}[\cdot]$ is a sublinear expectation iff there exists a family $\left\{E_{\theta}\right\}_{\theta \in \Theta}$ of linear expectations s.t.

$$
\hat{\mathbb{E}}[X]=\sup _{\theta \in \Theta} E_{\theta}[X], \quad \forall X \in \mathcal{H}
$$

Robust representation of a coherent risk measure

- Huber Robust Statistics (1981), for finite state case.
- Artzner-Delbean, Eber-Heath (1999), Delbean2002,
- Föllmer \& Schied $(2002,2004)$, Fritelli \& Rosazza-Gianin (2002)

Theorem (Robust Representation of coherent risk measure)

$\hat{\mathbb{E}}[\cdot]$ is a sublinear expectation iff there exists a family $\left\{E_{\theta}\right\}_{\theta \in \Theta}$ of linear expectations s.t.

$$
\hat{\mathbb{E}}[X]=\sup _{\theta \in \Theta} E_{\theta}[X], \quad \forall X \in \mathcal{H}
$$

Meaning:

Sublinear expectation corresponds the Knightian uncertainty of probabilities: $\left\{P_{\theta}\right\}_{\theta \in \Theta}$

Uncertainty version of distributions in $(\Omega, \mathcal{H}, \widehat{\mathbb{E}})$

Definition

- $X \sim Y$ if they have the same distribution uncertainty

$$
X \sim Y \Longleftrightarrow \hat{\mathbb{E}}[\varphi(X)]=\hat{\mathbb{E}}[\varphi(Y)], \quad \forall \varphi \in C_{b}\left(\mathbb{R}^{n}\right)
$$

Uncertainty version of distributions in $(\Omega, \mathcal{H}, \widehat{\mathbb{E}})$

Definition

- $X \sim Y$ if they have the same distribution uncertainty

$$
X \sim Y \Longleftrightarrow \hat{\mathbb{E}}[\varphi(X)]=\hat{\mathbb{E}}[\varphi(Y)], \quad \forall \varphi \in C_{b}\left(\mathbb{R}^{n}\right)
$$

- Y Indenp. of X if each realization " $X=x$ " does not change the distribution of Y :

Uncertainty version of distributions in $(\Omega, \mathcal{H}, \widehat{\mathbb{E}})$

Definition

- $X \sim Y$ if they have the same distribution uncertainty

$$
X \sim Y \Longleftrightarrow \hat{\mathbb{E}}[\varphi(X)]=\hat{\mathbb{E}}[\varphi(Y)], \quad \forall \varphi \in C_{b}\left(\mathbb{R}^{n}\right)
$$

- Y Indenp. of X if each realization " $X=x$ " does not change the distribution of Y :

$$
Y \text { indenp. of } X \Longleftrightarrow \hat{\mathbb{E}}[\varphi(X, Y)]=\hat{\mathbb{E}}\left[\hat{\mathbb{E}}[\varphi(x, Y)]_{x=X}\right] .
$$

Central Limit Theorem (CLT) under Knightian Uncertainty

Theorem

Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ be i.i.d.: $X_{i} \sim X_{1}$ and X_{i+1} Indep. $\left(X_{1}, \cdots, X_{i}\right)$. Assume:

$$
\hat{\mathbb{E}}\left[\left|X_{1}\right|^{2+\alpha}\right]<\infty \quad, \hat{\mathbb{E}}\left[X_{1}\right]=\hat{\mathbb{E}}\left[-X_{1}\right]=0
$$

Then:

$$
\lim _{n \rightarrow \infty} \hat{\mathbb{E}}\left[\varphi\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\right)\right]=\hat{\mathbb{E}}[\varphi(X)], \forall \varphi \in C_{b}(\mathbb{R})
$$

with $X \sim N\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$, where

$$
\bar{\sigma}^{2}=\hat{\mathbb{E}}\left[X_{1}^{2}\right], \quad \underline{\sigma}^{2}=-\hat{\mathbb{E}}\left[-X_{1}^{2}\right] .
$$

Normal distributions under Knightian uncertainty

Definition

A loss position X in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is normally in uncertainty distribution if

$$
a X+b \bar{X} \sim \sqrt{a^{2}+b^{2}} X, \quad \forall a, b \geq 0
$$

where \bar{X} is an independent copy of X.

Normal distributions under Knightian uncertainty

Definition

A loss position X in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is normally in uncertainty distribution if

$$
a X+b \bar{X} \sim \sqrt{a^{2}+b^{2}} X, \quad \forall a, b \geq 0
$$

where \bar{X} is an independent copy of X.

- $\hat{\mathbb{E}}[X]=\hat{\mathbb{E}}[-X]=0$.

Normal distributions under Knightian uncertainty

Definition

A loss position X in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is normally in uncertainty distribution if

$$
a X+b \bar{X} \sim \sqrt{a^{2}+b^{2}} X, \quad \forall a, b \geq 0
$$

where \bar{X} is an independent copy of X.

- $\hat{\mathbb{E}}[X]=\hat{\mathbb{E}}[-X]=0$.
- $X \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$, where

$$
\bar{\sigma}^{2}:=\hat{\mathbb{E}}\left[X^{2}\right], \quad \underline{\sigma}^{2}:=-\hat{\mathbb{E}}\left[-X^{2}\right] .
$$

Brownian Motion $\left(B_{t}(\omega)\right)_{t \geq 0}$ in $\left.(\Omega, \mathcal{F}, \hat{\mathbb{E}})\right)$

Definition

B is called $a G$-Brownian motion if:

Brownian Motion $\left(B_{t}(\omega)\right)_{t \geq 0}$ in $\left.(\Omega, \mathcal{F}, \hat{\mathbb{E}})\right)$

Definition

B is called $a G$-Brownian motion if:

- For each $t_{1} \leq \cdots \leq t_{n}, B_{t_{n}}-B_{t_{n-1}}$ is indep. of $\left(B_{t_{1}}, \cdots, B_{t_{n-1}}\right)$.

Brownian Motion $\left(B_{t}(\omega)\right)_{t \geq 0}$ in $\left.(\Omega, \mathcal{F}, \hat{\mathbb{E}})\right)$

Definition

B is called $a G$-Brownian motion if:

- For each $t_{1} \leq \cdots \leq t_{n}, B_{t_{n}}-B_{t_{n-1}}$ is indep. of $\left(B_{t_{1}}, \cdots, B_{t_{n-1}}\right)$.
- $B_{t} \stackrel{d}{=} B_{s+t}-B_{s}$, for all $s, t \geq 0$

Brownian Motion $\left(B_{t}(\omega)\right)_{t \geq 0}$ in $\left.(\Omega, \mathcal{F}, \hat{\mathbb{E}})\right)$

Definition

B is called $a G$-Brownian motion if:

- For each $t_{1} \leq \cdots \leq t_{n}, B_{t_{n}}-B_{t_{n-1}}$ is indep. of $\left(B_{t_{1}}, \cdots, B_{t_{n-1}}\right)$.
- $B_{t} \stackrel{d}{=} B_{s+t}-B_{s}$, for all $s, t \geq 0$
- $\hat{\mathbb{E}}\left[\left|B_{t}\right|^{3}\right]=o(t)$.

Brownian Motion $\left(B_{t}(\omega)\right)_{t \geq 0}$ in $\left.(\Omega, \mathcal{F}, \hat{\mathbb{E}})\right)$

Definition

B is called $a G$-Brownian motion if:

- For each $t_{1} \leq \cdots \leq t_{n}, B_{t_{n}}-B_{t_{n-1}}$ is indep. of $\left(B_{t_{1}}, \cdots, B_{t_{n-1}}\right)$.
- $B_{t} \stackrel{d}{=} B_{s+t}-B_{s}$, for all $s, t \geq 0$
- $\hat{\mathbb{E}}\left[\left|B_{t}\right|^{3}\right]=o(t)$.

Theorem.

If $\left(B_{t}(\omega)\right)_{t \geq 0}$ is a G-Brownian motion and $\hat{\mathbb{E}}\left[B_{t}\right]=\hat{\mathbb{E}}\left[-B_{t}\right] \equiv 0$ then: $B_{t+s}-B_{s} \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2} t, \bar{\sigma}^{2} t\right]\right), \forall s, t \geq 0$

Construct $G-\mathrm{BM}$ on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

- $\Omega:=C(0, \infty ; \mathbb{R}), B_{t}(\omega)=\omega_{t}$

Construct $G-B M$ on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

- $\Omega:=C(0, \infty ; \mathbb{R}), B_{t}(\omega)=\omega_{t}$
- $\mathcal{H}:=\left\{X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}, \cdots, B_{t_{n}}\right), t_{i} \in[0, \infty), \varphi \in C_{\text {Lip }}\left(\mathbb{R}^{n}\right), n \in\right.$ $\mathbb{Z}\}$

Construct G-BM on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

- $\Omega:=C(0, \infty ; \mathbb{R}), B_{t}(\omega)=\omega_{t}$
- $\mathcal{H}:=\left\{X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}, \cdots, B_{t_{n}}\right), t_{i} \in[0, \infty), \varphi \in C_{L i p}\left(\mathbb{R}^{n}\right), n \in\right.$ $\mathbb{Z}\}$
- For each $X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{n}}-B_{t_{n-1}}\right)$, with $t_{i}<t_{i+1}$, we set

$$
\hat{\mathbb{E}}[X]:=\tilde{\mathbb{E}}\left[\varphi\left(\sqrt{t_{1}} \xi_{1}, \sqrt{t_{2}-t_{1}} \xi_{2}, \cdots, \sqrt{t_{n}-t_{n-1}} \xi_{n}\right)\right]
$$

where
$\xi_{i} \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right), \xi_{i+1}$ is indep. of $\left(\xi_{1}, \cdots, \xi_{i}\right)$ under $\tilde{\mathbb{E}}$.

Construct $G-\mathrm{BM}$ on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

- $\Omega:=C(0, \infty ; \mathbb{R}), B_{t}(\omega)=\omega_{t}$
- $\mathcal{H}:=\left\{X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}, \cdots, B_{t_{n}}\right), t_{i} \in[0, \infty), \varphi \in C_{L i p}\left(\mathbb{R}^{n}\right), n \in\right.$ $\mathbb{Z}\}$
- For each $X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{n}}-B_{t_{n-1}}\right)$, with $t_{i}<t_{i+1}$, we set

$$
\hat{\mathbb{E}}[X]:=\tilde{\mathbb{E}}\left[\varphi\left(\sqrt{t_{1}} \xi_{1}, \sqrt{t_{2}-t_{1}} \xi_{2}, \cdots, \sqrt{t_{n}-t_{n-1}} \xi_{n}\right)\right]
$$

where

$$
\xi_{i} \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right), \xi_{i+1} \text { is indep. of }\left(\xi_{1}, \cdots, \xi_{i}\right) \text { under } \tilde{\mathbb{E}} .
$$

- Conditional expectation:

$$
\hat{\mathbb{E}}_{t_{1}}[X]=\tilde{\mathbb{E}}\left[\varphi\left(x, \sqrt{t_{2}-t_{1}} \xi_{2}, \cdots, \sqrt{t_{n}-t_{n-1}} \xi_{n}\right)\right]_{x=B_{t_{1}}}
$$

Probability v.s. Nonlinear Expectation

Probability Space	Nonlinear Expectation Space
(Ω, \mathcal{F}, P)	$(\Omega, \mathcal{H}, \mathbb{E}):$ (sublinear is basic)
Distributions: $X \stackrel{d}{=} Y$	$X \stackrel{d}{=} Y$,
Independence: Y indep. of X	Y indep. of X, (non-symm.)
LLN and CLT	LLN + CTL
Normal distributions	G-Normal distributions
Brownian motion $B_{t}(\omega)=\omega_{t}$	G-B.M. $B_{t}(\omega)=\omega_{t}$,
Qudratic variat. $\langle B\rangle_{t}=t$	$\langle B\rangle_{t}:$ still a G-Brownian motion
Lévy process	G-Lévy process

Probability v.s. Nonlinear Expectation

Probability Space	Nonlinear Expectation Space
Itô's calculus for BM	Itô's calculus for G-BM
SDE $d x_{t}=b\left(x_{t}\right) d t+\sigma\left(x_{t}\right) d B_{t}$	$d x_{t}=\cdots+\beta\left(x_{t}\right) d\langle B\rangle_{t}$
Diffusion: $\partial_{t} u-\mathcal{L} u=0$	$\partial_{t} u-G\left(D u, D^{2} u\right)=0$
Markovian pro. and semi-grou	Nonlinear Markovian
Martingales	G-Martingales
$E\left[X \mid \mathcal{F}_{t}\right]=E[X]+\int_{0}^{T} z_{s} d B_{s}$	$\mathbb{E}\left[X \mid \mathcal{F}_{t}\right]=\mathbb{E}[X]+\int_{0}^{t} z_{s} d B_{s}+K_{t}$
	$K_{t} \stackrel{?}{=} \int_{0}^{t} \eta_{s} d\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}\right) d s$

Probability Space	Nonlinear Expectation Space
P-almost surely analysis	\hat{c}-quasi surely analysis
	$\hat{c}(A)=\sup _{\theta} E_{P_{\theta}}\left[\mathbf{1}_{A}\right]$
$X(\omega): P$-quasi continuous	$X(\omega): \hat{c}$-quasi surely
$\Longleftrightarrow X$ is $\mathcal{B}(\Omega)$-meas.	continuous $\Longrightarrow X$ is $\mathcal{B}(\Omega)$-meas.

Backward stochastic differential equations (BSDE) driven by a G-Brownian motion $\left(B_{t}\right)_{t \geq 0}$ in the following form:

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d\langle B\rangle_{s} \\
& -\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right) .
\end{aligned}
$$

Under a Lipschitz condition of f and g in Y and Z. The existence and uniqueness of the solution (Y, Z, K) is proved, where K is a decreasing G-martingale.

Representation of G-martingale

G-martingale M is of the form

$$
\begin{aligned}
M_{t} & =M_{0}+\bar{M}_{t}+K_{t} \\
\bar{M}_{t} & :=\int_{0}^{t} z_{s} B_{s} \\
K_{t} & :=\int_{0}^{t} \eta_{s}\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}\right) d s .
\end{aligned}
$$

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d\langle B\rangle_{s} \\
& -\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right)
\end{aligned}
$$

Existing results on fully nonlinear BSDEs

- f independent of $z($ and $g=0)$:

$$
Y_{t}^{i}=\hat{\mathbb{E}}_{t}^{G_{i}}\left[\xi^{i}+\int_{t}^{T} f^{i}\left(s, Y_{s}\right) d s\right] .
$$

Peng [2005,07,10].
BSDE corresponding to (path-depedent) system of PDE:

$$
\begin{aligned}
\partial_{t} u^{i}+G^{i}\left(u^{i}, D u^{i}, D^{2} u^{i}\right)+f^{i}\left(t, x, u^{1}, \cdots, u^{k}\right) & =0, \\
u^{i}(x, T) & =\varphi^{i}(x), \\
i & =1, \cdots, k .
\end{aligned}
$$

G^{i} satisfy the dominate condition:

$$
G^{i}(x, y, p, A)-G^{i}(x, \bar{y}, \bar{p}, \bar{A}) \leq c(|y-\bar{y}|+|p-p|)+\hat{G}(A-\bar{A}),
$$

Existing results on fully nonlinear BSDEs

- [Soner, Touzi and Zhang, 2BSDE]
- $\left(Y, Z, K^{\mathbb{P}}\right)_{\mathbb{P} \in \mathcal{P}_{H}^{\kappa}}, \mathbb{P} \in \mathcal{P}_{H}^{\kappa}$, the following BSDE

$$
Y_{t}=\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}+\left(K_{T}^{\mathbb{P}}-K_{t}^{\mathbb{P}}\right), \quad \mathbb{P} \text {-a.s. }
$$

with

$$
K_{t}^{\mathbb{P}}=\operatorname{ess} \inf _{\mathbb{P}^{\prime} \in \mathcal{P}_{H}^{\kappa}(t+, \mathbb{P})} \mathbb{E}_{t}^{\mathbb{P}^{\prime}}\left[K_{T}^{\mathbb{P}}\right], \quad \mathbb{P} \text {-a.s., } \quad \forall \mathbb{P} \in \mathcal{P}_{H}^{\kappa}, t \in[0, T] .
$$

A priori estimates

- $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right), \hat{\mathbb{E}}\right)$
- $\Omega_{T}=C_{0}([0, T], \mathbb{R})$,
- $\bar{\sigma}^{2}=\hat{\mathbb{E}}\left[B_{1}^{2}\right] \geq-\hat{\mathbb{E}}\left[-B_{1}^{2}\right]=\underline{\sigma}^{2}>0$.

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right), \quad(\mathrm{GBSDE})
$$

where

$$
f(t, \omega, y, z):[0, T] \times \Omega_{T} \times \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

Assumption: some $\beta>1$ such that
(H1) for any $y, z, f(\cdot, \cdot, y, z) \in M_{G}^{\beta}(0, T)$,
(H2) $\left|f(t, \omega, y, z)-f\left(t, \omega, y^{\prime}, z^{\prime}\right)\right| \leq L\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right)$.
For $\operatorname{sim}(Y, Z, K)$ such that $Y \in S_{G}^{\alpha}(0, T), Z \in H_{G}^{\alpha}(0, T)$, K : a decreasing G-martingale with $K_{0}=0$ and $K_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$.

Lemma 3.3.

Let X_{t}, X_{t}^{n} be as in the above Lemma and $\alpha^{*}=\frac{\alpha}{\alpha-1}$. Assume that K is a decreasing G-martingale with $K_{0}=0$ and $K_{T} \in L_{G}^{\alpha^{*}}\left(\Omega_{T}\right)$. Then we have

$$
\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|\int_{0}^{t} X_{s}^{n} d K_{s}-\int_{0}^{t} X_{s} d K_{s}\right|\right] \rightarrow 0 \text { as } n \rightarrow \infty
$$

An important observation

Lemma 3.4.

Let $X \in S_{G}^{\alpha}(0, T)$ for some $\alpha>1$ and $\alpha^{*}=\frac{\alpha}{\alpha-1}$. Assume that K^{j}, $j=1,2$, are two decreasing G-martingales with $K_{0}^{j}=0$ and $K_{T}^{j} \in L_{G}^{\alpha^{*}}\left(\Omega_{T}\right)$. Then the process defined by

$$
\int_{0}^{t} X_{s}^{+} d K_{s}^{1}+\int_{0}^{t} X_{s}^{-} d K_{s}^{2}
$$

is also a decreasing G-martingale.

A typical application of Lemma 3.4

- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{t}\right|^{2} d\langle B\rangle_{t}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{t}\right|^{2} d\langle B\rangle_{t}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $=\left|\hat{Y}_{t}\right|^{2}+\int_{t}^{T} 2 \hat{Y}_{s} d\left(K_{t}^{1}-K_{t}^{2}\right)$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{t}\right|^{2} d\langle B\rangle_{t}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $=\left|\hat{Y}_{t}\right|^{2}+\int_{t}^{T} 2 \hat{Y}_{s} d\left(K_{t}^{1}-K_{t}^{2}\right)$
- $=\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{t}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{t}^{2}\right]-2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{-} d K_{t}^{1}+\right.$ $\left.\left(\hat{Y}_{s}\right)^{+} d K_{t}^{2}\right]$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{t}\right|^{2} d\langle B\rangle_{t}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $=\left|\hat{Y}_{t}\right|^{2}+\int_{t}^{T} 2 \hat{Y}_{s} d\left(K_{t}^{1}-K_{t}^{2}\right)$
- $=\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{t}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{t}^{2}\right]-2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{-} d K_{t}^{1}+\right.$
$\left.\left(\hat{Y}_{s}\right)+d K_{t}^{2}\right]$
- $\geq\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{t}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{t}^{2}\right]$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{t}\right|^{2} d\langle B\rangle_{t}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $=\left|\hat{Y}_{t}\right|^{2}+\int_{t}^{T} 2 \hat{Y}_{s} d\left(K_{t}^{1}-K_{t}^{2}\right)$
- $=\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{t}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{t}^{2}\right]-2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{-} d K_{t}^{1}+\right.$
$\left.\left(\hat{Y}_{s}\right)^{+} d K_{t}^{2}\right]$
- $\geq\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{t}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{t}^{2}\right]$
- Thus

$$
\left|\hat{Y}_{t}\right|^{2} \leq \hat{\mathbb{E}}_{t}\left[\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{t}\right|^{2} d\langle B\rangle_{t}\right]
$$

Proposition 3.5.

Assume (H1)-(H2) and $\left(Y, Z, K_{T}\right) \in \mathrm{S}^{\alpha}(0, T) \times \mathbb{H}^{\alpha}(0, T) \times \mathrm{S}^{\alpha}\left(\Omega_{T}\right)$ solves

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right)
$$

where K is a decreasing process with $K_{0}=0$. Then

$$
\begin{aligned}
\hat{\mathbb{E}}\left[\left(\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)^{\frac{\alpha}{2}}\right] \leq & C_{\alpha}\left\{\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right]\right. \\
& \left.+\left(\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right]\right)^{\frac{1}{2}}\left(\hat{\mathbb{E}}\left[\left(\int_{0}^{T}\left|f_{s}^{0}\right| d s\right)^{\alpha}\right]\right)^{\frac{1}{2}}\right\}, \\
\hat{\mathbb{E}}\left[\left|K_{T}\right|^{\alpha}\right] \leq & C_{\alpha}\left\{\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right]+\hat{\mathbb{E}}\left[\left(\int_{0}^{T} \mid f_{s}^{0} d s\right)^{\alpha}\right]\right\}, \\
f_{s}^{0}:= & |f(s, 0,0)|+L^{w} \varepsilon
\end{aligned}
$$

Proposition 3.7.

We assume (H1) and (H2). Assume that $(Y, Z, K) \in \mathbb{S}_{G}^{\alpha}(0, T)$ for some $1<\alpha<\beta$ is a solution (GBSDE). Then

- There exists a constant $C_{\alpha}:=C\left(\alpha, T, \underline{\sigma}, L^{w}\right)>0$ such that

$$
\begin{aligned}
\left|Y_{t}\right|^{\alpha} & \leq C_{\alpha} \hat{\mathbb{E}}_{t}\left[|\xi|^{\alpha}+\int_{t}^{T}\left|f_{s}^{0}\right|^{\alpha} d s\right], \\
\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right] & \leq C_{\alpha} \hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[|\xi|^{\alpha}+\int_{0}^{T}\left|f_{s}^{0}\right|^{\alpha} d s\right]\right],
\end{aligned}
$$

where $f_{s}^{0}=|f(s, 0,0)|+L^{w} \varepsilon$.

- For any given α^{\prime} with $\alpha<\alpha^{\prime}<\beta$, there exists a constant $C_{\alpha, \alpha^{\prime}}$ depending on $\alpha, \alpha^{\prime}, T, \underline{\sigma}, L^{w}$ such that

$$
\begin{aligned}
& \hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right] \leq C_{\alpha, \alpha^{\prime}}\left\{\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[|\xi|^{\alpha}\right]\right]\right. \\
& +\left(\hat{\mathbb{E}}\left[\sup _{t \in\left[0, T^{1}\right.} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} f_{s}^{0} d s\right)^{\alpha^{\prime}}\right]\right]\right)^{\frac{\alpha}{\alpha^{\prime}}}
\end{aligned}
$$

Proposition 3.8.

Let $f_{i}, i=1,2$, satisfy (H1) and (H2). Assume

$$
Y_{t}^{i}=\xi^{i}+\int_{t}^{T} f_{i}\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d B_{s}-\left(K_{T}^{i}-K_{t}^{i}\right),
$$

where $Y^{i} \in \mathbb{S}^{\alpha}(0, T), Z^{i} \in \mathbb{H}^{\alpha}(0, T), K^{i}$ is a decreasing process with $K_{0}^{i}=0$ and $K_{T}^{i} \in \mathbb{L}^{\alpha}\left(\Omega_{T}\right)$ for some $\alpha>1$. Set $\hat{Y}_{t}=Y_{t}^{1}-Y_{t}^{2}, \hat{Z}_{t}=Z_{t}^{1}-Z_{t}^{2}$ and $\hat{K}_{t}=K_{t}^{1}-K_{t}^{2}$. Then there exists a constant $C_{\alpha}:=C\left(\alpha, T, \underline{\sigma}, L^{w}\right)>0$ such that
$\hat{\mathbb{E}}\left[\left(\int_{0}^{T}\left|\hat{Z}_{s}\right|^{2} d s\right)^{\frac{\alpha}{2}}\right] \leq C_{\alpha}\left\{\|\hat{Y}\|_{S^{\alpha}}^{\alpha}+\|\hat{Y}\|_{S^{\alpha}}^{\frac{\alpha}{2}} \sum_{i=1}^{2}\left[\left\|Y^{i}\right\|_{S^{\alpha}}^{\frac{\alpha}{2}}+\left\|\int_{0}^{T} f_{s}^{i, 0} d s\right\|_{\alpha, G}^{\frac{\alpha}{2}}\right]\right\}$,
where $f_{s}^{i, 0}=\left|f_{i}(s, 0,0)\right|+L^{w} \varepsilon, i=1,2$.

Proposition 3.9.

Let $\xi^{i} \in L_{G}^{\beta}\left(\Omega_{T}\right)$ with $\beta>1, i=1,2$, and f_{i} satisfy $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$. Assume that $\left(Y^{i}, Z^{i}, K^{i}\right) \in \mathfrak{S}_{G}^{\alpha}(0, T)$ for some $1<\alpha<\beta$ are the solutions of equation (GBSDE) to ξ^{i} and f_{i}. Then
(i) $\left|\hat{Y}_{t}\right|^{\alpha} \leq C_{\alpha} \hat{\mathbb{E}}_{t}\left[|\hat{\xi}|^{\alpha}+\int_{t}^{T}\left|\hat{f}_{s}\right|^{\alpha} d s\right]$, where $\hat{f}_{s}=\left|f_{1}\left(s, Y_{s}^{2}, Z_{s}^{2}\right)-f_{2}\left(s, Y_{s}^{2}, Z_{s}^{2}\right)\right|+L_{1}^{\omega} \varepsilon$.
(ii) For any given α^{\prime} with $\alpha<\alpha^{\prime}<\beta$, there exists a constant $C_{\alpha, \alpha^{\prime}}$ depending on $\alpha, \alpha^{\prime}, T, \underline{\sigma}, L^{w}$ such that

$$
\begin{aligned}
\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|\hat{Y}_{t}\right|^{\alpha}\right] & \leq C_{\alpha, \alpha^{\prime}}\left\{\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[|\hat{\xi}|^{\alpha}\right]\right]\right. \\
& +\left(\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} \hat{f}_{s} d s\right)^{\alpha^{\prime}}\right]\right]\right)^{\frac{\alpha}{\alpha^{\prime}}} \\
& \left.+\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} \hat{f}_{s} d s\right)^{\alpha^{\prime}}\right]\right]\right\}
\end{aligned}
$$

Existence and uniqueness of G-BSDEs

$$
\partial_{t} u+G\left(\partial_{x x}^{2} u\right)+h\left(u, \partial_{x} u\right)=0, \quad u(T, x)=\varphi(x)
$$

We approximate the solution f by those of equations (GBSDE) with much simpler $\left\{f_{n}\right\}$. More precisely, assume that $\left\|f_{n}-f\right\|_{M_{G}^{\beta}} \rightarrow 0$ and
$\left(Y^{n}, Z^{n}, K^{n}\right)$ is the solution of the following G-BSDE

$$
Y_{t}^{n}=\xi+\int_{t}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s-\int_{t}^{T} Z_{s}^{n} d B_{s}-\left(K_{T}^{n}-K_{t}^{n}\right)
$$

We try to prove that $\left(Y^{n}, Z^{n}, K^{n}\right)$ converges to (Y, Z, K) and (Y, Z, K) is the solution of the following G-BSDE

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right)
$$

Theorem

Assume that $\xi \in L_{G}^{\beta}\left(\Omega_{T}\right), \beta>1$ and f satisfies $(H 1)$ and $(H 2)$. Then equation ($G-B S D E$) has a unique solution (Y, Z, K). Moreover, for any $1<\alpha<\beta$ we have $Y \in S_{G}^{\alpha}(0, T), Z \in H_{G}^{\alpha}(0, T)$ and $K_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$.

Sketch of Proof of Theorem.

Step 1. $f(t, \omega, y, z)=h(y, z), h \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$.
Part 1) $\xi=\varphi\left(B_{T}-B_{t_{1}}\right): \exists \alpha \in(0,1)$ s.t.,

$$
\|u\|_{C^{1+\alpha / 2,2+\alpha}([0, T-\kappa] \times \mathbb{R})}<\infty, \quad \kappa>0 .
$$

Itô's formula to $u\left(t, B_{t}-B_{t_{1}}\right)$ on $\left[t_{1}, T-\kappa\right.$], we get

$$
\begin{aligned}
u\left(t, B_{t}-B_{t_{1}}\right)= & u\left(T-\kappa, B_{T-\kappa}-B_{t_{1}}\right)+\int_{t}^{T-\kappa} h\left(u, \partial_{\chi} u\right)\left(s, B_{s}-B_{t_{1}}\right) d s \\
& -\int_{t}^{T-\kappa} \partial_{\chi} u\left(s, B_{s}-B_{t_{1}}\right) d B_{s}-\left(K_{T-\kappa}-K_{t}\right)
\end{aligned}
$$

Sketch of Proof of Theorem.

where

$$
\begin{aligned}
& K_{t}=\frac{1}{2} \int_{t_{1}}^{t} \partial_{x x}^{2} u(\cdot) d\langle B\rangle_{s}-\int_{t_{1}}^{t} G\left(\partial_{x x}^{2} u(\cdot)\right) d s \\
& |u(t, x)-u(s, y)| \leq L_{1}(\sqrt{|t-s|}+|x-y|) .
\end{aligned}
$$

\tilde{u} is the solution of PDE:

$$
\begin{aligned}
\partial_{t} \tilde{u}+G\left(\partial_{x x}^{2} \tilde{u}\right)+h\left(\tilde{u}, \partial_{x} \tilde{u}\right) & =0, \\
\tilde{u}(T, x) & =\varphi\left(x+x_{0}\right) .
\end{aligned}
$$

Sketch of Proof of Theorem.

$$
u\left(t, x+x_{0}\right) \leq u(t, x)+L_{\varphi}\left|x_{0}\right| \exp \left(L_{h}(T-t)\right)
$$

Since x_{0} is arbitrary, we get $|u(t, x)-u(t, y)| \leq \hat{L}|x-y|$, where $\hat{L}=L_{\varphi} \exp \left(L_{h} T\right)$. From this we can get $\left|\partial_{x} u(t, x)\right| \leq \hat{L}$ for each $t \in[0, T], x \in \mathbb{R}$. On the other hand, for each fixed $\bar{t}<\hat{t}<T$ and $x \in \mathbb{R}$, applying Itô's formula to $u\left(s, x+B_{s}-B_{\bar{t}}\right)$ on $[\bar{t}, \hat{t}]$, we get

$$
u(\bar{t}, x)=\hat{\mathbb{E}}\left[u\left(\hat{t}, x+B_{\hat{t}}-B_{\bar{t}}\right)+\int_{\bar{t}}^{\hat{t}} h\left(u, \partial_{x} u\right)\left(s, x+B_{s}-B_{\bar{t}}\right) d s\right] .
$$

Sketch of Proof of Theorem.

From this we deduce that

$$
|u(\bar{t}, x)-u(\hat{t}, x)| \leq \hat{\mathbb{E}}\left[\hat{L}\left|B_{\hat{t}}-B_{\bar{t}}\right|+\tilde{L}|\hat{t}-\bar{t}|\right] \leq(\hat{L} \bar{\sigma}+\tilde{L} \sqrt{T}) \sqrt{|\hat{t}-\bar{t}|}
$$

where $\tilde{L}=\sup _{(x, y) \in \mathbb{R}^{2}}|h(x, y)|$. Thus we get (??) by taking $L_{1}=\max \{\hat{L}, \hat{L} \bar{\sigma}+\tilde{L} \sqrt{T}\}$. Letting $\kappa \downarrow 0$ in Itô's equation, it is easy to verify that

$$
\hat{\mathbb{E}}\left[\left|Y_{T-\kappa}-\xi\right|^{2}+\int_{T-\kappa}^{T}\left|Z_{t}\right|^{2} d t+\left(K_{T-\kappa}-K_{T}\right)^{2}\right] \rightarrow 0
$$

where $Y_{t}=u\left(t, B_{t}-B_{t_{1}}\right)$ and $Z_{t}=\partial_{x} u\left(t, B_{t}-B_{t_{1}}\right)$. Thus $\left(Y_{t}, Z_{t}, K_{t}\right)_{t \in\left[t_{1}, T\right]}$ is a solution of equation (GBSDE) with terminal value $\xi=\varphi\left(B_{T}-B_{t_{1}}\right)$. Furthermore, it is easy to check that $Y \in S_{G}^{\alpha}\left(t_{1}, T\right)$, $Z \in H_{G}^{\alpha}\left(t_{1}, T\right)$ and $K_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$ for any $\alpha>1$.

Sketch of Proof of Theorem.

Part 2) $\xi=\psi\left(B_{t_{1}}, B_{T}-B_{t_{1}}\right):$

$$
\begin{aligned}
& u\left(t, x, B_{t}-B_{t_{1}}\right)= u\left(T, x, B_{T}-B_{t_{1}}\right)+\int_{t}^{T} h\left(u, \partial_{y} u\right)\left(s, x, B_{s}-B_{t_{1}}\right) d s \\
&-\int_{t}^{T} \partial_{y} u(\cdot) d B_{s}-\left(K_{T}^{x}-K_{t}^{x}\right) \\
& K_{t}^{x}= \frac{1}{2} \int_{t_{1}}^{t} \partial_{y y}^{2} u(\cdot) d\langle B\rangle_{s}-\int_{t_{1}}^{t} G\left(\partial_{y y}^{2} u(\cdot)\right) d s \\
& Y_{t}=Y_{T}+\int_{t}^{T} h\left(Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right)
\end{aligned}
$$

Sketch of Proof of Theorem.

where

$$
\begin{aligned}
Y_{t} & :=u\left(t, B_{t_{1}}, B_{t}-B_{t_{1}}\right), \quad Z_{t}:=\partial_{y} u(\cdot) \\
K_{t} & :=\frac{1}{2} \int_{t_{1}}^{t} \partial_{y y}^{2} u(\cdot) d\langle B\rangle_{s}-\int_{t_{1}}^{t} G\left(\partial_{y y}^{2} u(\cdot)\right) d s
\end{aligned}
$$

Need to prove $(Y, Z, K) \in \mathfrak{S}_{G}^{\alpha}(0, T)$. By partition of unity theorem, \exists $h_{i}^{n} \in C_{0}^{\infty}(\mathbb{R})$ s.t.

$$
\begin{aligned}
\lambda\left(\operatorname{supp}\left(h_{i}^{n}\right)\right) & <1 / n, \quad 0 \leq h_{i}^{n} \leq 1, \\
I_{[-n, n]}(x) & \leq \sum_{i=1}^{k_{n}} h_{i}^{n} \leq 1 .
\end{aligned}
$$

Sketch of Proof of Theorem.

We have

$$
Y_{t}^{n}=Y_{T}^{n}+\int_{t}^{T} \sum_{i=1}^{n} h\left(y_{s}^{n, i}, z_{s}^{n, i}\right) h_{i}^{n}\left(B_{t_{1}}\right) d s-\int_{t}^{T} Z_{s}^{n} d B_{s}-\left(K_{T}^{n}-K_{t}^{n}\right)
$$

where

$$
\begin{aligned}
y_{t}^{n, i} & =u\left(t, x_{i}^{n}, B_{t}-B_{t_{1}}\right), \quad z_{t}^{n, i}=\partial_{y} u\left(t, x_{i}^{n}, B_{t}-B_{t_{1}}\right) \\
Y_{t}^{n} & =\sum_{i=1}^{n} y_{t}^{n, i} h_{i}^{n}\left(B_{t_{1}}\right), \quad Z_{t}^{n}=\sum_{i=1}^{n} z_{t}^{n, i} h_{i}^{n}\left(B_{t_{1}}\right) \\
K_{t}^{n} & =\sum_{i=1}^{n} K_{t}^{x_{i}^{n}} h_{i}^{n}\left(B_{t_{1}}\right) .
\end{aligned}
$$

Sketch of Proof of Theorem.

Thus

$$
\begin{aligned}
\left|Y_{t}-Y_{t}^{n}\right| & \leq \sum_{i=1}^{k_{n}} h_{i}^{n}\left(B_{t_{1}}\right)\left|u\left(t, x_{i}^{n}, B_{t}-B_{t_{1}}\right)-u\left(t, B_{t_{1}}, B_{t}-B_{t_{1}}\right)\right| \\
& +\left|Y_{t}\right| l_{\left[\left|B_{t_{1}}\right|>n\right]} \leq \frac{L_{2}}{n}+\frac{\|u\|_{\infty}}{n}\left|B_{t_{1}}\right| .
\end{aligned}
$$

Thus

$$
\hat{\mathbb{E}}\left[\sup _{t \in\left[t_{1}, T\right]}\left|Y_{t}-Y_{t}^{n}\right|^{\alpha}\right] \leq \hat{\mathbb{E}}\left[\left(\frac{L_{2}}{n}+\frac{\|u\|_{\infty}}{n}\left|B_{t_{1}}\right|\right)^{\alpha}\right] \rightarrow 0 .
$$

By the estimates

$$
\begin{aligned}
\hat{\mathbb{E}}\left[\left(\int_{t_{1}}^{T}\left|Z_{s}-Z_{s}^{n}\right|^{2} d s\right)^{\alpha / 2}\right] & \leq C_{\alpha}\left\{\hat{\mathbb{E}}\left[\sup _{t \in\left[t_{1}, T\right]}\left|Y_{t}-Y_{t}^{n}\right|^{\alpha}\right]\right. \\
\left.+\left(\hat{\mathbb{E}}\left[\sup _{t \in\left[t_{1}, T\right]}\left|Y_{t}-Y_{t}^{n}\right|^{\alpha}\right]\right)^{1 / 2}\right\} & \rightarrow 0 .
\end{aligned}
$$

Thus $Z \in M_{G}^{\alpha}(0, T), K_{t} \in L_{G}^{\alpha}\left(\Omega_{t}\right)$.

Sketch of Proof of Theorem.

[Sketch of Proof of Theorem] prove K is G-martingale. Following [Li-P.], we take

$$
\begin{gathered}
h_{i}^{n}(x)=I_{\left[-n+\frac{i}{n},-n+\frac{i+1}{n}\right)}(x), \quad i=0, \ldots, 2 n^{2}-1, \\
h_{2 n^{2}}^{n}=1-\sum_{i=0}^{2 n^{2}-1} h_{i}^{n} \\
\tilde{Y}_{t}^{n}=\sum_{i=0}^{2 n^{2}} u\left(t,-n+\frac{i}{n}, B_{t}-B_{t_{1}}\right) h_{i}^{n}\left(B_{t_{1}}\right), \tilde{Z}_{t}^{n}=\sum_{i=0}^{2 n^{2}} \partial_{y} u(\cdot) h_{i}^{n}\left(B_{t_{1}}\right)
\end{gathered}
$$

solves

$$
\tilde{Y}_{t}^{n}=\tilde{Y}_{T}^{n}+\int_{t}^{T} h\left(\tilde{Y}_{s}^{n}, \tilde{Z}_{s}^{n}\right) d s-\int_{t}^{T} \tilde{Z}_{s}^{n} d B_{s}-\left(\tilde{K}_{T}^{n}-\tilde{K}_{t}^{n}\right)
$$

Sketch of Proof of Theorem.

We have $\hat{\mathbb{E}}\left[\left(\int_{t_{1}}^{T}\left|Z_{s}-\tilde{Z}_{s}^{n}\right|^{2} d s\right)^{\alpha / 2}\right] \rightarrow 0$. Thus $\hat{\mathbb{E}}\left[\left|K_{t}-\tilde{K}_{t}^{n}\right|^{\alpha}\right] \rightarrow 0$ and $\hat{\mathbb{E}}_{t}\left[K_{s}\right]=K_{t}$. For $Y_{t_{1}}=u\left(t_{1}, B_{t_{1}}, 0\right)$, we can use the same method as Part 1 on $\left[0, t_{1}\right]$.
Step 2) $f(t, \omega, y, z)=\sum_{i=1}^{N} f^{i} h^{i}(y, z)$ with $f^{i} \in M_{G}^{0}(0, T)$ and $h^{i} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$.

Sketch of Proof of Theorem.

Step 3) $f(t, \omega, y, z)=\sum_{i=1}^{N} f^{i} h^{i}(y, z)$ with $f^{i} \in M_{G}^{\beta}(0, T)$ bounded and $h^{i} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right), h^{i} \geq 0$ and $\sum_{i=1}^{N} h^{i} \leq 1$:

Choose

$$
f_{n}^{i} \in M_{G}^{0}(0, T) \text { s.t. }\left|f_{n}^{i}\right| \leq\left\|f^{i}\right\|_{\infty}, \quad \sum_{i=1}^{N}\left\|f_{n}^{i}-f^{i}\right\|_{M_{G}^{\beta}}<1 / n .
$$

Set $f_{n}:=\sum_{i=1}^{N} f_{n}^{i} h^{i}(y, z)$.
Let $\left(Y^{n}, Z^{n}, K^{n}\right)$ be the solution of (GBSDE) with generator f_{n}.

$$
\begin{aligned}
\hat{f}_{s}^{m, n} & :=\left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| \\
& \leq \sum_{i=1}^{N}\left|f_{n}^{i}-f^{i}\right|+\sum_{i=1}^{N}\left|f_{m}^{i}-f^{i}\right|=: \hat{f}_{n}+\hat{f}_{m},
\end{aligned}
$$

Sketch of Proof of Theorem.

We have, for any $1<\alpha<\beta$,

$$
\hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} \hat{f}_{s}^{m, n} d s\right)^{\alpha}\right] \leq \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left(\left|\hat{f}_{n}(s)\right|+\left|\hat{f}_{m}(s)\right|\right) d s\right)^{\alpha}\right]
$$

By Theorem 2.10, $\forall \alpha \in(1, \beta)$

$$
\left.\hat{\mathbb{E}}\left[\sup _{t} \hat{\mathbb{E}}_{t}\left[\left|\int_{0}^{T} \hat{f}_{s}^{m, n} d s\right|^{\alpha}\right]\right]\right] \rightarrow 0, m, n \rightarrow \infty
$$

By Proposition $3.9\left\{Y^{n}\right\}$ is Cauchy under $\|\cdot\|_{S_{G}^{\alpha}}$. By Proposition 3.7, 3.8, $\left\{Z^{n}\right\}$ is a also Cauchy under $\|\cdot\|_{H_{G}^{\alpha}}$ thus $\left\{\int_{0}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s\right\}$ under $\|\cdot\|_{L_{G}^{\alpha}}$ thus $\left\{K_{T}^{n}\right\}$ is also Cauchy under $\|\cdot\|_{L_{G}^{\alpha}}$.

Sketch of Proof of Theorem.

Step 4). f is bounded, Lipschitz. $|f(t, \omega, y, z)| \leq C I_{B(R)}(y, z)$ for some $C, R>0$. Here $B(R)=\left\{(y, z) \mid y^{2}+z^{2} \leq R^{2}\right\}$.
For any n, by the partition of unity theorem, there exists $\left\{h_{n}^{i}\right\}_{i=1}^{N_{n}}$ such that $h_{n}^{i} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$, the diameter of support $\lambda\left(\operatorname{supp}\left(h_{n}^{i}\right)\right)<1 / n, 0 \leq h_{n}^{i} \leq 1$, $I_{B(R)} \leq \sum_{i=1}^{N} h_{n}^{i} \leq 1$. Then $f(t, \omega, y, z)=\sum_{i=1}^{N} f(t, \omega, y, z) h_{n}^{i}$. Choose y_{n}^{i}, z_{n}^{i} such that $h_{n}^{i}\left(y_{n}^{i}, z_{n}^{i}\right)>0$. Set

$$
f_{n}(t, \omega, y, z)=\sum_{i=1}^{N} f\left(t, \omega, y_{n}^{i}, z_{n}^{i}\right) h_{n}^{i}(y, z)
$$

Sketch of Proof of Theorem.

Then
$\left|f(t, \omega, y, z)-f_{n}(t, \omega, y, z)\right| \leq \sum_{i=1}^{N}\left|f(t, \omega, y, z)-f\left(t, \omega, y_{n}^{i}, z_{n}^{i}\right)\right| h_{n}^{i} \leq L / n$
and

$$
\left|f_{n}(t, \omega, y, z)-f_{n}\left(t, \omega, y^{\prime}, z^{\prime}\right)\right| \leq L\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|+2 / n\right)
$$

Noting that $\left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| \leq(L / n+L / m)$,

Sketch of Proof of Theorem.

we have

$$
\hat{\mathbb{E}}_{t}\left[\left|\int_{0}^{T}\left(\left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right|+\frac{2 L}{m}\right) d s\right|^{\alpha}\right] \leq T^{\alpha}\left(\frac{L}{n}+\frac{3 L}{m}\right)^{\alpha} .
$$

So by the estimates $\left\{Y^{n}\right\}$ cauchy under $\|\cdot\|_{S_{G}^{\alpha}}$. $\left\{Z^{n}\right\}$ is cauchy under $\|\cdot\|_{H_{G}^{\alpha}}$. is also cauchy $\left\{\int_{0}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s\right\}$ under $\|\cdot\|_{L_{G}^{\alpha}}$.

Sketch of Proof of Theorem.

Step 5). f is bounded, Lipschitz.
For any $n \in \mathbb{N}$, choose $h^{n} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that $I_{B(n)} \leq h^{n} \leq I_{B(n+1)}$ and $\left\{h^{n}\right\}$ are uniformly Lipschitz w.r.t. n. Set $f_{n}=f h^{n}$, which are uniformly Lipschitz. Noting that for $m>n$

$$
\begin{aligned}
& \left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| \\
& \leq\left|f\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| I_{\left[\left|Y_{s}^{n}\right|^{2}+\left|Z_{s}^{n}\right|^{2}>n^{2}\right]} \\
& \leq\|f\|_{\infty} \frac{\left|Y_{s}^{n}\right|+\left|Z_{s}^{n}\right|}{n}
\end{aligned}
$$

Sketch of Proof of Theorem.

we have

$$
\begin{aligned}
& \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| d s\right)^{\alpha}\right] \\
& \leq \frac{\|f\|_{\infty}^{\alpha}}{n^{\alpha}} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left|Y_{s}^{n}\right|+\left|Z_{s}^{n}\right| d s\right)^{\alpha}\right] \\
& \leq \frac{\|f\|_{\infty}^{\alpha}}{n^{\alpha}} C(\alpha, T) \hat{\mathbb{E}}_{t}\left[\int_{0}^{T}\left|Y_{s}^{n}\right|^{\alpha} d s+\left(\int_{0}^{T}\left|Z_{s}^{n}\right|^{2} d s\right)^{\alpha / 2}\right]
\end{aligned}
$$

where $\left.C(\alpha, T):=2^{\alpha-1}\left(T^{\alpha-1}+T^{\alpha / 2}\right]\right)$.

Sketch of Proof of Theorem.

So by Theorem 2.10 and Proposition 3.4 we get $\left\|\int_{0}^{T} \hat{f}_{s}^{m, n} d s\right\|_{\alpha, \mathcal{E}} \rightarrow 0$ as $m, n \rightarrow \infty$ for any $\alpha \in(1, \beta)$. By Proposition 3.5, we conclude that $\left\{Y^{n}\right\}$ is cauchy under $\|\cdot\|_{S_{G}^{\alpha}}$. $\left\{Z^{n}\right\}$ cauchy sequence under $\|\cdot\|_{H_{G}^{\alpha}}$. $\left\{\int_{0}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s\right\}$ is cauchy under $\|\cdot\|_{L_{G}^{\alpha}}$:

$$
\begin{aligned}
& \left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{m}, Z^{m}\right)\right| \\
& \leq\left|f_{m}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{m}, Z^{m}\right)\right|+\left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{n}, Z^{n}\right)\right| \\
& \leq L\left(\left|\hat{Y}_{s}\right|+\left|\hat{Z}_{s}\right|\right)+\left|f\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| 1_{\left[\left|Y_{s}^{n}\right|+\left|Z_{s}^{n}\right|>n\right]},
\end{aligned}
$$

which implies the desired result.

Sketch of Proof of Theorem.

Step 6). For the general f.
Set $f_{n}=[f \vee(-n)] \wedge n$, which are uniformly Lipschitz. Choose $0<\delta<\frac{\beta-\alpha}{\alpha} \wedge 1$. Then $\alpha<\alpha^{\prime}=(1+\delta) \alpha<\beta$. Since for $m>n$
$\left.\left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{n}, Z^{n}\right)\right| \leq\left.\left|f\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right|\right|_{\left[\left|f\left(s, Y_{s}^{n}, Y_{s}^{n}\right)\right|>n\right]} \leq \frac{1}{n^{\delta}} \right\rvert\, f\left(s, Y_{s}^{n}\right.$
we have
$\hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{n}, Z^{n}\right)\right| d s\right)^{\alpha}\right]$
$\leq \frac{1}{n^{\alpha \delta}} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left|f\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right|^{1+\delta} d s\right)^{\alpha}\right]$,
$\leq \frac{C(\alpha, T, L, \delta)}{n^{\alpha \delta}} \hat{\mathbb{E}}_{t}\left[\int_{0}^{T}|f(s, 0,0)|^{\alpha^{\prime}} d s+\int_{0}^{T}\left|Y_{s}^{n}\right|^{\alpha^{\prime}} d s+\left(\int_{0}^{T}\left|Z_{s}^{n}\right|^{2} d s\right)^{\frac{\alpha^{\prime}}{2}}\right]$,
where $C(\alpha, T, L, \delta):=3^{\alpha^{\prime}-1}\left(T^{\alpha-1}+L^{\alpha^{\prime}} T^{\frac{\alpha(1-\delta)}{2}}+T^{\alpha-1} L^{\alpha^{\prime}}\right)$.

Sketch of Proof of Theorem.

So by Song's estimate and a priori estimate, we get $\left\|\int_{0}^{T} \hat{f}_{s}^{m, n} d s\right\|_{\alpha, \mathcal{E}} \rightarrow 0$ as $m, n \rightarrow \infty$ for any $\alpha \in(1, \beta)$. We know that $\left\{Y^{n}\right\}$ is a cauchy sequence under the norm $\|\cdot\|_{S_{G}^{\alpha}}$. And consequently $\left\{Z^{n}\right\}$ is a cauchy sequence under the norm $\|\cdot\|_{H_{G}^{\alpha}}$. Now we prove $\left\{\int_{0}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s\right\}$ is a cauchy sequence under the norm $\|\cdot\|_{L_{G}^{\alpha}}$. In fact,

$$
\begin{aligned}
& \left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{m}, Z^{m}\right)\right| \\
& \leq\left|f_{m}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{m}, Z^{m}\right)\right|+\left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{n}, Z^{n}\right)\right| \\
& \leq L\left(\left|\hat{Y}_{s}\right|+\left|\hat{Z}_{s}\right|\right)+\frac{3^{\delta}}{n^{\delta}}\left(\left|f_{s}^{0}\right|^{1+\delta}+\left|Y_{s}^{n}\right|^{1+\delta}+\left|Z_{s}^{n}\right|^{1+\delta}\right)
\end{aligned}
$$

which implies the desired result.

Avellaneda, M., Levy, A. and Paras A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2, 73-88.
Bismut, J.M. (1973) Conjugate Convex Functions in Optimal Stochastic Control, J.Math. Anal. Apl. 44, 384-404.
國 Coquet, F., Hu, Y., Memin J. and Peng, S. (2002) Filtration Consistent Nonlinear Expectations and Related g-Expectations, Probab. Theory Relat. Fields 123, 1-27.
(ein Denis, L. and Martini, C. (2006) A Theoretical Framework for the Pricing of Contingent Claims in the Presence of Model Uncertainty, The Annals of Applied Probability, vol. 16, No. 2, pp 827-852.
Renis, L., Hu, M. and Peng S.(2011) Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes, Potential Anal., 34: 139-161.
El Karoui, N., Peng, S., Quenez, M.C., Backward stochastic differential equations in finance, Math. Finance 7, 1-71, 1997.

Hu, M. and Peng, S.(2009) On representation theorem of G-expectations and paths of G-Brownian motion. Acta Math. Appl. Sin. Engl. Ser., 25,(3): 539-546, 2009.
Krylov, N.V.(1987) Nonlinear Parabolic and Elliptic Equations of the Second Order, Reidel Publishing Company. (Original Russian Version by Nauka, Moscow, 1985).

R Li, X and Peng, S.(2011) Stopping times and related Itô's calculus with G-Brownian motion, Stochastic Processes and their Applications, 121: 1492-1508.
围 Pardoux E. and Peng, S.(1990) Adapted Solutions of Backward Stochastic Equations, Systerm and Control Letters, 14: 55-61.

國 Peng, S. (1991) Probabilistic Interpretation for Systems of Quasilinear Parabolic Partial Differential Equations, Stochastics, 37, 61-74.

- Pardoux, E. and Peng, S. (1992) Backward stochastic differential equations and quasilinear parabolic partial differential equations,

Stochastic partial differential equations and their applications, Proc. IFIP, LNCIS 176, 200-217.

- Peng, S. (1992) A Generalized Dynamic Programming Principle and Hamilton-Jacobi-Bellmen equation, Stochastics, 38, 119-134.
Reng, S. (1997) BSDE and related g-expectation, in Pitman Research Notes in Mathematics Series, No. 364, Backward Stochastic Differential Equation, N. El Karoui and L. Mazliak (edit.), 141-159.

圊 Peng, S. (2004) Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Mathematicae Applicatae Sinica, 20(2) 1-24.
Peng, S. (2005) Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. 26B(2) 159-184.
Peng, S.(2007) G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô type, Stochastic analysis and applications, 541-567, Abel Symp., 2, Springer, Berlin.

目 Peng，S．（2007）G－Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty，arXiv：0711．2834v1［math．PR］．
圊 Peng，S．（2008）Multi－Dimensional G－Brownian Motion and Related Stochastic Calculus under G－Expectation，Stochastic Processes and their Applications，118（12）：2223－2253．
Reng，S．（2008）A New Central Limit Theorem under Sublinear Expectations，arXiv：0803．2656v1［math．PR］．
Peng，S．（2009）Survey on normal distributions，central limit theorem， Brownian motion and the related stochastic calculus under sublinear expectations，Science in China Series A：Mathematics，52（7）： 1391－1411．
嗇 Peng，S．（2010）Nonlinear Expectations and Stochastic Calculus under Uncertainty，arXiv：1002．4546v1［math．PR］．
Peng，S．（2010）Backward Stochastic Differential Equation，Nonlinear Expectation and Their Applications，in Proceedings of the International Congress of Mathematicians Hyderabad，India， 2010.

貫 Peng, S., Song, Y. and Zhang, J. (2012) A Complete Representation Theorem for G-martingales, Preprint, arXiv:1201.2629v1.

Soner, M., Touzi, N. and Zhang, J.(2011) Martingale Representation Theorem under G-expectation, Stochastic Processes and their Applications, 121: 265-287.

E-i Soner M, Touzi N, Zhang J.(2012) Wellposedness of Second Order Backward SDEs, Probability Theory and Related Fields, 153(1-2): 149-190.
Song, Y.(2011) Some properties on G-evaluation and its applications to G-martingale decomposition, Science China Mathematics, 54(2): 287-300.

固 Song, Y.(2012) Uniqueness of the representation for G-martingales with finite variation, Electron. J. Probab. 17 no. 24 1-15.

Thanks!

