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Uncertainty and Risk

How to understand uncertainty in order to quantitatively control risks
become a worldwide main concerned problem.

This problem is even urgent since 2008 after the last financial crisis
which caused a worldwide economic disaster.

new mathematical concept and calculation tool called nonlinear
expectation theory which take the risk of model uncertainty
(Knightian uncertainty) into account.

Important: The existing results in probability theory, stochastic
controls, mathematical finance, risk measures and risk controls are
our rich sources.
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Developments of research on uncertainty— an uncertain
process?

L. Bachelier (1900) Théorie de la Spéculation, Thesis.

H. Lebesgue (1901) Sur une generalisation de l’integrale definie,
CRAS, 132 1025-1028

A. Einstein (1905) Investigations on the theory of the Brownian
movement (originally in German), Annalen der Physik, 17 549-560

P. Daniell (1918-1920): Daniell’s integral

R. Wiener (1921-1923, 1924) Brownian motion (Wiener process)
using Daniell’s integral

A. N. Kolmogorov (1933) Grundbegrie der
Wahrscheinlichkeitsrechnung, Springer Berlin

K. Itô (1942) Differential equations determining a Markov process, J.
Pan-Japan Math. Colloq. (in Japanese)

W. Doeblin (1940, Pli cacheté)
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Shige Peng, Shandong University, ChinaJoint work with Mingshang HU, Shaolin JI and Yongsheng SONG
() BSDE driven by G -Brownian Motion

The 8th Workshop on Markov Processes and Related Topics 16, July, 2012, Beijing Normal University 4
/ 64



Kolmogorov’s Probability Space (Ω,F , P)
A fundamental and powerful theory and methodology to
treat uncertainties

A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung.
Springer, Berlin, 1933
(Foundations of the Theory of Probability, Chelsea, New York),

Probability Space (Ω,F ,P)
Hilbert’s 6th problem
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Impacts in Economics & Math. Finance

The von Neumann-Morgenstern utility axioms (1953) E [U(X )];
Theory of Games and Economic Behavior, Princeton;

P. A. Samuelson, Rational theory of warrant pricing, 1964

Black-Scholes-Merton option pricing:
C (S , t) = N(d1)−N(d2)Ke−r(T−1),

dS(t) = µS(t)dt + σS(t)dW (t)
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Frank H. Knight (1921) “Risk, Uncertainty and Profit”

Knight, 1921

” Mathematical, or a priori, type of probability is practically never met
with in business ...”

”Uncertainty must be taken in a sense radically distinct from the
familiar notion of Risk, from which it has never been properly
separated.”

Knightian’s Risk

Probability (and prob. distribution) are known.

Knightian uncertainty

The prob. and distr. are unknown— ”uncertainty of probability measures”.
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F. Knight (1921): Two types of uncertainty “risk”: given a
probability space (Ω,F ,P); “Knightian uncertainty” (ambiguity):
Probability measure P itself is uncertain;

John Maynard Keynes (1921) A Treatise on Probability. Macmillan,
London, 1921.

Allais paradox (1953) to vNM expected utility theory (1944);

Ellsberg paradox (1961) to Savage’s expected utility (1954),
Ambiguity aversion (1961);

Kahneman & Tversky (1979-1992): prospective theory by distorted
probability;

Gilboa & Schmeidler (1989) Maximin expected utility; Hansen &
Sargent (2000) Multiplier preference.

Hansen & Sargent: Robust control method.
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Motivated from g -Expectation [P.1994-1997]

Given r.v. X (ω), solve the BSDE

dy(t) = −g(y(t), z(t))dt + z(t)dB(t), y(T ) = X (ω).

Then define:

Eg [X ] := y(0), Eg [X |(B(s))s∈[0,t]] := y(t).
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Artzner-Delbean-Eden-Heath1999, Coherent measures of risk, Math.
finance.

g -expectations provides dynamic coherent risk measure, Rosazza
(2005), S.P. (2004)

Coquet-Hu-Memin-P.: dominated dynamic expectations are g -
expectations;

Delbaen-P.-Rosazza, 2008: If a dynamic expectation E is absolutely
continuous w.r.t. P then there exists a unique g such that E = Eg .

Serious problem: under volatility uncertainty, it is impossible to find a
reference probability measure

State dependent Markovian case: Avellaneda, M., Levy, A. and Paras
A. (1995), T. Lyons (1995).

Longtime blockage...
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Expectation framework–G -framework

Ω: space of scenarios;

H a linear space of risk positions or (risk losses) containing constants
(real functions defined on Ω) s.t.

X ∈ H =⇒ |X | ∈ H

We often ”equivalently” assume:

X1, · · · ,Xn ∈ H =⇒ ϕ(X1, · · · ,Xn) ∈ H, ∀ϕ ∈ CLip(Rn)
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Daniell’s Expectation: (Ω,H, E) v.s. (Ω,F , P)

X ∈ H =⇒ |X | ∈ H

(a) E [X ] ≥ E [Y ], if X ≥ Y

(b) E [c ] = c ,

(c) E [X + Y ] = E [X ] + E [Y ],
(d) E [λX ] = λE [X ], λ ≥ 0.

E [Xi ] ↓ 0, if Xi (ω) ↓ 0, ∀ω

Theorem (Daniell-Stone Theorem)

There exists a unique prob. measure P on (Ω, σ(H)) s.t.

E [X ] =
∫

Ω
X (ω)P(ω).
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Extension: Sublinear Expectation on (Ω,H, Ê)

X ∈ H =⇒ |X | ∈ H
(a) Ê[X ] ≥ Ê[Y ], if X ≥ Y

(b) Ê[X + c ] = Ê[X ] + c ,

(c) Ê[X + Y ]≤Ê[X ] + Ê[Y ] ” ≤ ” =⇒ sublinear

(d) Ê[λX ] = λÊ[X ], λ ≥ 0.

Ê[Xi ] ↓ 0, if Xi (ω) ↓ 0, ∀ω

Theorem (Robust Daniell-Stone Theorem)

There exists a family of {Pθ}θ∈Θ of prob. measures on (Ω, σ(H)) s.t.

Ê[X ] = sup
θ∈Θ

Eθ [X ] = sup
θ∈Θ

∫
Ω

X (ω)Pθ(ω), for each X ∈ H.

For each given X ∈ H,

Ê[ϕ(X )] = sup
θ∈Θ

∫
R

ϕ(x)dFθ(x), Fθ(x) = Pθ(X ≤ x).
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X ∈ H =⇒ |X | ∈ H
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Robust representation of a coherent risk measure

Huber Robust Statistics (1981), for finite state case.

Artzner-Delbean, Eber-Heath (1999), Delbean2002,

Föllmer & Schied (2002, 2004), Fritelli & Rosazza-Gianin (2002)

Theorem (Robust Representation of coherent risk measure)

Ê[·] is a sublinear expectation iff there exists a family {Eθ}θ∈Θ of linear
expectations s.t.

Ê[X ] = sup
θ∈Θ

Eθ [X ], ∀X ∈ H.

Meaning:

Sublinear expectation corresponds the Knightian uncertainty of
probabilities: {Pθ}θ∈Θ
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Ê[·] is a sublinear expectation iff there exists a family {Eθ}θ∈Θ of linear
expectations s.t.
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Uncertainty version of distributions in (Ω,H, Ê)

Definition

X ∼ Y if they have the same distribution uncertainty

X ∼ Y ⇐⇒ Ê[ϕ(X )] = Ê[ϕ(Y )], ∀ϕ ∈ Cb(Rn).

Y Indenp. of X if each realization ”X = x” does not change the
distribution of Y :

Y indenp. of X ⇐⇒ Ê[ϕ(X ,Y )] = Ê[Ê[ϕ(x ,Y )]x=X ].

Shige Peng, Shandong University, ChinaJoint work with Mingshang HU, Shaolin JI and Yongsheng SONG
() BSDE driven by G -Brownian Motion

The 8th Workshop on Markov Processes and Related Topics 16, July, 2012, Beijing Normal University 20
/ 64



Uncertainty version of distributions in (Ω,H, Ê)
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X ∼ Y ⇐⇒ Ê[ϕ(X )] = Ê[ϕ(Y )], ∀ϕ ∈ Cb(Rn).

Y Indenp. of X if each realization ”X = x” does not change the
distribution of Y :

Y indenp. of X ⇐⇒ Ê[ϕ(X ,Y )] = Ê[Ê[ϕ(x ,Y )]x=X ].
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Central Limit Theorem (CLT) under Knightian Uncertainty

Theorem

Let {Xi}∞
i=1 in (Ω,H, Ê) be i.i.d.: Xi ∼ X1 and

Xi+1 Indep. (X1, · · · ,Xi ). Assume:

Ê[|X1|2+α] < ∞ , Ê[X1] = Ê[−X1] = 0.

Then:

lim
n→∞

Ê[ϕ(
X1 + · · ·+ Xn√

n
)] = Ê[ϕ(X )], ∀ϕ ∈ Cb(R),

with X ∼ N(0, [σ2, σ2]), where

σ2 = Ê[X 2
1 ], σ2 = −Ê[−X 2

1 ].
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Normal distributions under Knightian uncertainty

Definition

A loss position X in (Ω,H, Ê) is normally in uncertainty distribution if

aX + bX̄ ∼
√

a2 + b2X , ∀a, b ≥ 0.

where X̄ is an independent copy of X .

Ê[X ] = Ê[−X ] = 0.

X
d= N(0, [σ2, σ2]), where

σ2 := Ê[X 2], σ2 := −Ê[−X 2].
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Brownian Motion (Bt(ω))t≥0 in (Ω,F , Ê))

Definition

B is called aG -Brownian motion if:

For each t1 ≤ · · · ≤ tn, Btn − Btn−1 is indep. of (Bt1 , · · · ,Btn−1).

Bt
d= Bs+t − Bs , for all s, t ≥ 0

Ê[|Bt |3] = o(t). .

Theorem.

If (Bt(ω))t≥0 is a G–Brownian motion and Ê[Bt ] = Ê[−Bt ] ≡ 0 then:

Bt+s − Bs
d= N(0, [σ2t, σ2t]), ∀ s, t ≥ 0

Shige Peng, Shandong University, ChinaJoint work with Mingshang HU, Shaolin JI and Yongsheng SONG
() BSDE driven by G -Brownian Motion

The 8th Workshop on Markov Processes and Related Topics 16, July, 2012, Beijing Normal University 23
/ 64



Brownian Motion (Bt(ω))t≥0 in (Ω,F , Ê))
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Construct G -BM on a sublinear expectation space
(Ω,H, Ê)

Ω := C (0, ∞; R), Bt(ω) = ωt

H := {X (ω) = ϕ(Bt1 ,Bt2 , · · · ,Btn), ti ∈ [0, ∞), ϕ ∈ CLip(Rn), n ∈
Z}
For each X (ω) = ϕ(Bt1 ,Bt2 − Bt1 , · · · ,Btn − Btn−1), with ti < ti+1,
we set

Ê[X ] := Ẽ[ϕ(
√

t1ξ1,
√

t2 − t1ξ2, · · · ,
√

tn − tn−1ξn)]

where

ξi
d= N(0, [σ2, σ2]), ξi+1 is indep. of (ξ1, · · · , ξi ) under Ẽ.

Conditional expectation:

Êt1 [X ] = Ẽ[ϕ(x ,
√

t2 − t1ξ2, · · · ,
√

tn − tn−1ξn)]x=Bt1
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√

t2 − t1ξ2, · · · ,
√

tn − tn−1ξn)]x=Bt1

Shige Peng, Shandong University, ChinaJoint work with Mingshang HU, Shaolin JI and Yongsheng SONG
() BSDE driven by G -Brownian Motion

The 8th Workshop on Markov Processes and Related Topics 16, July, 2012, Beijing Normal University 24
/ 64



Probability v.s. Nonlinear Expectation

Probability Space Nonlinear Expectation Space

(Ω,F ,P) (Ω,H, E): (sublinear is basic)

Distributions: X
d= Y X

d= Y ,

Independence: Y indep. of X Y indep. of X , (non-symm.)

LLN and CLT LLN + CTL

Normal distributions G-Normal distributions

Brownian motion Bt(ω) = ωt G -B.M. Bt(ω) = ωt ,

Qudratic variat. 〈B〉t = t 〈B〉t : still a G -Brownian motion

Lévy process G -Lévy process
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Probability v.s. Nonlinear Expectation

Probability Space Nonlinear Expectation Space
Itô’s calculus for BM Itô’s calculus for G -BM

SDE dxt = b(xt)dt + σ(xt)dBt dxt = · · ·+ β(xt)d 〈B〉t
Diffusion: ∂tu −Lu = 0 ∂tu − G (Du,D2u) = 0

Markovian pro. and semi-grou Nonlinear Markovian

Martingales G -Martingales

E [X |Ft ] = E [X ] +
∫ T
0 zsdBs E[X |Ft ] = E[X ] +

∫ t
0 zsdBs + Kt

Kt
?=

∫ t
0 ηsd 〈B〉s −

∫ t
0 2G (ηs)ds
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Probability Space Nonlinear Expectation Space
P-almost surely analysis ĉ-quasi surely analysis

ĉ(A) = supθ EPθ
[1A]

X (ω): P-quasi continuous X (ω): ĉ-quasi surely

⇐⇒ X is B(Ω)-meas. continuous =⇒ X is B(Ω)-meas.
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BSDE

Backward stochastic differential equations (BSDE) driven by a
G -Brownian motion (Bt)t≥0 in the following form:

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds +

∫ T

t
g(s,Ys ,Zs)d〈B〉s

−
∫ T

t
ZsdBs − (KT −Kt).

Under a Lipschitz condition of f and g in Y and Z . The existence and
uniqueness of the solution (Y ,Z ,K ) is proved, where K is a decreasing
G -martingale.
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Representation of G -martingale

G -martingale M is of the form

Mt = M0 + M̄t + Kt ,

M̄t :=
∫ t

0
zsBs ,

Kt :=
∫ t

0
ηs 〈B〉s −

∫ t

0
2G (ηs)ds.
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GBSDE

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds +

∫ T

t
g(s,Ys ,Zs)d〈B〉s

−
∫ T

t
ZsdBs − (KT −Kt).
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Existing results on fully nonlinear BSDEs

f independent of z (and g = 0):

Y i
t = Ê

Gi
t [ξ i +

∫ T

t
f i (s,Ys)ds ].

Peng [2005,07,10].
BSDE corresponding to (path-depedent) system of PDE:

∂tu
i + G i (ui ,Dui ,D2ui ) + f i (t, x , u1, · · · , uk) = 0,

ui (x ,T ) = ϕi (x),
i = 1, · · · , k.

G i satisfy the dominate condition:

G i (x , y , p,A)− G i (x , ȳ , p̄, Ā) ≤ c(|y − ȳ |+ |p − p|) + Ĝ (A− Ā),
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Existing results on fully nonlinear BSDEs

[Soner, Touzi and Zhang, 2BSDE]

(Y ,Z ,KP)P∈Pκ
H
, P ∈ Pκ

H , the following BSDE

Yt = ξ +
∫ T

t
Fs(Ys ,Zs)ds −

∫ T

t
ZsdBs + (KP

T −KP
t ), P-a.s.,

with

KP
t = ess inf

P′∈Pκ
H (t+,P)

EP′
t [KP

T ], P-a.s., ∀P ∈ Pκ
H , t ∈ [0,T ].
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A priori estimates

(ΩT , L1
G (ΩT ), Ê)

ΩT = C0([0,T ], R),
σ2 = Ê[B2

1 ] ≥ −Ê[−B2
1 ] = σ2 > 0.

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdBs − (KT −Kt), (GBSDE)

where
f (t, ω, y , z) : [0,T ]×ΩT ×R2 → R
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Assumption: some β > 1 such that

(H1) for any y , z , f (·, ·, y , z) ∈ M
β
G (0,T ),

(H2) |f (t, ω, y , z)− f (t, ω, y ′, z ′)| ≤ L(|y − y ′|+ |z − z ′|).

For sim(Y ,Z ,K ) such that Y ∈ Sα
G (0,T ), Z ∈ Hα

G (0,T ), K : a
decreasing G -martingale with K0 = 0 and KT ∈ Lα

G (ΩT ).
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Lemma 3.3.

Let Xt , X n
t be as in the above Lemma and α∗ = α

α−1 . Assume that K is a

decreasing G -martingale with K0 = 0 and KT ∈ Lα∗
G (ΩT ). Then we have

Ê[ sup
t∈[0,T ]

|
∫ t

0
X n

s dKs −
∫ t

0
XsdKs |] → 0 as n → ∞.
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An important observation

Lemma 3.4.

Let X ∈ Sα
G (0,T ) for some α > 1 and α∗ = α

α−1 . Assume that K j ,

j = 1, 2, are two decreasing G -martingales with K j
0 = 0 and

K j
T ∈ Lα∗

G (ΩT ). Then the process defined by∫ t

0
X+

s dK 1
s +

∫ t

0
X−

s dK 2
s

is also a decreasing G -martingale.
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A typical application of Lemma 3.4

−dY i
t = f (s,Y i

s ,Z
i
s )ds − Z i

sdBs − dK i
t , i = 1, 2

|ŶT |2 −
∫ T
t 2Ŷs f̂sds −

∫ T
t |Ẑt |2d 〈B〉t +

∫ T
t 2Ŷs ẐsdBs

= |Ŷt |2 +
∫ T
t 2Ŷsd(K 1

t −K 2
t )

= |Ŷt |2 + 2
∫ T
t [(Ŷs)+dK 1

t + (Ŷs)−dK 2
t ]− 2

∫ T
t [(Ŷs)−dK 1

t +
(Ŷs)+dK 2

t ]

≥ |Ŷt |2 + 2
∫ T
t [(Ŷs)+dK 1

t + (Ŷs)−dK 2
t ]

Thus

|Ŷt |2 ≤ Êt [|ŶT |2 −
∫ T

t
2Ŷs f̂sds −

∫ T

t
|Ẑt |2d 〈B〉t ]
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≥ |Ŷt |2 + 2
∫ T
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t [(Ŷs)−dK 1

t +
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t |Ẑt |2d 〈B〉t +

∫ T
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= |Ŷt |2 + 2
∫ T
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|ŶT |2 −
∫ T
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Proposition 3.5.

Assume (H1)-(H2) and (Y ,Z ,KT ) ∈ Sα(0,T )×Hα(0,T )× Sα(ΩT )
solves

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdBs − (KT −Kt),

where K is a decreasing process with K0 = 0. Then

Ê[(
∫ T

0
|Zs |2ds)

α
2 ] ≤ Cα{Ê[ sup

t∈[0,T ]
|Yt |α]

+ (Ê[ sup
t∈[0,T ]

|Yt |α])
1
2 (Ê[(

∫ T

0
|f 0

s |ds)α])
1
2 },

Ê[|KT |α] ≤ Cα{Ê[ sup
t∈[0,T ]

|Yt |α] + Ê[(
∫ T

0
|f 0

s ds)α]},

f 0
s := |f (s, 0, 0)|+ Lw ε
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Proposition 3.7.

We assume (H1) and (H2). Assume that (Y ,Z ,K ) ∈ Sα
G (0,T ) for some

1 < α < β is a solution (GBSDE). Then

There exists a constant Cα := C (α,T , σ, Lw ) > 0 such that

|Yt |α ≤ CαÊt [|ξ|α +
∫ T

t
|f 0

s |αds ],

Ê[ sup
t∈[0,T ]

|Yt |α] ≤ CαÊ[ sup
t∈[0,T ]

Êt [|ξ|α +
∫ T

0
|f 0

s |αds ]],

where f 0
s = |f (s, 0, 0)|+ Lw ε.

For any given α′ with α < α′ < β, there exists a constant Cα,α′

depending on α, α′, T , σ, Lw such that

Ê[ sup
t∈[0,T ]

|Yt |α] ≤ Cα,α′{Ê[ sup
t∈[0,T ]

Êt [|ξ|α]]

+ (Ê[ sup
t∈[0,T ]

Êt [(
∫ T

0
f 0
s ds)α′ ]])

α
α′

+ Ê[ sup
t∈[0,T ]

Êt [(
∫ T

0
f 0
s ds)α′ ]]}.
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Proposition 3.8.

Let fi , i = 1, 2, satisfy (H1) and (H2). Assume

Y i
t = ξ i +

∫ T

t
fi (s,Y i

s ,Z
i
s )ds −

∫ T

t
Z i

sdBs − (K i
T −K i

t ),

where Y i ∈ Sα(0,T ), Z i ∈ Hα(0,T ), K i is a decreasing process with
K i

0 = 0 and K i
T ∈ Lα(ΩT ) for some α > 1. Set

Ŷt = Y 1
t − Y 2

t , Ẑt = Z 1
t − Z 2

t and K̂t = K 1
t −K 2

t . Then there exists a
constant Cα := C (α,T , σ, Lw ) > 0 such that

Ê[(
∫ T

0
|Ẑs |2ds)

α
2 ] ≤ Cα{‖Ŷ ‖α

Sα + ‖Ŷ ‖
α
2
Sα

2

∑
i=1

[||Y i ||
α
2
Sα + ||

∫ T

0
f i ,0
s ds ||

α
2
α,G ]},

where f i ,0
s = |fi (s, 0, 0)|+ Lw ε, i = 1, 2.
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Proposition 3.9.

Let ξ i ∈ L
β
G (ΩT ) with β > 1, i = 1, 2, and fi satisfy (H1) and (H2).

Assume that (Y i ,Z i ,K i ) ∈ Sα
G (0,T ) for some 1 < α < β are the

solutions of equation (GBSDE) to ξ i and fi . Then

(i) |Ŷt |α ≤ CαÊt [|ξ̂|α +
∫ T
t |f̂s |αds ], where

f̂s = |f1(s,Y 2
s ,Z 2

s )− f2(s,Y 2
s ,Z 2

s )|+ Lw
1 ε.

(ii) For any given α′ with α < α′ < β, there exists a constant
Cα,α′ depending on α, α′, T , σ, Lw such that

Ê[ sup
t∈[0,T ]

|Ŷt |α] ≤ Cα,α′{Ê[ sup
t∈[0,T ]

Êt [|ξ̂|α]]

+ (Ê[ sup
t∈[0,T ]

Êt [(
∫ T

0
f̂sds)α′ ]])

α
α′

+ Ê[ sup
t∈[0,T ]

Êt [(
∫ T

0
f̂sds)α′ ]]}.
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Existence and uniqueness of G -BSDEs

∂tu + G (∂2
xxu) + h(u, ∂xu) = 0, u(T , x) = ϕ(x). (GPDE)

Shige Peng, Shandong University, ChinaJoint work with Mingshang HU, Shaolin JI and Yongsheng SONG
() BSDE driven by G -Brownian Motion

The 8th Workshop on Markov Processes and Related Topics 16, July, 2012, Beijing Normal University 42
/ 64



We approximate the solution f by those of equations (GBSDE) with much
simpler {fn}. More precisely, assume that ‖fn − f ‖

M
β
G

→ 0 and

(Y n,Zn,Kn) is the solution of the following G -BSDE

Y n
t = ξ +

∫ T

t
fn(s,Y n

s ,Zn
s )ds −

∫ T

t
Zn

s dBs − (Kn
T −Kn

t ).

We try to prove that (Y n,Zn,Kn) converges to (Y ,Z ,K ) and (Y ,Z ,K )
is the solution of the following G -BSDE

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdBs − (KT −Kt).
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Main results:

Theorem

Assume that ξ ∈ L
β
G (ΩT ), β > 1 and f satisfies (H1) and (H2). Then

equation (G-BSDE) has a unique solution (Y ,Z ,K ). Moreover, for any
1 < α < β we have Y ∈ Sα

G (0,T ), Z ∈ Hα
G (0,T ) and KT ∈ Lα

G (ΩT ).
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Sketch of Proof of Theorem.

Step 1. f (t, ω, y , z) = h(y , z), h ∈ C∞
0 (R2).

Part 1) ξ = ϕ(BT − Bt1): ∃ α ∈ (0, 1) s.t.,

||u||C1+α/2,2+α([0,T−κ]×R) < ∞, κ > 0.

Itô’s formula to u(t,Bt − Bt1) on [t1,T − κ], we get

u(t,Bt − Bt1) =u(T − κ,BT−κ − Bt1) +
∫ T−κ

t
h(u, ∂xu)(s,Bs − Bt1)ds

−
∫ T−κ

t
∂xu(s,Bs − Bt1)dBs − (KT−κ −Kt),
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Sketch of Proof of Theorem.

where

Kt =
1

2

∫ t

t1
∂2
xxu(·)d〈B〉s −

∫ t

t1
G (∂2

xxu(·))ds

|u(t, x)− u(s, y)| ≤ L1(
√
|t − s |+ |x − y |).

ũ is the solution of PDE:

∂t ũ + G (∂2
xx ũ) + h(ũ, ∂x ũ) = 0,

ũ(T , x) = ϕ(x + x0).
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Sketch of Proof of Theorem.

u(t, x + x0) ≤ u(t, x) + Lϕ|x0| exp(Lh(T − t)),

Since x0 is arbitrary, we get |u(t, x)− u(t, y)| ≤ L̂|x − y |, where
L̂ = Lϕ exp(LhT ). From this we can get |∂xu(t, x)| ≤ L̂ for each
t ∈ [0,T ], x ∈ R. On the other hand, for each fixed t̄ < t̂ < T and
x ∈ R, applying Itô’s formula to u(s, x + Bs − Bt̄) on [t̄, t̂], we get

u(t̄, x) = Ê[u(t̂, x + Bt̂ − Bt̄) +
∫ t̂

t̄
h(u, ∂xu)(s, x + Bs − Bt̄)ds ].
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Sketch of Proof of Theorem.

From this we deduce that

|u(t̄, x)− u(t̂, x)| ≤ Ê[L̂|Bt̂ − Bt̄ |+ L̃|t̂ − t̄|] ≤ (L̂σ̄ + L̃
√

T )
√
|t̂ − t̄|,

where L̃ = sup(x ,y)∈R2 |h(x , y)|. Thus we get (??) by taking

L1 = max{L̂, L̂σ̄ + L̃
√

T}. Letting κ ↓ 0 in Itô’s equation, it is easy to
verify that

Ê[|YT−κ − ξ|2 +
∫ T

T−κ
|Zt |2dt + (KT−κ −KT )2] → 0,

where Yt = u(t,Bt − Bt1) and Zt = ∂xu(t,Bt − Bt1). Thus
(Yt ,Zt ,Kt)t∈[t1,T ] is a solution of equation (GBSDE) with terminal value
ξ = ϕ(BT − Bt1). Furthermore, it is easy to check that Y ∈ Sα

G (t1,T ),
Z ∈ Hα

G (t1,T ) and KT ∈ Lα
G (ΩT ) for any α > 1.
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Sketch of Proof of Theorem.

Part 2) ξ = ψ(Bt1 ,BT − Bt1):

u(t, x ,Bt − Bt1) =u(T , x ,BT − Bt1) +
∫ T

t
h(u, ∂yu)(s, x ,Bs − Bt1)ds

−
∫ T

t
∂yu(·)dBs − (K x

T −K x
t ),

K x
t =

1

2

∫ t

t1
∂2
yyu(·)d〈B〉s −

∫ t

t1
G (∂2

yyu(·))ds.

Yt = YT +
∫ T

t
h(Ys ,Zs)ds −

∫ T

t
ZsdBs − (KT −Kt),
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Sketch of Proof of Theorem.

where

Yt := u(t,Bt1 ,Bt − Bt1), Zt := ∂yu(·),

Kt :=
1

2

∫ t

t1
∂2
yyu(·)d〈B〉s −

∫ t

t1
G (∂2

yyu(·))ds.

Need to prove (Y ,Z ,K ) ∈ Sα
G (0,T ). By partition of unity theorem, ∃

hn
i ∈ C∞

0 (R) s.t.

λ(supp(hn
i )) < 1/n, 0 ≤ hn

i ≤ 1,

I[−n,n](x) ≤
kn

∑
i=1

hn
i ≤ 1.
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Sketch of Proof of Theorem.

We have

Y n
t = Y n

T +
∫ T

t

n

∑
i=1

h(yn,i
s , zn,i

s )hn
i (Bt1)ds −

∫ T

t
Zn

s dBs − (Kn
T −Kn

t ),

where

yn,i
t = u(t, xn

i ,Bt − Bt1), zn,i
t = ∂yu(t, xn

i ,Bt − Bt1),

Y n
t =

n

∑
i=1

yn,i
t hn

i (Bt1), Zn
t =

n

∑
i=1

zn,i
t hn

i (Bt1),

Kn
t =

n

∑
i=1

K
xn
i

t hn
i (Bt1).
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Sketch of Proof of Theorem.

Thus

|Yt − Y n
t | ≤

kn

∑
i=1

hn
i (Bt1)|u(t, xn

i ,Bt − Bt1)− u(t,Bt1 ,Bt − Bt1)|

+ |Yt |I[|Bt1
|>n] ≤

L2

n
+
||u||∞

n
|Bt1 |.

Thus

Ê[ sup
t∈[t1,T ]

|Yt − Y n
t |α] ≤ Ê[(

L2

n
+
||u||∞

n
|Bt1 |)α] → 0.

By the estimates

Ê[(
∫ T

t1
|Zs − Zn

s |2ds)α/2] ≤ Cα{Ê[ sup
t∈[t1,T ]

|Yt − Y n
t |α]

+(Ê[ sup
t∈[t1,T ]

|Yt − Y n
t |α])1/2} → 0.

Thus Z ∈ Mα
G (0,T ), Kt ∈ Lα
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Sketch of Proof of Theorem.

[Sketch of Proof of Theorem] prove K is G -martingale. Following [Li-P.],
we take

hn
i (x) = I[−n+ i

n ,−n+ i+1
n )(x), i = 0, . . . , 2n2 − 1,

hn
2n2 = 1−

2n2−1

∑
i=0

hn
i

Ỹ n
t =

2n2

∑
i=0

u(t,−n +
i

n
,Bt − Bt1)h

n
i (Bt1), Z̃n

t =
2n2

∑
i=0

∂yu(·)hn
i (Bt1)

solves

Ỹ n
t = Ỹ n

T +
∫ T

t
h(Ỹ n

s , Z̃n
s )ds −

∫ T

t
Z̃n

s dBs − (K̃n
T − K̃n

t ),
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Sketch of Proof of Theorem.

We have Ê[(
∫ T
t1
|Zs − Z̃n

s |2ds)α/2] → 0. Thus Ê[|Kt − K̃n
t |α] → 0 and

Êt [Ks ] = Kt . For Yt1 = u(t1,Bt1 , 0), we can use the same method as Part
1 on [0, t1].
Step 2) f (t, ω, y , z) = ∑N

i=1 f ihi (y , z) with f i ∈ M0
G (0,T ) and

hi ∈ C∞
0 (R2).
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Sketch of Proof of Theorem.

Step 3) f (t, ω, y , z) = ∑N
i=1 f ihi (y , z) with f i ∈ M

β
G (0,T ) bounded and

hi ∈ C∞
0 (R2), hi ≥ 0 and ∑N

i=1 hi ≤ 1:
Choose

f i
n ∈ M0

G (0,T ) s.t. |f i
n | ≤ ‖f i‖∞,

N

∑
i=1

‖f i
n − f i‖

M
β
G

< 1/n.

Set fn := ∑N
i=1 f i

nhi (y , z).
Let (Y n,Zn,Kn) be the solution of (GBSDE) with generator fn.

f̂ m,n
s := |fm(s,Y n

s ,Zn
s )− fn(s,Y n

s ,Zn
s )|

≤
N

∑
i=1

|f i
n − f i |+

N

∑
i=1

|f i
m − f i | =: f̂n + f̂m,
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Sketch of Proof of Theorem.

We have, for any 1 < α < β,

Êt [(
∫ T

0
f̂ m,n
s ds)α] ≤ Êt [(

∫ T

0
(|f̂n(s)|+ |f̂m(s)|)ds)α].

By Theorem 2.10, ∀α ∈ (1, β)

Ê

[
sup

t
Êt [|

∫ T

0
f̂ m,n
s ds |α]]

]
→ 0, m, n → ∞

By Proposition 3.9 {Y n} is Cauchy under ‖ · ‖Sα
G
. By Proposition 3.7, 3.8,

{Zn} is a also Cauchy under ‖ · ‖Hα
G

thus {
∫ T
0 fn(s,Y n

s ,Zn
s )ds} under

‖ · ‖Lα
G

thus {Kn
T} is also Cauchy under ‖ · ‖Lα

G
.
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Sketch of Proof of Theorem.

Step 4). f is bounded, Lipschitz. |f (t, ω, y , z)| ≤ CIB(R)(y , z) for some

C ,R > 0. Here B(R) = {(y , z)|y2 + z2 ≤ R2}.
For any n, by the partition of unity theorem, there exists {hi

n}Nn
i=1 such that

hi
n ∈ C∞

0 (R2), the diameter of support λ(supp(hi
n))< 1/n, 0 ≤ hi

n ≤ 1,
IB(R) ≤ ∑N

i=1 hi
n ≤ 1. Then f (t, ω, y , z) = ∑N

i=1 f (t, ω, y , z)hi
n. Choose

y i
n, z

i
n such that hi

n(y i
n, z

i
n) > 0. Set

fn(t, ω, y , z) =
N

∑
i=1

f (t, ω, y i
n, z

i
n)h

i
n(y , z)
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Sketch of Proof of Theorem.

Then

|f (t, ω, y , z)− fn(t, ω, y , z)| ≤
N

∑
i=1

|f (t, ω, y , z)− f (t, ω, y i
n, z

i
n)|hi

n ≤ L/n

and

|fn(t, ω, y , z)− fn(t, ω, y ′, z ′)| ≤ L(|y − y ′|+ |z − z ′|+ 2/n).

Noting that |fm(s,Y n
s ,Zn

s )− fn(s,Y n
s ,Zn

s )| ≤ (L/n + L/m),

Shige Peng, Shandong University, ChinaJoint work with Mingshang HU, Shaolin JI and Yongsheng SONG
() BSDE driven by G -Brownian Motion

The 8th Workshop on Markov Processes and Related Topics 16, July, 2012, Beijing Normal University 58
/ 64



Sketch of Proof of Theorem.

we have

Êt [|
∫ T

0
(|fm(s,Y n

s ,Zn
s )− fn(s,Y n

s ,Zn
s )|+ 2L

m
)ds |α] ≤ T α(

L

n
+

3L

m
)α.

So by the estimates {Y n} cauchy under ‖ · ‖Sα
G
. {Zn} is cauchy under

‖ · ‖Hα
G
. is also cauchy {

∫ T
0 fn(s,Y n

s ,Zn
s )ds} under ‖ · ‖Lα

G
.
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Sketch of Proof of Theorem.

Step 5). f is bounded, Lipschitz.
For any n ∈ N, choose hn ∈ C∞

0 (R2) such that IB(n) ≤ hn ≤ IB(n+1) and
{hn} are uniformly Lipschitz w.r.t. n. Set fn = fhn, which are uniformly
Lipschitz. Noting that for m > n

|fm(s,Y n
s ,Zn

s )− fn(s,Y n
s ,Zn

s )|
≤ |f (s,Y n

s ,Zn
s )|I[|Y n

s |2+|Zn
s |2>n2]

≤ ‖f ‖∞
|Y n

s |+ |Zn
s |

n
,
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Sketch of Proof of Theorem.

we have

Êt [(
∫ T

0
|fm(s,Y n

s ,Zn
s )− fn(s,Y n

s ,Zn
s )|ds)α]

≤ ‖f ‖α
∞

nα
Êt [(

∫ T

0
|Y n

s |+ |Zn
s |ds)α]

≤ ‖f ‖α
∞

nα
C (α,T )Êt [

∫ T

0
|Y n

s |αds + (
∫ T

0
|Zn

s |2ds)α/2],

where C (α,T ) := 2α−1(T α−1 + T α/2]).
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Sketch of Proof of Theorem.

So by Theorem 2.10 and Proposition 3.4 we get ||
∫ T
0 f̂ m,n

s ds ||α,E → 0 as
m, n → ∞ for any α ∈ (1, β). By Proposition 3.5, we conclude that {Y n}
is cauchy under ‖ · ‖Sα

G
. {Zn} cauchy sequence under ‖ · ‖Hα

G
.

{
∫ T
0 fn(s,Y n

s ,Zn
s )ds} is cauchy under ‖ · ‖Lα

G
:

|fn(s,Y n,Zn)− fm(s,Y m,Zm)|
≤ |fm(s,Y n,Zn)− fm(s,Y m,Zm)|+ |fn(s,Y n,Zn)− fm(s,Y n,Zn)|
≤ L(|Ŷs |+ |Ẑs |) + |f (s,Y n

s ,Zn
s )|1[|Y n

s |+|Zn
s |>n],

which implies the desired result.
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Sketch of Proof of Theorem.

Step 6). For the general f .
Set fn = [f ∨ (−n)] ∧ n, which are uniformly Lipschitz. Choose

0 < δ < β−α
α ∧ 1. Then α < α′ = (1 + δ)α < β. Since for m > n

|fn(s,Y n,Zn)− fm(s,Y n,Zn)| ≤ |f (s,Y n
s ,Zn

s )|I[|f (s,Y n
s ,Y n

s )|>n] ≤
1

nδ
|f (s,Y n

s ,Zn
s )|1+δ,

we have

Êt [(
∫ T

0
|fn(s,Y n,Zn)− fm(s,Y n,Zn)|ds)α]

≤ 1

nαδ
Êt [(

∫ T

0
|f (s,Y n

s ,Zn
s )|1+δds)α],

≤ C (α,T , L, δ)
nαδ

Êt [
∫ T

0
|f (s, 0, 0)|α′ds +

∫ T

0
|Y n

s |α
′
ds + (

∫ T

0
|Zn

s |2ds)
α′
2 ],

where C (α,T , L, δ) := 3α′−1(T α−1 + Lα′T
α(1−δ)

2 + T α−1Lα′).
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Sketch of Proof of Theorem.

So by Song’s estimate and a priori estimate, we get ||
∫ T
0 f̂ m,n

s ds ||α,E → 0
as m, n → ∞ for any α ∈ (1, β). We know that {Y n} is a cauchy
sequence under the norm ‖ · ‖Sα

G
. And consequently {Zn} is a cauchy

sequence under the norm ‖ · ‖Hα
G
. Now we prove {

∫ T
0 fn(s,Y n

s ,Zn
s )ds} is

a cauchy sequence under the norm ‖ · ‖Lα
G
. In fact,

|fn(s,Y n,Zn)− fm(s,Y m,Zm)|
≤ |fm(s,Y n,Zn)− fm(s,Y m,Zm)|+ |fn(s,Y n,Zn)− fm(s,Y n,Zn)|

≤ L(|Ŷs |+ |Ẑs |) +
3δ

nδ
(|f 0

s |1+δ + |Y n
s |1+δ + |Zn

s |1+δ),

which implies the desired result.
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