Uniform logarithmic Sobolev inequalities in dimension for harmonic measures on spheres

Yutao Ma

Beijing Normal University

The 8th Workshop on Markov Processes and Related Topics

July 16-21, 2012@ Wuyi Mountains

Outline

- Introduction
- Uniform Poincaré inequality
- Uniform logarithmic Sobolev inequality

Harmonic measures

Let S^{n-1} be the unit sphere on $\mathbb{R}^{n}(n \geq 3)$ and μ the normalized Lebesgue measure on S^{n-1}, i.e. $\mu=\sigma_{n-1} / s_{n-1}$, where σ_{n-1} and s_{n-1} are the uniform surface measure and total volume respectively on S^{n-1}.
For $x=\left(x_{1}, \cdots, x_{n}\right)$ with $|x|<1$, the harmonic measure μ_{x}^{n} is one probability on S^{n-1} given by

$$
d \mu_{x}^{n}(y)=\frac{1-|x|^{2}}{|y-x|^{n}} d \mu(y), \quad y \in S^{n-1} .
$$

If f is an integrable function on S^{n-1},

$$
\tilde{f}(x):=\int_{S^{n-1}} f(y) d \mu_{x}^{n}(y)
$$

is a harmonic function whose radical limits are equal μ-almost everywhere to f.
Moreover, if \mathbb{P}^{x} denotes the probability distribution of a standard n-dimensional Brownian motion B_{t} starting from x, and τ the first time for B_{t} to hit S^{n-1}, μ_{x}^{n} is nothing but the distribution of B_{τ} under \mathbb{P}^{X}. 1944, Kakutani.

Wasserstein distance

Let M be a connected complete Riemannian manifold with Riemannian metric ρ and ∇ is the gradient on $M . \mathcal{M}_{1}(M)$ is the space of all probabilities on M.
For any $\nu, \mu \in \mathcal{M}_{1}(M)$, the L^{p}-Wasserstein distance $W_{p, \rho}(\nu, \mu)$ associated with the metric ρ is defined as

$$
W_{p, \rho}(\nu, \mu)=\inf _{\pi}\left(\iint_{M^{2}} \rho^{p}(x, y) \pi(d x, d y)\right)^{1 / p}
$$

where π runs over all couplings of (ν, μ).

Entropy and Fisher information

- The relative entropy of ν w.r.t. μ is given by

$$
H(\nu / \mu)= \begin{cases}\int_{M} \log \frac{d \nu}{d \mu} d \nu, & \text { if } \nu \ll \mu \\ +\infty, & \text { otherwise }\end{cases}
$$

- The Fisher-Donsker-Varadhan information of a probability measure ν w.r.t. μ is defined by

$$
I(\nu / \mu)= \begin{cases}\int_{M}|\nabla \sqrt{f}|^{2} d \mu, & \text { if } \nu=f \mu, \quad \text { and } \int_{M}|\nabla \sqrt{f}|^{2} d \mu<\infty, \\ +\infty, & \text { otherwise } .\end{cases}
$$

Related inequalities

Given any $\mu \in \mathcal{M}_{1}(M)$ we say that

- μ satisfies Poincaré inequality if there exists positive constant C such that for any smooth function $f: M \rightarrow \mathbb{R}$,

$$
\operatorname{Var}_{\mu}(f)=\int_{M} f^{2} d \mu-\left(\int_{M} f d \mu\right)^{2} \leq C \int_{M}|\nabla f|^{2} d \mu
$$

C_{P} is the optimal constant and the inequality is denoted as $\mu \in P I\left(C_{P}\right)$.

- μ satisfies logarithmic Sobolev inequality with positive constant C $(\mu \in H I(C))$ if for any nonnegative smooth function $f: M \rightarrow \mathbb{R}_{+}$ with $\mu(f)=1$,

$$
H(f \mu / \mu) \leq 2 C I(\sqrt{f}, \sqrt{f}) .
$$

The optimal constant is denoted by C_{LS}.

Transportation (information) inequality

- μ satisfies L^{p}-transportation inequality with positive constant C ($\mu \in W_{p} H(C)$) if

$$
W_{p, \rho}^{2}(\nu, \mu) \leq 2 C H(\nu / \mu), \quad \forall \nu \in \mathcal{M}_{1}(M)
$$

- μ satisfies L^{p} transportation-information inequality with positive constant $C\left(\mu \in W_{p} I(C)\right)$ if for any nonnegative smooth function $f: M \rightarrow \mathbb{R}_{+}$with $\mu(f)=1$

$$
W_{p, \rho}^{2}(f \mu, \mu) \leq 4 C^{2} I(\sqrt{f}, \sqrt{f}) .
$$

Relations among the inequalities

- $H I(C) \Rightarrow W_{2} H(C)$,

1. Otto-Villani, 00, JFA.
2. Bobkov-Gentil-Ledoux 01, J. Math. Pures Appl.
3. Cattiaux-Gullin, 06, J. Math. Pures Appl.

- $H I(C) \Rightarrow W_{2} I(C) \Rightarrow W_{2} H(C)$ Guillin-Joulin-Wang-Wu, 09+
- $W_{2} H(C) \Rightarrow P I(C)$,

Otto-Villani, 00, JFA

Known results on harmonic measures

- G. Schechtman and M. Schmuckenschläger proved that μ_{x}^{n} with any $|x|<1$ have a uniform Gaussian concentration, 1995.
- F. Barthe and Z. Zhang proved that for $n \geq 3, \mu_{x}^{n},|x|<1$ satisfies uniform Poincaré, Talagrand inequalities and locally uniform Log-S inequalities for μ_{x}^{n} with $|x| \leq \boldsymbol{a}<1$, while logarithmic Sobolev constants explode with speed $\log \frac{1}{1-a}$ as $a \rightarrow 1$. 06+
- Zhang, harmonic measures on the unit circle. Uniform log-S inequality fails with same exploding speed $\log \frac{1}{1-a}$ as $a \rightarrow 1$. However uniform Poincaré, $W_{1} I$ and $W_{2} H$ inequlities hold with

$$
C_{\mathrm{P}} \leq 4, C_{W_{1} I} \leq \frac{2 e}{e+1}, C_{W_{2} H} \leq 25.3
$$

Fundamental Lemma 1: Barthe-Zhang

Lemma 1. Let M be a probability measure on S^{n-1}, such that $M\left(\left\{e_{1},-e_{1}\right\}\right)=0$, and ν the image of M by the mapping $y \rightarrow d\left(y, e_{1}\right)$. Assume that $M \in P I\left(C_{P}\right)$ or $M \in H I\left(C_{\mathrm{LS}}\right)$ respectively, then $\nu \in P I\left(C_{\mathrm{P}}\right)$ or $\nu \in H I\left(C_{\mathrm{LS}}\right)$ respectively.

Fundamental Lemma 2: Barthe-Zhang

Lemma 2. Let M be a probability measure on S^{n-1} with

$$
d M(x)=\varphi\left(d\left(x, e_{1}\right)\right) d \sigma_{n-1}(x), \quad x \in S^{n-1}
$$

where φ is measurable. Let ν be the image of M by the mapping $x \rightarrow d\left(x, e_{1}\right)$. Assume that $\nu \in P I\left(C_{P}\right)$ or $\nu \in H I\left(C_{\mathrm{LS}}\right)$ respectively, then $M \in P I\left(\max \left\{C_{\mathrm{P}}, c_{n-2}\right\}\right.$ or $M \in H I\left(\max \left\{C_{\mathrm{LS}}, c_{n-2}\right\}\right)$ respectively, where $c_{n-2}=\frac{1}{n-2}$ is the optimal Poincaré and logarithmic Sobolev constant of the uniform probability σ_{n-2} / s_{n-2} on S^{n-2}.

Reducation to one dimensional case: Barthe-Zhang

Take $x=a e_{1}$ with $0 \leq \boldsymbol{a}<1$. Let $\nu_{a, n}$ be the image of $\mu_{\mathrm{a} e_{1}}^{n}$ by the mapping $y \rightarrow d\left(y, e_{1}\right)$. It is a probability on $[0, \pi]$ with density

$$
\rho_{a, n}:=\frac{d \nu_{a, n}}{d \theta}=\left(1-a^{2}\right) \frac{s_{n-2}}{s_{n-1}} \frac{(\sin \theta)^{n-2}}{\left(1+a^{2}-2 a \cos \theta\right)^{n / 2}} .
$$

Uniform Poincaré inequality

Main results

Theorem. For any $x \in \mathbb{R}^{n}$ with $|x|<1$ fixed, there exists positive constants $C_{\mathrm{P}}(n)$ independent of x such that for any smooth function $f: S^{n-1} \rightarrow \mathbb{R}$,

$$
\operatorname{Var}_{\mu_{x}^{n}}(f) \leq C_{\mathrm{P}}(n) \int_{S^{n-1}}\left|\nabla_{S^{n-1}} f\right|^{2} d \mu_{x}^{n} .
$$

Moreover, $C_{\mathrm{P}}(n) \sim 1 / n$.

Characterization available for C_{P}

- B. Muckenhoupt. Hardy inequalities with weights, Studia Math., 1972.
- M-F Chen. Speed of stability for birth death processes, Front. Math. China, 2010.

Muchenhoupt's characterization

Let μ, ν be Borel measures on \mathbb{R} with $\mu(\mathbb{R})=1$ and $d \nu(x)=\rho(x) d x$, m be a median of μ. Assume that C_{P} is the optimal constant such that for every smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$, one has

$$
\operatorname{Var}_{\mu}(f) \leq C_{P} \int f^{\prime 2} d \nu
$$

Then $\min \left\{b_{\mathrm{P}}, B_{\mathrm{P}}\right\} \leq C_{P} \leq 4 \max \left\{b_{\mathrm{P}}, B_{\mathrm{P}}\right\}$, where

$$
b_{\mathrm{P}}=\sup _{x<m} \mu((-\infty, x]) \int_{x}^{m} \frac{d t}{\rho(t)}, \quad B_{\mathrm{P}}=\sup _{x>m} \mu([x, \infty)) \int_{m}^{x} \frac{d t}{\rho(t)} .
$$

Chen's new characterization

Let $a>0$, a and b be continuous on $[-M, N]$ (or $(-M, N]$ if $M=\infty$, for instance). Assume that $\mu(-M, N)<\infty$. Then for C_{P}, we have $\kappa \leq C_{\mathrm{P}} \leq 4 \kappa$, where

$$
\kappa=\sup _{-M<y<x<N}\left[\left(\int_{-M}^{x} d \mu\right)^{-1}+\left(\int_{y}^{N} d \mu\right)^{-1}\right]^{-1} \int_{x}^{y} d \nu
$$

where

$$
d \mu(x)=\frac{e^{C(x)}}{a(x)} d x, \quad d \nu(x)=e^{-C(x)} d x \quad \text { with } \quad C(x)=\int_{x_{0}}^{x} \frac{b}{a} .
$$

Uniform Poincaré inequality

$$
\begin{aligned}
& S_{P}^{-}(n):=\sup _{\alpha \in\left(0, m_{a, n}\right)}\left(\int_{0}^{\alpha} \rho_{a, n}(\theta) d \theta\right)\left(\int_{\alpha}^{m_{a, n}} \frac{1}{\rho_{a, n}(\theta)} d \theta\right) \\
& =\sup _{\alpha \in\left(0, m_{a, n}\right)} \int_{0}^{\alpha} \frac{(\sin \theta)^{n-2}}{\left(1+a^{2}-2 a \cos \theta\right)^{n / 2}} d \theta \int_{\alpha}^{m_{a, n}} \frac{\left(1+a^{2}-2 a \cos \theta\right)^{n / 2}}{(\sin \theta)^{n-2}} d \theta \\
& \sim \sup _{u \in\left(u_{a, n}, 1\right)} \int_{U}^{1}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t \int_{u_{a, n}}^{u}\left(\frac{1+a^{2}-2 a t}{1-t^{2}}\right)^{\frac{n-1}{2}} d t,
\end{aligned}
$$

where $m_{a, n}$ is the median and $u_{a, n}:=\cos _{a, n}$.

Uniform Poincaré inequality-continued

$$
\begin{aligned}
& S_{\mathrm{P}}^{+}(n):=\sup _{\alpha \in\left(m_{a, n}, \pi\right)}\left(\int_{\alpha}^{\pi} \rho_{a, n}(\theta) d \theta\right)\left(\int_{m_{a, n}}^{\alpha} \frac{1}{\rho_{a, n}(\theta)} d \theta\right) \\
& =\sup _{\alpha \in\left(m_{a, n}, \pi\right)} \int_{\alpha}^{\pi} \frac{(\sin \theta)^{n-2}}{\left(1+a^{2}-2 a \cos \theta\right)^{n / 2}} d \theta \int_{m_{a, n}}^{\alpha} \frac{\left(1+a^{2}-2 a \cos \theta\right)^{n / 2}}{(\sin \theta)^{n-2}} d \theta \\
& \sim \sup _{u \in\left(-1, u_{a, n}\right)} \int_{-1}^{u}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t \int_{U}^{u_{a, n}}\left(\frac{1+a^{2}-2 a t}{1-t^{2}}\right)^{\frac{n-1}{2}} d t .
\end{aligned}
$$

On the median $m_{a, n}$

Lemma. Recall $u_{a, n}=\operatorname{cosm}_{a, n}$. Then

$$
u_{a, n} \geq a \text { and } u_{a, n}-a \leq O(1 / \sqrt{n}) \text { as } n \text { is large enough. }
$$

Sketch of the proof. Let $\theta_{a}=\arccos a$. Aim: $m_{a, n} \geq \theta_{a}$.
Make a change of variables

$$
\Phi(\theta)=\arccos \frac{\cos \theta-a}{\sqrt{1+a^{2}-2 a \cos \theta}},
$$

which is increasing and $\Phi\left(\left[0, \theta_{a}\right]\right)=[0, \pi / 2], \Phi\left(\left[\theta_{a}, \pi\right]\right)=[\pi / 2, \pi]$.

$$
\begin{aligned}
\int_{0}^{\alpha} \rho_{a, n}(\theta) d \theta & =\int_{0}^{\alpha}\left(1-a^{2}\right) \frac{s_{n-2}}{s_{n-1}} \frac{(\sin \theta)^{n-2}}{\left(1+a^{2}-2 a \cos \theta\right)^{n / 2}} d \theta \\
& =\int_{0}^{\Phi(\alpha)}\left(1-a^{2}\right) G_{a}(\cos \phi) \rho_{0, n}(\phi) d \phi
\end{aligned}
$$

where $G_{a}(c)$ a increasing function in c on $[-1,1]$ and $G_{a}(0)=\frac{1}{1-a^{2}}$.

Key estimates

$$
\forall u \in\left(u_{a, n}, 1\right), \quad\left\{\begin{array}{l}
\int_{u}^{1}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t \leq O\left(\frac{1}{\sqrt{n}}\right) \\
\int_{u_{a, n}}^{u}\left(\frac{1+a^{2}-2 a t}{1-t^{2}}\right)^{\frac{n-1}{2}} d t \leq O\left(\frac{1}{\sqrt{n}}\right)
\end{array}\right.
$$

The two different integrals above achieve the order $1 / \sqrt{n}$ as n large enough only if $u=a+O(1 / \sqrt{n})$.
(1) $0<u-a=o(1 / \sqrt{n})$;
(2) $0<u-a=O(1 / \sqrt{n})$;
(3) $1 / \sqrt{n}=o(u-a), u \geq a$.

$$
\forall u \in\left(-1, u_{a, n}\right), \quad\left\{\begin{array}{l}
\int_{-1}^{u}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t \leq O\left(\frac{1}{\sqrt{n}}\right), \\
\int_{u}^{u_{a, n}}\left(\frac{1+a^{2}-2 a t}{1-t^{2}}\right)^{\frac{n-1}{2}} d t \leq O\left(\frac{1}{\sqrt{n}}\right) .
\end{array}\right.
$$

The orders $1 / \sqrt{n}$ can be achieved only if $|u-a| \leq O(1 / \sqrt{n})$.
(1) $|u-a|=o(1 / \sqrt{n})$;
(2) $|u-a|=O(1 / \sqrt{n})$;
(3) $1 / \sqrt{n}=o(|u-a|)$.

$$
\begin{aligned}
& S_{P}^{-}(n) \sim \sup _{u \in\left(u_{a, n}, 1\right)} \int_{u}^{1}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t \int_{u_{a, n}}^{u}\left(\frac{1+a^{2}-2 a t}{1-t^{2}}\right)^{\frac{n-1}{2}} d t \\
& S_{P}^{+}(n) \sim \sup _{u \in\left(-1, u_{a, n}\right)} \int_{-1}^{u}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t \int_{u}^{u_{a, n}}\left(\frac{1+a^{2}-2 a t}{1-t^{2}}\right)^{\frac{n-1}{2}} d t
\end{aligned}
$$

Uniform logarithmic Sobolev inequality

Main results

Theorem. For any $x \in \mathbb{R}^{n}$ with $|x|<1$ fixed, there exists one parameter $C_{\mathrm{LS}}(n)$ independent of x such that

$$
\operatorname{Ent}_{\mu_{x}^{n}}\left(f^{2}\right) \leq C_{\mathrm{LS}}(n) \int_{S^{n-1}}\left|\nabla_{S^{n-1}} f\right|^{2} d \mu_{x}^{n} .
$$

Moreover $C_{\mathrm{LS}} \sim 1 / n$ as n large enough.

Characterization available for $C_{L S}$

- S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. , 1999.
- F. Barthe and C. Roberto, Sobolev inequalities for probabilty measures on the real line, Studia Math., 2003.

Barthe-Roberto's Characterization for Log-S inequality

Let μ, ν be Borel measures on \mathbb{R} with $\mu(\mathbb{R})=1$ and $d \nu(x)=n(x) d x$, m be a median of μ. Suppose that C_{LS} is the optimal constant such that for every smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$, one has

$$
\operatorname{Ent}_{\mu}\left(f^{2}\right) \leq C_{\mathrm{LS}} \int f^{\prime 2} d \nu
$$

Then $\max \left(b_{\mathrm{LS}}^{-}, b_{\mathrm{LS}}^{+}\right) \leq C_{\mathrm{LS}} \leq 4 \max \left(B_{\mathrm{LS}}^{-}, B_{\mathrm{LS}}^{+}\right)$, where

$$
\begin{aligned}
& b_{\mathrm{LS}}^{+}=\sup _{x>m} \mu([x, \infty)) \log \left(1+\frac{1}{2 \mu([x, \infty))}\right) \int_{m}^{x} \frac{1}{n}, \\
& B_{\mathrm{LS}}^{+}=\sup _{x>m} \mu([x, \infty)) \log \left(1+\frac{e^{2}}{\mu([x, \infty))}\right) \int_{m}^{x} \frac{1}{n}, \\
& b_{\mathrm{LS}}^{-}=\sup _{x<m} \mu((-\infty, x]) \log \left(1+\frac{1}{2 \mu((-\infty, x])}\right) \int_{x}^{m} \frac{1}{n}, \\
& B_{\mathrm{LS}}^{-}=\sup _{x<m} \mu((-\infty, x]) \log \left(1+\frac{e^{2}}{\mu((-\infty, x])}\right) \int_{m}^{x} \frac{1}{n} .
\end{aligned}
$$

Uniform Log-S inequality

$$
\begin{aligned}
& S_{L S}^{-}(n):=\sup _{\alpha \in\left(0, m_{a, n}\right)}\left(\int_{0}^{\alpha} \rho_{a, n}\right) \log \left(1+\frac{1}{\int_{0}^{\alpha} \rho_{a, n}}\right)\left(\int_{\alpha}^{m_{a, n}} \frac{1}{\rho_{a, n}}\right) \\
& \sim \sup _{u \in\left(u_{a, n}, 1\right)} \int_{u}^{1}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t \log \left(1+\frac{1 / \sqrt{n}}{\int_{U}^{1}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t}\right) \\
& \cdot \int_{U_{a, n}}^{u}\left(\frac{1+a^{2}-2 a t}{1-t^{2}}\right)^{\frac{n-1}{2}} d t .
\end{aligned}
$$

Uniform Log-S inequality

$$
\begin{aligned}
& S_{L S}^{+}(n):=\sup _{\alpha \in\left(m_{a, n}, \pi\right)}\left(\int_{\alpha}^{\pi} \rho_{a, n}\right) \log \left(1+\frac{1}{\int_{\alpha}^{\pi} \rho_{a, n}}\right)\left(\int_{m_{a, n}}^{\alpha} \frac{1}{\rho_{a, n}}\right) \\
& \sim \sup _{u \in\left(-1, u_{a, n}\right)} \int_{-1}^{u}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t \log \left(1+\frac{1 / \sqrt{n}}{\int_{-1}^{u}\left(\frac{1-t^{2}}{1+a^{2}-2 a t}\right)^{\frac{n-3}{2}} d t}\right) \\
& \cdot \int_{u}^{u_{a}, n}\left(\frac{1+a^{2}-2 a t}{1-t^{2}}\right)^{\frac{n-1}{2}} d t .
\end{aligned}
$$

Corollary. For any $x \in \mathbb{R}^{n}$ with $|x|<1$ fixed, the harmonic measure μ_{x}^{n} satisfies uniform $W_{2} H\left(C_{W_{p} H}(n)\right)$ and $W_{2} I\left(C_{W_{p}} I(n)\right)$ in dimension. Moreover

$$
C_{W_{2} H}(n) \sim C_{W_{2} /}(n) \sim \frac{1}{n} .
$$

Thanks for your attention

