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Summary

Two classes of Markov processes, continuous-state branching processes
and non-negative self-similar processes, can be constructed from Lévy
processes by Lamperti transformations.

A drawback of (the original form of) those transformations is that they
only give representations of the processes up to their hitting times to
zero.

We review some recent results on pathwise uniqueness and strong so-
lutions of stochastic equations, which can be used to construct several
natural classes Markov processes including some of those related to the
Lamperti transformations.
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1. A simple (bad) example

• Let 0 < β < 1. Then both x1(t) = 0 and x2(t) = ct1/(1−β) solve (for a
suitable c > 0)

dx(t) = x(t)βdt. (1)

Example Let {Ñ(t)} be a compensated Poisson process. Then for any 0 <

β < 1 one can find a β-Hölder continuous function x 7→ φ(x) so that there are
infinitely many solutions to

dx(t) = φ(x(t−))dÑ(t). (2)

In fact, between the jumps the above equation reduces to (dt = compensator)

dx(t) = −φ(x(t))dt.

• The compensated Poisson noise brings difficulties for the pathwise unique-
ness.
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Bass (Probab. Surv. 1 (’04), 1-19):
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2. Stochastic equations of branching processes

Let {ξn,i} and {ηn} be independent families of non-negative integer-valued
i.i.d. random variables. Given Y0 = k, we define a (Galton-Watson) branching
process with immigration by

Yn =

Yn−1∑
i=1

ξn,i + ηn, n ≥ 1. (3)

• Let m = E(ξ1,1) and write

Yn − Yn−1 =
α
√
Yn−1

α
√
Yn−1

Yn−1∑
i=1

(ξn,i −m) + (m− 1)Yn−1 + ηn. (4)

• A suitable scaling limit leads to a typical continuous-state branching process
with immigration defined by (1−m  b):

dy(t) = α
√
y(t−)dz0(t)− by(t−)dt+ dz1(t), (5)

where z0(t) is a Brownian motion (α = 2) or a spectrally positive α-table pro-
cess (1 < α < 2), and z1(t) is a subordinator. Existence and uniqueness?
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Theorem 1 (Fu and L ’10) For a Brownian motionB(t) and a spectrally positive
α-table (1 < α < 2) process z0(t) determined by ν0(dz) = cz−1−αdz, there
is a pathwise unique non-negative strong solution to

dy(t) =
√

2ay(t)dB(t) + α
√
cy(t−)dz0(t)− by(t)dt (+ · · · ). (6)

• The solution of (6) is a continuous-state branching process with generator A
given by

Af(x) = x
[
af ′′(x)− bf ′(x) +

∫ ∞

0

[f(x+ z)− f(x)− zf ′(x)]ν0(dz)
]

(+ · · · ).

Theorem 2 (Dawson and L ’06) For a general Lévy measure ν0(dz), the pro-

cess can be constructed as the pathwise unique positive strong solution to

y(t) = x+

∫ t

0

√
2ay(s)dB(s)− b

∫ t

0
y(s)ds

+

∫ t

0

∫ ∞
0

∫ y(s−)

0
zÑ0(ds, dz, du) (+ · · · ), (7)

where B(t) is a Brownian motion and Ñ0(ds, dz, du) is a compensated Pois-
son random measure with intensity dsν0(dz)du.
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3. Brownian motion and Feller branching diffusion

A Feller branching diffusion Xt is a special continuous-sate branching process
defined by (Itô form)

Xt = x+

∫ t

0

√
XsdBs, (8)

or by (Döblin form)

Xt = x+B(
∫ t
0 Xsds)

. (9)
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4. The first Lamperti transformation

Recall that a general continuous-state branching process can be defined by
(Dawson and L ’06):

y(t) = x+
√
2a

∫ t

0

√
y(s)dB(s)− b

∫ t

0
y(s)ds

+

∫ t

0

∫ ∞
0

∫ y(s−)

0
zÑ0(ds, dz, du). (10)

It can also be defined by (Caballero, Pérez-Garmendia and Uribe-Bravo ’12+):

y(t) = x+
√
2aB0

( ∫ t

0
y(s)ds

)
− b

∫ t

0
y(s)ds+ L0

( ∫ t

0
y(s)ds

)
, (11)

where
√
2aB0(t)− bt+ L0(t) =: Z(t) is a spectrally positive Lévy process.

Theorem 3 (Lamperti ’67; Caballero, Lambert and Uribe-Bravo ’09) Let z(t) =

y(κ(t)) and τ0 := inf{t ≥ 0 : z(t) = 0}, where

κ(t) = inf
{
u ≥ 0 : F (u) :=

∫ u

0
y(s)ds ≥ t

}
.

Then {z(t) : t ≥ 0} is a one-sided Lévy process stopped at τ0.
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5. Stochastic equations and measure-valued processes

• A non-decreasing family of continuous-state branching processes {(Yt(x))t≥0 :

x ≥ 0} can be defined as the unique strong solution flow of

Yt(x) = x+
√
2a

∫ t

0

∫ Ys(x)

0
W (ds, du)− b

∫ t

0
Ys(x)ds

+

∫ t

0

∫ ∞
0

∫ Ys−(x)

0
zÑ0(ds, dz, du), (12)

where W (ds, du) is a white noise with intensity dsdu and Ñ0(ds, dz, du) is a
compensated Poisson random measure with intensity dsν0(dz)du.

Theorem 4 (Dawson and L ’12) The non-deceasing function x 7→ Yt(x) de-
fines a random measure Xt on [0,∞) and {Xt : t ≥ 0} is a measure-valued
branching process (Dawson-Watanabe process).

Theorem 5 (Dawson and L ’12) (a similar construction for the generalized
Fleming-Viot process of Bertoin and Le Gall (’03, ’05, ’06) using a different
equation)
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6. General results on stochastic equations

Let B(t) be a Brownian motion.

Consider Polish spacesU0 andU1. For i = 0, 1 let {Ni(ds, du)} be a Poisson
random measure on (0,∞)× Ui with intensity dsνi(du).

Let Ñ0(ds, du) = N0(ds, du)− dsν0(du) be the compensated measure.

•We study pathwise uniqueness and strong solutions of the equation:

x(t) = x(0) +

∫ t

0
σ(x(s))dB(s) +

∫ t

0

∫
U0

g0(x(s−), u)Ñ0(ds, du)

+

∫ t

0
b(x(s))ds+

∫ t

0

∫
U1

g1(x(s−), u)N1(ds, du), (13)

• Suppose that some “admissibility” conditions so that any solution to (13) is
non-negative.

• Observation If the solution has a jump at time s ≥ 0 given by N0(ds, du),
it jumps from x(s−) to x(s) = x(s−) + g0(x(s−), u) for some u ∈ U0.
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Theorem 6 (Dawson and L ’12; L and Pu ’12+) There exists a pathwise unique
non-negative strong solution to (13) if the following conditions are satisfied:

(a) there is a non-decreasing and concave function z 7→ r(z) on R+ such
that

∫
0+ r(z)

−1dz =∞ and

|b1(x)− b1(y)|+
∫
U2

|g1(x, u)− g1(y, u)|ν1(du) ≤ r(|x− y|);

(b) x 7→ x+g0(x, u) is non-decreasing for all u ∈ U0 and there is a constant
K ≥ 0 such that

|σ(x)− σ(y)|2 +

∫
U0

|g0(x, u)− g0(y, u)|2ν0(du) ≤ K|x− y|.

• Under the stronger condition that x 7→ g0(x, u) is non-decreasing, some
results on the pathwise uniqueness and strong solutions (13) were established
by Fu and L (’10), L and Mytnik (’11); see also Dawson and L (’06, ’12).
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Theorem 7 (L and Mytnik ’11; L and Pu ’12+) Suppose that the above condition
(a) and the following (c) hold:

(c) there are constants K ≥ 0, p > 0 and 0 ≤ c ≤ 1 so that x 7→ cx +

g0(x, u) is non-decreasing for all u ∈ U0 and

|σ(x)− σ(y)|2 ≤ K|x− y|, |g0(x, u)− g0(y, u)| ≤ |x− y|pf(u),

where u 7→ f(u) is a strictly positive function on U0 satisfying∫
U0

[f(u) ∧ f(u)2]ν0(du) <∞.

Then we have 1 ≤ α ≤ 2, where

α := inf
{
β > 1 : lim sup

x→0+
xβ−1

∫
U0

f(u)1{f(u)≥x}ν0(du) = 0
}
. (14)

If (i) c = 1, α = 2 and p = 1/2 or (ii) c < 1, α < 2 and 1− 1/α < p ≤ 1/2,
then there exists a pathwise unique strong solution to (13).

Remark In case (ii) we can have 0 < p < 1/2, weaker than the (1/2)-Hölder.
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7. Self-similar Markov processes

A real-valued Markov process {Xt : t ≥ 0} is self-similar with index α > 0 if
{c−αXct : t ≥ 0} and {Xt : t ≥ 0} have the same transition semigroup for
every c > 0.

Example A 1-self-similar continuous-state branching process with immigra-
tion/emigration {x(t) : t ≥ 0} is defined by

dx(t) = 2
√
x(t)dB(t) + δ1{x(t)>0}dt, (15)

where δ ∈ R. (“δ > 0” = immigration; “δ < 0” = emigration)

Example For 1 < α < 2, a (α− 1)−1-self-similar continuous-state branching
process with immigration {y(t) : t ≥ 0} is defined by

dy(t) = α
√
y(t)dz0(t) + dz1(t), (16)

where {z0(t) : t ≥ 0} is a spectrally positive α-stable process and {z1(t) :

t ≥ 0} is a non-negative (α− 1)-stable process.
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8. The second Lamperti transformation

For any non-negative α-self-similar Markov process {Xt : t ≥ 0} with X0 =

x > 0 there is a Lévy process {ξt : t ≥ 0} (possibly killed with −∞ as the
cemetery) with ξ0 = 0 such that

Xt = x exp{ξτ(x−1/αt)}, 0 ≤ t≤ T0, (17)

where T0 = inf{t ≥ 0 : Xt = 0} and

τ (t) = inf
{
u ≥ 0 : I(u) :=

∫ u

0
eξs/ads ≥ t

}
. (18)

• Two cases of the hitting time T0:

(1) T0 =∞ (a.s.)⇔ I maps [0,∞) to [0,∞) (a.s.);

(2) T0 <∞ (a.s.)⇔ I maps [0,∞) to [0, x−1/αT0) (a.s.).

Problem: Continuation of the process {Xt : t ≥ 0} after time T0; Döring and
Barczy (’11+), Fitzsimmons (’06), Rivero (’05), Vuolle-Apiala (’94).
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9. Stochastic equations of self-similar processes

A non-negative Markov process {Xt : t ≥ 0} is α-self-similar if and only if
{X1/α

t : t ≥ 0} is 1-self-similar. Then it suffices to study 1-self-similar non-
negative Markov processes.

• If the Lévy process {ξt : t ≥ 0} has generator L:

Lf(x) = af ′′(x) + bf ′(x) +

∫
R

[
f(x+ z)− f(x)− zf ′(x)

]
ν(dz),

the non-negative 1-self-similar Markov process {Xt : t ≥ 0} obtained by the
second Lamperti transformation has generator A: for x > 0,

Af(x) = af ′′(x) + (a+ b+ cν)f
′(x) +

1

x

∫
R

[
f(xez)− f(x)− zf ′(x)

]
ν(dz)

for some cν ≥ 0 depending on ν.

• The stochastic equation corresponding to A would provide insights into the
extension(s) of {Xt : t ≥ 0} after time T0 := inf{s ≥ 0 : Xs = 0}.
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• A possible form of the stochastic equation corresponding to A could be

Xt = x+ (a+ b+ cν)t+

∫ t

0

√
2aXsdBs

+

∫ t

0

∫
R

∫ 1
Xs−

0
Xs−(e

z − 1)Ñ(ds, dz, du). (19)

where Bt is a Brownian motion and Ñ(ds, dz, du) is a compensated Poisson
random measure with intensity dsν(dz)du.

Observation If the solution has a jump at time s ≥ 0, it jumps from Xs to
Xs = Xs−e

z for some z ∈ R. The jump times accumulate at s ≥ 0 as
Xs− = 0.

Theorem 8 (Döring and Barczy ’11+; L and Pu ’12+) Suppose that supp(ν) ⊂
(−∞, 0). If (a+ b+ cν) > 0, then for any x ≥ 0, there is a pathwise unique
non-negative strong solution {Xt : t ≥ 0} to (19), which is a 1-self-similar
process.

Open Problem How about the result when supp(ν) ∩ (0,∞) 6= ∅?
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———————
Thanks!

———————
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