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Small Value Probability
Small value (deviation) probability studies the asymptotic rate of
approaching zero for rare events that positive random variables
take smaller values. To be more precise, let Vn be a sequence of
non-negative random variables and suppose that some or all of the
probabilities

P (Vn ≤ εn) , P (Vn ≤ C ) , P (Vn ≤ (1− δ)EVn)

tend to zero as n→∞, for εn → 0, some constant C > 0 and
0 < δ ≤ 1. Of course, they are all special cases of P (Vn ≤ hn)→ 0
for some function hn ≥ 0, but examples and applications given
later show the benefits of the separated formulations.
•What is often an important and interesting problem is the
determination of just how “rare” the event {Vn ≤ hn} is, that is,
the study of the small value (deviation) probabilities of Vn

associated with the sequence hn.
•If εn = ε and Vn = ‖X‖, the norm of a random element X on a
separable Banach space, then we are in the setting of small
ball/deviation probabilities.



Small Value Theory
A theory of small value phenomenon is being developed and
centered on:

• systematically studies of the existing techniques and applications

• applications of the existing methods to a variety of fields

• new techniques and problems motivated by current interests of
advancing knowledge such as smooth Gaussian fields, random
matrices/polynomials.

♦ W.V. Li, Ten lectures on Small Value Probabilities: Theory and
Applications, NSF/CBMS Regional Research Conference in the
Mathematical Sciences, University of Alabama in Huntsville, June
04-08, 2012.
Lecture notes are available at http://www.math.uah.edu/˜cbms/

♦ Mikhail Lifshits maintains an excellent updated bibliography
(over 300 papers only on estimates) at
http://www.proba.jussieu.fr/pageperso/smalldev/
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Deviations: Large vs Small

• Both are estimates of rare events and depend on one’s point of
view in certain problems. E.g P(V ≤ ε) = P(V−1 ≥ ε−1).

• Large deviations deal with a class of sets rather than special sets.
And results for special sets may not hold in general.

• Similar techniques can be used, such as exponential Chebychev’s
inequality, change of measure argument, isoperimetric inequalities,
concentration of measure, chaining, etc.

• Second order behavior of certain large deviation estimates
depends on small deviation type estimates.

• General theory for small deviations has been developed for
Gaussian processes and measures.



Some technical difficulties between small and large values
• Let X and Y be two positive r.v’s (not necessarily ind.). Then

P (X + Y > t) ≥ max(P (X > t) ,P (Y > t))

P (X + Y > t) ≤ P (X > δt) + P (Y > (1− δ)t)

but
?? ≤ P (X + Y ≤ ε) ≤ min(P (X ≤ ε) ,P (Y ≤ ε))

• Moment estimates an ≤ EX n ≤ bn can be used for

E eλX =
∞∑
n=0

λn

n!
EX n

but E exp{−λX} is harder to estimate.
•Tauberian theorem: Let V be a positive random variable. Then
for α > 0 and slowly varying function L,

E e−λV ∼ C/(λαL(λ)) as λ→∞.
if and only if

P(V ≤ t) ∼ C

Γ(1 + α)
tα/L(1/t) as t → 0.
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EX: Related formulations for BM

•For one-dim Brownian motion B(t) under the sup-norm, we have
by scaling

logP
(

sup
0≤t≤1

|B(t)| ≤ ε
)

= logP

(
sup

0≤t≤T
|B(t)| ≤ 1

)
= logP (τ2 ≥ T )

∼ −π
2

8
· T ∼ −π

2

8

1

ε2

as ε→ 0 and T = ε−2 →∞. Here τ2 = inf {s : |B(s)| ≥ 1} is the
first two-sided exit (or passage) time.
•Lower tail and one sided exit time:

P
(

sup
0≤t≤1

B(t) ≤ ε
)

= P

(
sup

0≤t≤T
B(t) ≤ 1

)
= P (τ1 > T )

= P (|B(T )| ≤ 1) ∼ (2/π)1/2T−1/2 = (2/π)1/2ε

where τ1 = inf {s : B(s) = 1} is the one-sided exit time.



Negative Moments: Smoothness via Malliavin Matrix
Consider F = (F 1, · · · ,Fm) : Ω→ Rm with F i ∈ D1,2. Then
Malliavin Matrix of F is

γF = (γ ijF ), γijF =
〈
DF i ,DF j

〉
Thm: (Malliavin) If (1) F i ∈ D∞ and (2) E | det γF |−p <∞ for
any p > 0, then F has a C∞ density.
•The condition (2) is called non-degeneracy for F .
•All these have been extended into theory of SDE and SPDE. It is
curial to check the non-degeneracy condition which is small value
probability. In fact, the negative moments estimates

EV−p <∞ for any/all p > 0

is equivalent to the upper small value estimates

P(V ≤ ε) ≤ Cpε
p for any/all p > 0, as ε→ 0.

•Mueller and Nualart (2008): Regularity of the density for the
stochastic heat equation.
•Nualart (2010, book): Malliavin Calculus and its Applications.



SVP for the Martingale Limit of a Galton-Watson Tree
Consider the Galton-Watson branching process (Zn)n≥0 with
offspring distribution (pk)k≥0 starting with Z0 = 1. In any
subsequent generation individuals independently produce a random
number of offspring according to P(X = k) = pk . Suppose
m = EX > 1 and EX logX <∞. Then by Kesten-Stigum
theorem, the martingale limit (a.s and in L1)

W = lim
n→∞

Zn

mn

exists and is nontrivial almost surely with EW = 1. WOLG,
assume p0 = 0 and pk < 1 for all k ≥ 1. Then in the case p1 > 0,
there exist constants 0 < c < C <∞ such that for all 0 < ε < 1

cετ ≤ P(W ≤ ε) ≤ Cετ , τ = − log p1/ logm

and in the case p1 = 0, there exist constants 0 < c < C <∞ such
that for all 0 < ε < 1

cε−α/(1−α) ≤ − logP(W ≤ ε) ≤ Cε−α/(1−α).

with ν = min{k ≥ 2 : pk 6= 0} and α = log ν/ logm < 1.



•These results are due to Dubuc (1971a,b) in the p1 > 0 case, and
up to a Tauberian theorem also in the p1 = 0 case, see Bingham
(1988). The proofs are relying on nontrivial complex analysis and
are therefore difficult to generalize, for example to processes with
immigration and/or dependent offsprings.
•Examples, near-constancy phenomena and various refinements,
see Harris (1948), Karlin and McGregor (1968 a,b), Dubuc (1982),
Barlow and Perkins (1987), Goldstein (1987) and Kusuoka (1987),
Bingham (1988), Biggins and Bingham (1991), Biggins and
Bingham (1993), Biggins and Nadarajah (1994), Hambly (1995),
Fleischman and Wachtel (2007, 2009).
•A probabilistic argument is given in Mörters and Ortgiese (2008).

•Fleischmann and Wachtel (2009): For p1 > 0 and xn = o(mn),

P(Zn ≤ xn) ∼ P(W ≤ xnm
−n)

•Probabilistic arguments are under development for related
problems (up to constants).
•SVP for supercritical branching processes with Immigration is
studied in Chu, Li and Ren (2012).
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Negative Moments of Zn vs Large Deviations of Zn+1/Zn

Negative moments of Zn are closely related to large deviation of
Zn+1/Zn which is the well-known Lotka-Nagaev estimator of the
offspring mean.

P(|Zn+1Z
−1
n −m| ≥ a)

=
∑
k≥1

P

 1

Zn
|

Zn∑
j=1

(Xn,j −m)| ≥ a
∣∣∣Zn = k

 · P(Zn = k)

=
∑
k≥1

P

| k∑
j=1

(Xn,j −m)| ≥ ka

 · P(Zn = k)

'
∑
k≥1

kP (|X −m| ≥ ka) · P(Zn = k) by Heyde’s thm

'
∑
k≥1

k−βh(k) · P(Zn = k) = E (Z−βn h(Zn))

where h is a slowly varying function and β > 0.
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•Ney and Vidyashankar (2003): Assume 1 < m <∞ and
EX logX <∞. Then

lim
n→∞

An(β)EZ−βn = C (β), 0 < C (β) <∞,

where

An(β) =


p−n1 if p1m

β > 1,
n−1p−n1 if p1m

β = 1,
mβn if p1m

β < 1,

Idea of Pf:

EZ−βn =
1

Γ(β)

∫ ∞
0

E e−tZntβ−1dt =
1

Γ(β)

∫ ∞
0

fn(e−t)tβ−1dt

where fn(·) is the n-th iterate of f (t) = E tX .
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•Kuelbs, Li and Vidyashankar (2012+). Assume 1 < m <∞,
EX logX <∞ and h(x) is a positive slowly varying function with
certain monotonicity.
(1). If p1m

β < 1, then

lim
n→∞

mβn

h(mn)
E (Z−βn h(Zn)) = C (β).

(2). If p1m
β > 1, then

lim
n→∞

p−n1 E (Z−βn h(Zn)) =
∞∑
k=1

h(k)

kβ
qk

where qk = limn→∞ pk1P(Zn = k) and 0 <
∑∞

k=1 k
−βh(k)qk <∞.

(3). If p1m
β = 1, then

E (Z−βn h(Zn)) ≈ pn1
∑
k≤mn

h(k)

k

•Applications to limit theorems for multiple generations
(Rn,Rn−1, · · ·Rn−r(n)) with Rn = Zn+1/Zn are given, see also
Kuelbs and Vidyashankar (2008).



Idea of Proof: p1m
β < 1

Upper bound: Holder and Zn/m
n →d W .

E (Z−βn h(Zn)) ≤
(
E (Z

−β(1+δ)
n )

)1/(1+δ)
·
(
E (h(Zn)(1+δ)/δ)

)δ/(1+δ)
for δ > 0 small enough such that p1m

β(1+δ) < 1.
Lower bound: Truncation and Holder’s inequality. For h(x)
decreasing,

E (Z−βn h(Zn)) ≥ E (Z−βn h(Zn)I(Zn ≥ tn))

≥ h(tn) · E (Z−βn I(Zn ≥ tn))

= h(tn) ·
(
EZ−βn − E (Z−βn I(Zn ≥ tn))

)
where tn ≈ mn. The last term can be controled just like the upper
bound estimates.



Idea of Proof: p1m
β < 1

Upper bound: Holder and Zn/m
n →d W .

E (Z−βn h(Zn)) ≤
(
E (Z

−β(1+δ)
n )

)1/(1+δ)
·
(
E (h(Zn)(1+δ)/δ)

)δ/(1+δ)
for δ > 0 small enough such that p1m

β(1+δ) < 1.
Lower bound: Truncation and Holder’s inequality. For h(x)
decreasing,

E (Z−βn h(Zn)) ≥ E (Z−βn h(Zn)I(Zn ≥ tn))

≥ h(tn) · E (Z−βn I(Zn ≥ tn))

= h(tn) ·
(
EZ−βn − E (Z−βn I(Zn ≥ tn))

)
where tn ≈ mn. The last term can be controled just like the upper
bound estimates.



Idea of Proof: p1m
β < 1

Upper bound: Holder and Zn/m
n →d W .

E (Z−βn h(Zn)) ≤
(
E (Z

−β(1+δ)
n )

)1/(1+δ)
·
(
E (h(Zn)(1+δ)/δ)

)δ/(1+δ)
for δ > 0 small enough such that p1m

β(1+δ) < 1.
Lower bound: Truncation and Holder’s inequality. For h(x)
decreasing,

E (Z−βn h(Zn)) ≥ E (Z−βn h(Zn)I(Zn ≥ tn))

≥ h(tn) · E (Z−βn I(Zn ≥ tn))

= h(tn) ·
(
EZ−βn − E (Z−βn I(Zn ≥ tn))

)
where tn ≈ mn. The last term can be controled just like the upper
bound estimates.



Idea of Proof: p1m
β = 1

Note that for k ≤ mn,

P(Zn ≤ k) ≈ (km−n)−(log p1)/ logm = pn1k
β

Thus by using summation by parts twice,

E (Z−βn h(Zn)) ≈
∑
k≤mn

h(k)

kβ
· P(Zn = k)

≈
∑
k≤mn

(
h(k)

kβ
− h(k + 1)

(k + 1)β

)
· P(Zn ≤ k)

≈
∑
k≤mn

(
h(k)

kβ
− h(k + 1)

(k + 1)β

)
· pn1kβ

≈ pn1
∑
k≤mn

(
(k + 1)β − kβ

)
· h(k)

kβ

≈ pn1
∑
k≤mn

h(k)

k
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