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Wigner matrix and Wishart process Wigner matrix

@ A Wigner Hermitian matrix: W, = M,/+/n, where M, = (Mjj)nxn is
a random Hermitian n x n matrix such that
o {®¥m;,Im; : 1 < i < j < n}is a collection of i.i.d. real random
variables (with mean zero and variance 1/2.), where Rtm; and 3I'm;
denotes real part and image part of mj;, respectively,
e m;,1 < i< nareiid. real random variables (with mean zero and
variance 1).
@ Gaussian unitary ensemble (GUE): A Wigner Hermitian matrix which
the entries are Gaussian random variables.

@ The empirical distribution function of the eigenvalues,

1 n
Fn = n26>\/7
=

where \y < --- A\, are the eigenvalues of W,,.
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Wigner matrix and Wishart process Wigner matrix

@ The semicircle law (Wigner(1955, 1958)),

F( )—>dpsc \/4 X2I[ 22]

@ The large deviations and the moderate deviations for the empiri-
cal distributions of the eigenvalues (Ben Arous, Guionnet (1997),
Dembo, Guionnet, Zeitouni(2003)).

@ The central limit theorem and The rough moderate deviations for
the eigenvalue of Wigner matrices in the bulk and at the edge cases
(Gustavsson(2005),0’Rourke (2010),Su (2006), Déring, Eichels-
bacher(2010)).

@ This talk introduces the Berry-Esseen bounds and the Cramér type
moderate deviations for the eigenvalue of Wigner matrices in the
bulk and at the edge cases.
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Wigner matrix and Wishart process Wishart process

@ S, is the set of m x m real symmetric non-negative matrices with
the Hilbert-Smith norm || - || ys.

° S‘ﬁ;, denotes the set of m x m positive definite symmetric matrices.
@ Wishart matrix: W = X7 X, where X is a Gaussian random matrix.

@ Wishart process: The solution of the following SDE with matrix val-
ues:

{ dX; =/ X;dB; + dB]/X; + plmdt; (1.1)
Xo = X, '

where {B;,t > 0} is a m x m matrix valued Brownian motion, BT
denotes the transpose of the matrix B and I, is the identity matrix.

@ It has a unique strong solution in S, under the condition p>m+1
and x € S}, (Bru (1991)).

e lts distribution on C(R, S;,) is denoted by Q.
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Wigner matrix and Wishart process Wishart process

@ Let (1), -+, Am(t), t € [0, T] be the ordered eigenvalue processes
of X, then A\(t) < --- < Ap(t), t € [0, T], and it is the solution of
the following SDE (Bru (1991))

{d/\i(f)ZZ\/T(l‘)dﬁi(f) (P Shps MO g, 1=1, m,
(0) = i,

where 5;, i =1,--- . m are independent Brownian motions.

@ The large deviations for the empirical distributions of the eigenvalue
of the Wishart matrices (Hiai, Petz (1998)).

@ Donati-Martin (2008) considered large deviations for small pertur-
bation Wishart processes and the eigenvalue processes.

@ This talk introduces moderate deviations for small perturbation Wishal
processes and the eigenvalue processes.
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matrices

Let W, be a Wigner Hermitian matrix with ordered eigenvalues Ay <
-+ < Ap. Let Fx(-) denote the distribution function of A, where

Ank —V2n (1 - (43%‘”)2/3>

Ak — tvV2n
/\ = 5 /\ e =
k log n 1/2° n—k 1 \2/3 2logk 1/2 7
(4(17t2)n> ((127r) 2n1/3k2/3)

with t = t(k,n) = G~'(k/n) and
t
G(t):z/ V1—=x2dx, —-1<t<A1. (2.1)
T J_1

We additionally assume the distributions of Wigner Hermitian matrix
have exponential decay, i.e., there are constants C, C’ > 0 such that

P(Imj| > t°) < e tforall t > C'. (2.2)
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matrices Cramér type moderate deviations

Theorem 2.1 (Cramér type moderate deviations)

Let p be any fixed constant.

(1). If \¢ is in the bulk, i.e., k = k(n) such that k/n — a € (0,1) as
n — oo, then on the interval [0, p(log n)'/®],

1= Fie(x) _ 14x° F(x) _ 1+x°
1—®(x) _1+O(1)\/Iogn’ ¢ (—x) _1+O(1)\/Iogn'

(2). If \p_k Is at the edge, i.e., k such that k — oo and k/n — 0
as n — oo, and limp_ sl = 0, then on the interval

n2/3(log k)1/2
[0, p(log k)'/],

1— Fpk(x) 1+x3  Frk(X) 14+ x3
1—o(x) _1+O(1)«/Iogk7 1—¢(X)_1+O(1)\/|ng'

y
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" matrices Sketch of the proof

@ By virtue of Tao and Vu’s Four Moment Theorems (cf.[22] ), Theo-
rem 2.1 can be deduced to the Gaussian unitary ensembles (GUE).

@ Since the counting function of eigenvalues of the GUE matrices
forms a determinantal point process (cf.[1]) and has same distribu-
tion with an infinite sum of independent Bernoulli random variables,
thus the problems are deduced to study the corresponding prob-
lems for infinite sum of independent Bernoulli random variables.

@ Because the asymptotic properties of Theorem 2.1 hold uniformly
in some unbounded intervals, we need some fine analysis and es-
timates for mean and variance of the counting function of eigenval-
ues.
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matrices Berry-Esseen bounds

Theorem 2.2 (Berry-Esseen bounds)

There exists a constant C such that
(1). Under the condition of Theorem 2.2(1),

sup |Fx(x) — &(x)| < C(log n)~"/2,
XER

(2). Under the condition of Theorem 2.2(2),

sup |Fo_k(x) — ®(x)| < C(logk)~"/2.

XER
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matrices Cramér type moderate deviations for covariance matrices

Following exactly the same scheme as Wigner matrices, we can estab-
lish the Berry-Essen bounds and the Cramér type moderate deviations
for eigenvalues of covariance matrices.
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Moderate deviations for small perturbation Wishart processes Small perturbation Wishart processes

Let us consider the following S; valued diffusion with small parameter

‘{w¢=VHVMW&+dm'xﬂ+p%m,tgr; 3.1)
X5 =X, '

where p > 0.
As ¢ goes to 0, the solution of (3.1), X;, should converge to XO which is

determined by the following ordinary differential equation:

dX? = plpdt, t<T;
{ X2 =x. (3.2)
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Moderate deviations for small perturbation Wishart processes Small perturbation Wishart processes

Our problems:
@ The asymptotic behavior of

7 — )(l‘LE B Xto
C h(e)yE’

where 1 < h(e) = o(1/v/€). When h(e) = 1, this is central limit
theorem; when

h(g) - 400 and +/eh(e) -0, ase—0, (3.3)

this is a moderate deviation problem.
@ The moderate deviations for the eigenvalue process A7 of X*:

. . X (1) +As(t .
{ AN () = 2/EXDAB(1) + (p+ & S gy ) ot =1+
A7 (0) = A,
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Moderate deviations for small perturbation Wishart processes Small perturbation Wishart processes

@ Ma, Wang and Wu ([13]) studied the moderate deviations for stochas-
tic differential equations with Lipschtiz coefficients.

@ In the case of the Wishart process, the diffusion coefficient (3.1) is
not Lipschtiz continuous.

@ In order to study moderate deviations for the eigenvalue process,
we need some results on the perturbation theory of matrix (cf.[19])
and the delta method in large deviations ([9]).
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Moderate deviations for small perturbation Wishart processes Moderate deviations for small perturbation Wishart processes

Theorem 3.1

(1). Set Y .= Xfig’o. Then Y© = (Y§ )0, 7] cOnverges in probability on

Co([0, T], Sm) to the matrix process Y°, determined by

0 _ 0 T 0.
{ dY? =\/X%aB; + dBT,/ X?: 3.4)

Yo =0,

(2). Z° = (Zf)iepo,1) Obeys a large deviation principle on the space
Co([0, T], Sm) with speed h?(<) and with good rate function

m 22
: > /T i dt, peT;
(o) = 2 = o Xji + Xj + 20X + 2(1 + (5/1')pt
+ 0, otherwise,
(3.5)
where T = {cp € Co[0, T, Sm) : o € H Vi j =1, ,m} and H is the
Cameron-Martin space, .

F.Q. Gao (Wuhan University) Moderate deviations for random matrices 2012 23/31
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Moderate deviations for the eigenvalue processes
Let Aj(f), -+, A% (1), t € [0, T] be the ordered eigenvalues processes of
Xe. Then \j(t) < --- < A(f), t € [0, T], and it is the solution of the
following SDE (cf. [4]):

{ d)\E _ZWdB, (p+€zk¢, )\Egngi Eg)dt, I:1, ,m;
A5(0) = Ay,

Theorem 3.2

Assume that the initial value x € SV,J{, has m distinct eigenvalues 0 <
A < 0 < Ap. Let by = (bk1, -+, bxm) be the normal eigenvector
corresponding to A\, kK = 1,---,m, and denote by \o(t) = M\ + pt,
k =1,---,m, which are the e/genvalue processes of X O = X + ptlp.

AE(O=X() . (MO A=A ofi
Then { NG OREE ( TR R ) ,t €0, T]} satisfies a
large deviation principle on Cy([0, T],R™) with speed h?(s) and with

good rate function

P(6) i=inf {I(0); (bywb] .-+ bmbl) = 6}, 6 € Co([0, T],R™).
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Moderate deviations for small perturbation Wishart processes Sketch of the proof

Key techniques:

@ The delta method in large deviation theory ( [9]).
@ The perturbation theory of matrix (cf.[19]).
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Moderate deviations for small perturbation Wishart processes Sketch of the proof

Lemma 3.1 (The delta method, Theorem 3.1 in [9])

Let X and Y be two metrizable linear topological spaces. Let ®: Dy C
X — Y be Hadamard-differentiable at 6 tangentially to Dy, where Dq
and Dy are two subsets of X. Let X,: Qn — Do, N > 1, be a sequence
of maps and let r,, n > 1, be a sequence of positive real numbers
satisfying r, — oc.

If {ra(Xs — 8),n > 1} satisfies a large deviation principle with speed
A(n) and with good rate function | and {I < oo} C Dy, then {ry(®(Xn) —
®(0)),n > 1} satisfies a large deviation principle with speed A(n) and
with good rate function Iy, , where

loy (y) = int {1(x) : %) =y}, y €.
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Moderate deviations for small perturbation Wishart processes Sketch of the proof

Lemma 3.2 (Gerschgorin’s Theorem, cf. [19], Chapter IV, Theorem 2.1)

£A) c | JaiA = {z €C:|z—al < a,-}.
i=1

i=1

Moreover, if | of the Gerschgorin disks Gi(A),i = 1,---, m, are isolated
from the other m — | disks, then there are precisely | eigenvalues of A
in their union. )
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Moderate deviations for small perturbation Wishart processes Sketch of the proof

Let W denote the map from S, to R™ such that

V(A) = (p1,  pim),

where 11 < --- < um denote the eigenvalues of A. Define ¢ : C([0, T], Sm)
C([0, T],R™) as follows:

(Z)(t) =w(Z(t), te]0,T]. (3.6)

Lemma 3.3

Let ¢ € C([0, T],Sm) be given. Set || = sup;co 7y ll¥illus and 6 =
1 A mina<x<m(Ax — Ak—1). Then for all sequences ¢, converging to 0+
and satisfying 0 < en < qgmrry> @nd (") € C([0, T], Sm) converging

to 1 in C([0, T], Sm) and satistying ||| < 2|4,

32me2||¢|)?
CD Xo (n) 7)\0 . (’7) T < 7’7'
1Tk82(mt:[gPT]‘ ( T end >k(t) K(0) = enbr i | < 0

(3.7) |

™ = = — SR
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Moderate deviations for small perturbation Wishart processes Sketch of the proof

Thank You!
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Moderate deviations for small perturbation Wishart processes Sketch of the proof
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