Transition Function of a Fleming-Viot Process and a Random Time Change

Shui Feng
McMaster University

The 8th Workshop on Markov Processes and Related Topics, Beijing and Wuyi Mountain.

July 16-21, 2012
• Gamma and Dirichlet Processes

• Algebraic Relations

• A Measure-valued Branching Process with Immigration

• A Fleming-Viot Process

• The Random Time-Change
Gamma and Dirichlet Processes

1 Definitions

Let S be Polish space, ν_0 a probability on S, θ and β any two positive numbers.

Definition: The *Gamma process* with shape parameter $\theta \nu_0$ and scale parameter β is given by

$$\mathcal{Y}^\beta_{\theta,\nu_0}(\cdot) = \beta \sum_{i=1}^{\infty} \gamma_i \delta_{\xi_i}(\cdot)$$

where $\gamma_1 > \gamma_2 > \cdots$ are the points of the inhomogeneous Poisson point process on $(0, \infty)$ with mean measure $\theta x^{-1} e^{-x} \, dx$, and independently, ξ_1, ξ_2, \ldots are i.i.d. with common distribution ν_0.
Denote the law of \(\mathcal{Y}_{\theta,\nu_0}^\beta \) by \(\Gamma_{\theta,\nu_0}^\beta \). The corresponding Laplace functional has the form:

\[
\int_{M(S)} e^{-\langle \mu, g \rangle} \Gamma_{\theta,\nu_0}^\beta (d\mu) = \exp\{-\theta\langle \nu_0, \log(1 + \beta g) \rangle\}
\]

where \(M(S) \) is the set of all non-negative finite measures on \(S \), and

\[g(s) > -1/\beta, \text{ for all } s \in S. \]
Set

\[\sigma = \sum_{i=1}^{\infty} \gamma_i, \]

\[P_i = \frac{\gamma_i}{\sigma}, \ i = 1, 2, \ldots, \]

\[X_{\theta, \nu_0}(\cdot) = \sum_{i=1}^{\infty} P_i \delta_{\xi_i}(\cdot). \]

The law of \((P_1, P_2, \ldots)\) is the **Poisson-Dirichlet distribution** with parameter \(\theta\), \(X_{\theta, \nu_0}(\cdot)\) is the **Dirichlet process** with law denoted by \(\Pi_{\theta, \nu_0}\), and

\[X_{\theta, \nu_0}(\cdot) = \frac{\Upsilon^{\beta}_{\theta, \nu_0}(\cdot)}{\Upsilon^{\beta}_{\theta, \nu_0}(S)}. \] (1)
2 Algebraic Relations

Additive property: for independent $\mathcal{Y}^\beta_{\theta_1,\nu_1}$ and $\mathcal{Y}^\beta_{\theta_2,\nu_2}$

$\mathcal{Y}^\beta_{\theta_1,\nu_1} + \mathcal{Y}^\beta_{\theta_2,\nu_2} \overset{d}{=} \mathcal{Y}^\beta_{\theta_1+\theta_2,\frac{\theta_1}{\theta_1+\theta_2}\nu_1+\frac{\theta_2}{\theta_1+\theta_2}\nu_2}$,

where $\overset{d}{=}$ denotes the equality in distribution.

Mixing: for independent $\eta \sim Beta(\theta_1, \theta_2)$, $\mathcal{X}_{\theta_1,\nu_1}$, and $\mathcal{X}_{\theta_2,\nu_2}$

$\eta \mathcal{X}_{\theta_1,\nu_1} + (1 - \eta) \mathcal{X}_{\theta_2,\nu_2} \overset{d}{=} \mathcal{X}_{\theta_1+\theta_2,\frac{\theta_1}{\theta_1+\theta_2}\nu_1+\frac{\theta_2}{\theta_1+\theta_2}\nu_2}$.
A Measure-Valued Branching Process with Immigration

1 Definition

Let S be a compact metric space, ν_0 a probability on S, $\theta > 0$ and $\lambda > 0$. The measure-valued branching process with immigration, Y_t, has the following generator

$$
L = \frac{1}{2} \int_S \mu(dx) \frac{\delta^2}{\delta \mu(x)^2} + \frac{\theta}{2} \int_S \nu_0(dx) \frac{\delta}{\delta \mu(x)} - \frac{\lambda}{2} \int \mu(dx) \frac{\delta}{\delta \mu(x)}
$$

where

$$
\frac{\delta \phi}{\delta \mu(x)} = \lim_{\varepsilon \to 0} \frac{\phi(\mu + \varepsilon \delta x) - \phi(\mu)}{\varepsilon}.
$$

The process is reversible with reversible measure $\Gamma^{1/\lambda}_{\theta, \nu_0}$.
2 Shiga's Representation

Let

\[C(\lambda, t) = \lambda^{-1}(e^{\lambda t/2} - 1) \]
\[C_t = 1/C(\lambda, t). \]

The entrance law for the diffusion generated by

\[\frac{y}{2} \frac{d^2}{dy^2} - \lambda y \frac{d}{dy} \]

is given by

\[\gamma_{\lambda, t}(dz) = e^{-\lambda t} C_t^2 \exp(-C_t z), \quad z > 0, \]

and \(\gamma_{\lambda, t}(\{0\}) = +\infty. \)
Let μ be a fixed finite measure on S, W denote the space of all excursion pathes from $[0, \infty)$ to $[0, \infty)$, and Q^λ be the unique σ-finite measure (excursion law) on W derived from the entrance law and the transition function of the above diffusion. Consider two independent Poisson random measures $N^{\mu, \lambda}(dxdw)$ and $N_{\lambda, \theta, \nu_0}(dt dxdw)$ on spaces $S \times W$ and $[0, \infty) \times S \times W$ with respective mean measures

$$\mu(dx)Q^\lambda(dw) \text{ and } \theta dt \nu_0(dx)Q^\lambda(dw).$$

Then Shiga (1990) shows that

$$Y_t(dx) = \int_W w(t) N^{\mu, \lambda}(dxdw) + \int_{[0, \infty) \times W} w(t - s) N_{\lambda, \theta, \nu_0}(dxdw)$$

$$= \text{mass distribution of original descendent} + \text{mass distribution of immigrant}$$

A comprehensive study of this representation is found in Li (2010).
3 Transition function (Ethier and Griffiths (1993b))

Let N_t be the standard Poisson process with rate one and set

$$\tilde{N}^a(t) = N_{a/C(\lambda, t)}, \ a > 0$$

$$q_{n, \lambda}^a(t) = P\{\tilde{N}(t) = n\}, n = 0, 1, 2, \ldots.$$

The process $\tilde{N}^a(t)$ is a time inhomogeneous pure death Markov chain with death rate $n/2C(-\lambda, t), n \geq 0, t > 0$ and entrance boundary $+\infty$, and $q_{n, \lambda}^a(t)$ is the corresponding marginal distribution. Let $\eta_n = \frac{1}{n} \sum_{i=1}^{n} \delta x_i$. Then the transition function of this process is given by

$$P_1(t, \mu, \cdot) = q_0^{\mu(S'), \lambda}(t) \Pi_{\theta, \nu_0}^{C(-\lambda, t)}(\cdot)$$

$$+ \sum_{n=1}^{\infty} q_n^{\mu(S), \lambda}(t) \int_{S^n} \left(\frac{\mu}{\mu(S')} \right)^n (d x_1 \times \cdots \times d x_n) \Pi_{\theta, \nu_0}^{C(-\lambda, t)}(n+\theta, \eta_{n+\theta}^{\theta+n} \eta_{n+\theta+n}^{\theta+n} \nu_0(\cdot)).$$
Let $\tilde{N}(t) = \tilde{N}^{\mu(S)}(t)$.

Marginal distribution: Given $Y_0 = \mu, \tilde{N}(t) = n$ and the locations of the n particles, it follows that for any $t > 0$

$$Y_t \overset{d}{=} \mathcal{Y}^C_{n,\eta_n} + \mathcal{Y}^C_{\theta,\nu_0}(-\lambda, t).$$

Noting that time appears only in the scale parameter.
1 Definition

The Fleming-Viot process with parent independent mutation \(\{X_t\} \) is a probability-valued process with generator

\[
A = \frac{1}{2} \int_S \nu(dx) \left(\delta_x(dy) - \nu(dy) \right) \frac{\delta^2}{\delta \nu(y) \delta \nu(x)} + \frac{\theta}{2} \int_S \left(\nu_0(dx) - \nu(dx) \right) \frac{\delta}{\delta \nu(x)}.
\]

Reversible measure: \(\Pi_{\theta, \nu_0} \).
2 Kingman’s Coalescent

For each $n \geq 1$, let $E_n = \{1, 2, \ldots, n\}$ and \mathcal{E}_n denote the collection of equivalence relations of E_n. Each element of \mathcal{E}_n is thus a subset of $E_n \times E_n$. For example, in the case of $n = 3$, the set

$$\{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$$

defines an equivalence relation that results in two equivalence classes $\{1, 3\}$ and $\{2\}$. The set \mathcal{E}_n is clearly finite and its elements will be denoted by η, ξ, etc.

In genetic applications, the equivalence relations are defined through the ancestral structures. Two individuals are equivalent if they have the same ancestor at some time t in the past. For ξ, η in \mathcal{E}_n, we write $\xi \prec \eta$ if η is obtained from ξ by combining exactly two equivalence classes of ξ into one. For distinct ξ, η in \mathcal{E}_n, set

$$q_{\xi \eta} = \begin{cases} 1, & \xi \prec \eta \\ 0, & \text{else.} \end{cases}$$
Let \(|\xi|\) be the number of equivalence classes induced by \(\xi\). Define

\[
q_\xi := -q_{\xi,\xi} = \binom{|\xi|}{2}.
\]

Definition: Kingman’s \(n\)-coalescent is a \(E_n\)-valued, continuous-time, Markov chain \(X_t\) with infinitesimal matrix \((q_{\xi,\eta})\) starting at \(X_0 = \{(i, i) : i = 1, ..., n\}\). Kingman’s coalescent corresponds to the limit process as \(n\) tends to infinity.

Let \(D_t = |X_t|\).

Then \(D_t\) is a pure-death process with death rate

\[
\lim_{h \to 0} h^{-1} P\{D_{t+h} = k - 1 \mid D_t = k\} = \binom{k}{2}, \quad k \geq 2.
\]

Replace \(\binom{k}{2}\) with \(n(n + \theta - 1)/2\) leads to Kingman’s coalescent with mutation \(D_t^\theta\).
3 Transition function (Ethier and Griffiths (93a))

Let \(\{d_\theta^n(t) : t > 0, n = 0, 1, \ldots \} \) denote the marginal distribution of Kingman’s coalescent \(D_t^\theta \), i.e.,

\[
d_\theta^n(t) = P\{D_t^\theta = n\}.
\]

Then the transition function of the Fleming-Viot process is given by

\[
P_2(t, \nu, \cdot) = d_\theta^0(t) \Pi_{\theta, \nu_0}(\cdot) + \sum_{n=1}^{\infty} d_\theta^n(t) \int_{S^n} \nu^n(dx_1 \times \cdots \times dx_n) \Pi_{n+\theta, \frac{n}{\theta+n+1} \nu_0 + \theta/n + \nu_0}(\cdot).
\]

Given \(D_t^\theta = n \) and the types of the \(n \) individuals, the marginal distribution of the process is given by

\[
X_t \overset{d}{=} \eta X_{n, \eta_n} + (1 - \eta) X_{\theta, \nu_0}, \eta \sim Beta(n, \theta).
\]
Comparison between $P_1(t, \mu, \cdot)$ and $P_2(t, \nu, \cdot)$: a termwise Gamma-Dirichlet algebra between

$$\Gamma^{C(-\lambda,t)}_{n+\theta, \frac{n}{\theta+n} \eta n + \frac{\theta}{\theta+n} \nu_0}(\cdot) \text{ and } \Pi^{n+\theta, \frac{n}{\theta+n} \eta n + \frac{\theta}{\theta+n} \nu_0}(\cdot).$$

A Problem Proposed by Ethier and Griffiths(93b): Derivation of $P_2(t, \nu, \cdot)$ from $P_1(t, \nu, \cdot)$.

This is related to the derivation of $d_{\theta}^{\mu}(t)$ from $q_{n}^{\mu(S), \lambda}(t)$ through a random time change.

Recall that $\tilde{N}(t)$ is the time inhomogeneous Markov chain $\tilde{N}_{\mu(S)/C(\lambda,t)}$. Define $\tau_t : [0, \infty) \to [0, \infty)$ by

$$t = \int_{0}^{\tau_t} \frac{du}{(\tilde{N}(u) \lor 1 + \theta - 1)C(-\lambda, u)}.$$
Theorem 1. (F and Xu (12)) The process $\tilde{N}(\tau_t)$ is the embedded chain of Kingman’s coalescent D_t^θ.

As an application of this result, we get the following derivation of the fixed time distribution of the Fleming-Viot process from the measure-valued branching process with immigration.

Theorem 2. For any $t > 0$, let

$$\nu(\theta, t) = \frac{\tilde{N}(t)\eta\tilde{N}(t) + \theta\nu_0}{\tilde{N}(t) + \theta}.$$

Then we have

$$Y_t \overset{d}{=} \mathcal{Y}_C(-\lambda, t)\frac{\tilde{N}(t)}{\tilde{N}(t) + \theta, \nu(\theta, t)}$$

$$X_t \overset{d}{=} \mathcal{Y}_C(-\lambda, t)\frac{\tilde{N}(\tau_t)}{\tilde{N}(\tau_t) + \theta, \nu(\theta, \tau_t)}(S).$$
References

