Variation of optimal transport maps in Sobolev spaces

Shizan Fang
Université de Bourgogne

July, 2012

This talk is based on a work with V. Nolot: Sobolev estimates for optimal transport maps on Gaussian spaces.

Problem: Let on \mathbb{R}^{d},

$$
\begin{aligned}
& \left(T_{1}\right)_{*}: e^{-V_{1}} \gamma \rightarrow e^{-W_{1}} \gamma, \\
& \left(T_{2}\right)_{*}: e^{-V_{2}} \gamma \rightarrow e^{-W_{2}} \gamma
\end{aligned}
$$

be optimal transport maps. How to compute the variation

$$
T_{1}-T_{2}
$$

with dimension free estimates?

2

Facts:

Let $\nabla \Phi: e^{-V} d x \rightarrow e^{-W} d x$ be the optimal transport map.
L.V. Caffarelli (2000'): if W is convex and $V=\frac{|x|^{2}}{2}$, then

$$
|\nabla \Phi(x)-\nabla \Phi(y)| \leq|x-y| .
$$

A.V. Kolesnikov (2011'): V, W are smooth, bounded from below and $\nabla^{2} W \geq K_{1} I d$ with $K_{1}>0$, then Φ is smooth and

$$
\sup _{x \in \mathbb{R}^{d}}\left\|\nabla^{2} \Phi(x)\right\|_{H S}<+\infty .
$$

But the constant on the right hand is dimension dependent.

A dimension free estimate has also been given by A.V. Kolesnikov (2011'):

$$
\int_{\mathbb{R}^{d}}|\nabla V|^{2} e^{-V} d x \geq K_{1} \int_{\mathbb{R}^{d}}\left\|\nabla^{2} \Phi\right\|_{H S}^{2} e^{-v} d x
$$

Although the constant K_{1} is of dimension free, but on infinite dimensional spaces, $\nabla^{2} \Phi$ usually is not of Hilbert-Schmidt class. Let $\nabla \Phi(x)=x+\nabla \varphi(x)$. A dimension free inequality for $\left\|\nabla^{2} \varphi\right\|_{H S}^{2}$ has been established by A.V. Kolesnikov (2011'), under the hypothesis

$$
\nabla^{2} W \leq K_{2} I d
$$

Related works have been done by G. De Philippis and A. Figalli. See arXive 2011 and 2012.

Here are our results:
Theorem (A)
Let $e^{-V} d \gamma$ and $e^{-W} d \gamma$ be two probability measures on \mathbb{R}^{d}, where γ is the standard Gaussian measure on \mathbb{R}^{d}. Suppose that $\nabla^{2} W \geq-c$ ld with $c \in[0,1[$. Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|\nabla V|^{2} e^{-V} d \gamma-\int_{\mathbb{R}^{d}}|\nabla W|^{2} e^{-W} d \gamma \\
& \quad+\frac{2}{1-c} \int_{\mathbb{R}^{d}}\left\|\nabla^{2} W\right\|_{H S}^{2} e^{-W} d \gamma \\
& \geq 2 E^{-W} t_{\gamma}\left(e^{-V}\right)-2 E_{n t}\left(e^{-W}\right) \\
& \quad+\frac{1-c}{2} \int_{\mathbb{R}^{d}}\left\|\nabla^{2} \varphi\right\|_{H S}^{2} e^{-V} d \gamma
\end{aligned}
$$

Theorem (B)
Let $\nabla \Phi_{1}: e^{-V_{1}} \gamma \rightarrow e^{-W_{1}} \gamma$ and $\nabla \Phi_{2}: e^{-V_{2}} \gamma \rightarrow e^{-W_{2}} \gamma$. Assume that $\nabla^{2} W_{1} \geq-c$ ld for $c<1$, then

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left|\nabla \Phi_{1}-\nabla \Phi_{2}\right|^{2} e^{-V_{2}} d \gamma \\
& \leq \frac{4}{1-c} \operatorname{Ent}_{e^{-V_{1}}}\left(e^{V_{1}-V_{2}}\right)+\frac{4}{(1-c)^{2}} \int\left|\nabla\left(W_{1}-W_{2}\right)\right|^{2} e^{-W_{2}} d \gamma
\end{aligned}
$$

Theorem (C)

Let $1 \leq p<2$ and
$M\left(\varphi_{1}, \varphi_{2}\right)=\| \| I+\nabla^{2} \varphi_{1}\left\|_{o p}\right\|_{L^{\frac{2 p}{2-p}}\left(e^{\left.-V_{2} \gamma\right)}\right.}^{2} V\| \| I+\nabla^{2} \varphi_{2}\left\|_{o p}\right\|_{L^{2-p}\left(e^{-V_{2} \gamma}\right)}^{2}$.
Assume that $\nabla^{2} W_{1} \geq-c$ ld with $c \in[0,1[$. Then we have

$$
\begin{aligned}
\left\|\nabla^{2} \varphi_{1}-\nabla^{2} \varphi_{2}\right\|_{L^{p}\left(e^{\left.-V_{2} \gamma\right)}\right.}^{2} \leq & 2 M\left(\varphi_{1}, \varphi_{2}\right)\left[3 \int_{\mathbb{R}^{d}}\left(V_{1}-V_{2}\right) e^{-V_{2}} d \gamma\right. \\
& \left.+\frac{2}{1-c} \int_{\mathbb{R}^{d}}\left|\nabla\left(W_{1}-W_{2}\right)\right|^{2} e^{-W_{2}} d \gamma\right] .
\end{aligned}
$$

Application:

Theorem (D)

Let (X, H, μ) be an abstract Wiener space. Consider $V \in \mathbb{D}_{1}^{2}(X), W \in \mathbb{D}_{2}^{2}(X)$ such that $\int_{X} e^{-V} d \mu=\int_{X} e^{-W} d \mu=1$. Assume that for $c \in[0,1[$,

$$
0<\delta_{1} \leq e^{-V} \leq \delta_{2}, e^{-W} \leq \delta_{2}, \nabla^{2} W \geq-c l d
$$

then there exists a function $\varphi \in \mathbb{D}_{2}^{2}(X)$ such that $x \rightarrow x+\nabla \varphi(x)$ pushes $e^{-V} \mu$ to $e^{-W} \mu$ and solves the Monge-Ampère equation

$$
e^{-V}=e^{-W(T)} e^{\mathcal{L} \varphi-\frac{1}{2}|\nabla \varphi|^{2}} \operatorname{det}_{2}\left(I d_{H \otimes H}+\nabla^{2} \varphi\right)
$$

where $T(x)=x+\nabla \varphi(x)$.

Remark:

- Due to the singularity of the cost function $(x, y) \rightarrow|x-y|_{H}$ on $X \times X$, we do not know if $x \rightarrow T(x):=x+\nabla \varphi(x)$ in Theorem D is the optimal transport map; however if W satisfies

$$
\begin{equation*}
W_{n} \in \mathbb{D}_{2}^{2}\left(H_{n}\right) \text { for all } n \geq 1 \tag{*}
\end{equation*}
$$

where $\pi_{n}: X \rightarrow H_{n}$ is a finite dimensional approximation, and $e^{-W_{n}}=\mathbb{E}^{\pi_{n}}\left(e^{-W}\right)$; then T is the optimal transport map.

- The result in Theorem D includes two special cases: (i) the source measure is the Wiener measure, by Feyel and Üstünel; (ii) the target measure is the Wiener measure, by Bogachev and Kolesnikov.
- For an orthonormal basis $\left\{e_{n} ; n \geq 1\right\}$ of H, define $W(x)=\sum_{n \geq 1} \lambda_{n} e_{n}(x)^{2}$, where $\lambda_{n}>-1 / 2$ and $\sum_{n \geq 1}\left|\lambda_{n}\right|<+\infty$; then W satisfies $(*)$.

目 L．V．Caffarelli，Monotonicity properties of optimal transportation and FKG and related inequalities，Commun． Math．Phys．， 214 （2000），547－563．

囦 A．V．Kolesnikov，On Sobolev regularity of mass transport and transportation inequalities，arXive：1007．1103v3， 2011.

A．V．Kolesnikov，Convexity inequalities and optimal transport of infinite－dimensional measures，J．Math．Pures Appl．， 83 （2004），1373－1404．
國 V．I．Bogachev and A．V．Kolesnikov，Sobolev regularity for Monge－Ampère equation in the Wiener space，arXive： 1110．1822v1， 2011.
© D．Feyel and A．S．Üstünel，Monge－Kantorovich measure transportation and Monge－Ampère equation on Wiener space， Prob．Th．related Fields，128（2004），347－385．

ED. Feyel and A.S. Üstünel, Solution of the Monge-Ampère equation on Wiener space for general log-concave measures, J. Funct. Analysis, 232 (2006), 29-55.
(R. Feyel and A.S. Üstünel, The notion of convexity and concavity on the Wiener space, J. Funct. Anal., 176 (2000), 400-428.

Proof of results:

A priori estimate:

Let $\left(\nabla \Phi_{1}\right)_{*}: h_{1} \gamma \rightarrow f_{1} \gamma,\left(\nabla \Phi_{2}\right)_{*}: h_{2} \gamma \rightarrow f_{2} \gamma$. Then by change of variables, for $\alpha=\frac{|x|^{2}}{2}$,

$$
\begin{aligned}
& f_{1}\left(\nabla \Phi_{1}\right) e^{-\alpha\left(\nabla \Phi_{1}\right)} \operatorname{det}\left(\nabla^{2} \Phi_{1}\right)=h_{1} e^{-\alpha}, \\
& f_{2}\left(\nabla \Phi_{2}\right) e^{-\alpha\left(\nabla \Phi_{2}\right)} \operatorname{det}\left(\nabla^{2} \Phi_{2}\right)=h_{2} e^{-\alpha} .
\end{aligned}
$$

Let S_{2} be the inverse map of $\nabla \Phi_{2}$. Acting on the right by S_{2}, we get

$$
\begin{gathered}
f_{1}\left(\nabla \Phi_{1}\left(S_{2}\right)\right) e^{-\alpha\left(\nabla \Phi_{1}\left(S_{2}\right)\right)} \operatorname{det}\left(\nabla^{2} \Phi_{1}\left(S_{2}\right)\right)=h_{1}\left(S_{2}\right) e^{-\alpha\left(S_{2}\right)} \\
f_{2} e^{-\alpha} \operatorname{det}\left(\nabla^{2} \Phi_{2}\left(S_{2}\right)\right)=h_{2}\left(S_{2}\right) e^{-\alpha\left(S_{2}\right)}
\end{gathered}
$$

It follows that

$$
\frac{f_{1}}{f_{2}} \cdot \frac{f_{1}\left(\nabla \Phi_{1}\left(S_{2}\right)\right) e^{-\alpha\left(\nabla \Phi_{1}\left(S_{2}\right)\right)}}{f_{1} e^{-\alpha}} \cdot \operatorname{det}\left[\left(\nabla^{2} \Phi_{1}\right)\left(\nabla^{2} \Phi_{2}\right)^{-1}\right]\left(S_{2}\right)=\frac{h_{1}\left(S_{2}\right)}{h_{2}\left(S_{2}\right)} .
$$

Taking the logarithm yields

$$
\begin{align*}
& \log \left(\frac{f_{1}}{f_{2}}\right)+\log \left(f_{1} e^{-\alpha}\right)\left(\nabla \Phi_{1}\left(S_{2}\right)\right)-\log \left(f_{1} e^{-\alpha}\right) \\
& \quad+\log \operatorname{det}\left[\left(\nabla^{2} \Phi_{1}\right)\left(\nabla^{2} \Phi_{2}\right)^{-1}\right]\left(S_{2}\right)=\log \left(\frac{h_{1}}{h_{2}}\right)\left(S_{2}\right) . \\
& \quad \int_{\mathbb{R}^{d}} \log \left(\frac{h_{1}}{h_{2}}\right)\left(S_{2}\right) f_{2} d \mu-\int_{\mathbb{R}^{d}} \log \left(\frac{f_{1}}{f_{2}}\right) f_{2} d \gamma \\
& =\int_{\mathbb{R}^{d}} \log \operatorname{det}\left[\left(\nabla^{2} \Phi_{1}\right)\left(\nabla^{2} \Phi_{2}\right)^{-1}\right]\left(S_{2}\right) f_{2} d \gamma \tag{1}\\
& \quad+\int_{\mathbb{R}^{d}}\left[\log \left(f_{1} e^{-\alpha}\right)\left(\nabla \Phi_{1}\left(S_{2}\right)\right)-\log \left(f_{1} e^{-\alpha}\right)\right] f_{2} d \gamma
\end{align*}
$$

By Taylor formula up to order 2,

$$
\begin{aligned}
& \log \left(f_{1} e^{-\alpha}\right)\left(\nabla \Phi_{1}\left(S_{2}\right)\right)-\log \left(f_{1} e^{-\alpha}\right) \\
& =\left\langle\nabla \log \left(f_{1} e^{-\alpha}\right), \nabla \Phi_{1}\left(S_{2}(x)\right)-x\right\rangle \\
& +\int_{0}^{1}(1-t)\left[\nabla^{2} \log \left(f_{1} e^{-\alpha}\right)\left((1-t) x+t \nabla \Phi_{1}\left(S_{2}(x)\right)\right]\right. \\
& \cdot\left(\nabla \Phi_{1}\left(S_{2}(x)\right)-x\right)^{2} d t
\end{aligned}
$$

By integration by parts,

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left\langle\nabla \log \left(f_{1} e^{-\alpha}\right), \nabla \Phi_{1}\left(S_{2}(x)\right)-x\right\rangle f_{2} d \gamma \\
= & -\int_{\mathbb{R}^{d}} \operatorname{Trace}\left[\nabla^{2} \Phi_{1}\left(S_{2}\right) \cdot\left(\nabla^{2} \Phi_{2}\right)^{-1}\left(S_{2}\right)-I d\right] f_{2} d \gamma \\
& -\int_{\mathbb{R}^{d}}\left\langle\nabla \Phi_{1}\left(S_{2}(x)\right)-x, \nabla\left(\log \frac{f_{2}}{f_{1}}\right)\right\rangle f_{2} d \gamma .
\end{aligned}
$$

For a matrix A, the Fredholm-Carleman determinant $\operatorname{det}_{2}(A)$ is defined by $\operatorname{det}_{2}(A)=e^{\text {Trace }(I d-A)} \operatorname{det}(A)$. So

$$
\log \operatorname{det}_{2}(A)=\operatorname{Trace}(I d-A)+\log \operatorname{det}(A)
$$

Theorem (B^{\prime})

$$
\begin{aligned}
& \operatorname{Ent}_{h_{1} \gamma}\left(\frac{h_{2}}{h_{1}}\right)-\operatorname{Ent}_{f_{1} \gamma}\left(\frac{f_{2}}{f_{1}}\right)=\int_{\mathbb{R}^{d}}\left\langle\nabla \Phi_{1}-\nabla \Phi_{2}, \nabla\left(\log \frac{f_{2}}{f_{1}}\right)\left(\nabla \Phi_{2}\right)\right\rangle h_{2} d \gamma \\
& -\int_{\mathbb{R}^{d}} \log \operatorname{det}_{2}\left(\left(\nabla^{2} \Phi_{2}\right)^{-1 / 2} \nabla^{2} \Phi_{1}\left(\nabla^{2} \Phi_{2}\right)^{-1 / 2}\right) h_{2} d \gamma \\
& +\int_{0}^{1}(1-t) d t \int_{\mathbb{R}^{d}}\left[-\nabla^{2} \log \left(f_{1} e^{-\alpha}\right)\left((1-t) \nabla \Phi_{2}+t \nabla \Phi_{1}\right)\right] \\
& \cdot\left(\nabla \Phi_{1}-\nabla \Phi_{2}\right)^{2} h_{2} d \gamma
\end{aligned}
$$

Assume $\nabla^{2}(-\log f) \geq-c I d$; then

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left|\nabla \Phi_{1}-\nabla \Phi_{2}\right|^{2} h_{2} d \gamma & \leq \frac{4}{1-c}\left(\operatorname{Ent}_{h_{1} \gamma}\left(\frac{h_{2}}{h_{1}}\right)-\operatorname{Ent}_{f_{1} \gamma}\left(\frac{f_{2}}{f_{1}}\right)\right) \\
& +\frac{4}{(1-c)^{2}} \int_{\mathbb{R}^{d}}\left|\nabla \log \frac{f_{2}}{f_{1}}\right|^{2} f_{2} d \gamma
\end{aligned}
$$

If moreover $f_{1}=f_{2}$, then

$$
\frac{1-c}{2} \int_{\mathbb{R}^{d}}\left|\nabla \Phi_{1}-\nabla \Phi_{2}\right|^{2} h_{2} d \gamma \leq \operatorname{Ent}_{h_{1} \gamma}\left(\frac{h_{2}}{h_{1}}\right) .
$$

It is the content of Theorem B. We will give a sketch of the proof to Theorem A. Let e^{-V} and e^{-W} be two density functions with respect to γ. Let $(\nabla \Phi)_{*}: e^{-V} \gamma \rightarrow e^{-W} \gamma$, that is,

For $F \in C_{b}\left(\mathbb{R}^{d}\right)$,

$$
\int_{\mathbb{R}^{d}} F(\nabla \Phi) e^{-v} d \gamma=\int_{\mathbb{R}^{d}} F e^{-w} d \gamma
$$

Let $a \in \mathbb{R}^{d}$; then
$\int_{\mathbb{R}^{d}} F(\nabla \Phi(x+a)) e^{-V(x+a)} e^{-\langle x, a\rangle-\frac{1}{2}|a|^{2}} d \gamma=\int_{\mathbb{R}^{d}} F(\nabla \Phi) e^{-V} d \gamma$.
Denote by τ_{a} the translation by a, and $M_{a}(x)=e^{-\langle x, a\rangle-\frac{1}{2}|a|^{2}}$, then

$$
\nabla\left(\tau_{a} \Phi\right)_{*}: e^{-\tau_{a} V} M_{a} \gamma \rightarrow e^{-W} \gamma
$$

Let $h_{1}=e^{-\tau_{a} V} M_{a}, h_{2}=e^{-V}$. By Theorem B' and
$\operatorname{Ent}_{h_{1} \gamma}\left(\frac{h_{2}}{h_{1}}\right)=\int_{\mathbb{R}^{d}}\left(\tau_{a} V-V+\langle x, a\rangle+\frac{1}{2}|a|^{2}\right) e^{-V} d \gamma$, then

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left(\tau_{a} V-V+\langle x, a\rangle+\frac{1}{2}|a|^{2}\right) e^{-V} d \gamma \\
& \geq \int_{0} 1(1-t) d t \int_{\mathbb{R}^{d}}\left[\left(I d+\nabla^{2} W\right)(\Lambda(t, x, a))\right] \\
& \cdot(\nabla \Phi(x)-\nabla \Phi(x+a))^{2} e^{-V} d \gamma,
\end{aligned}
$$

where $\Lambda(t, x, a)=(1-t) \nabla \Phi(x)+t \nabla \Phi(x+a)$. Note that as $a \rightarrow 0, \Lambda(t, x, a) \rightarrow \nabla \Phi(x)$. Replacing a by $-a$, and summing these inequalities, we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left(V(x+a)+V(x-a)-2 V(x)+|a|^{2}\right) e^{-V} d \gamma \\
& \geq \int_{0}^{1}(1-t) d t \int_{\mathbb{R}^{d}}\left[\left(I d+\nabla^{2} W\right)(\Lambda(t, x, a))\right] \\
& \cdot(\nabla \Phi(x)-\nabla \Phi(x+a))^{2} e^{-V} d \gamma \\
& +\int_{0}^{1}(1-t) d t \int_{\mathbb{R}^{d}}\left[\left(I d+\nabla^{2} W\right)(\Lambda(t, x,-a))\right] \\
& \cdot(\nabla \Phi(x)-\nabla \Phi(x-a))^{2} e^{-V} d \gamma
\end{aligned}
$$

Replacing a by εa and dividing by ε^{2} the two hand sides, letting $\varepsilon \rightarrow 0$ yields
$\int_{\mathbb{R}^{d}}\left[D_{a}^{2} V+|a|^{2}\right] e^{-V} d \gamma \geq \int_{\mathbb{R}^{d}}\left(I d+\nabla^{2} W\right)_{\nabla \Phi}\left(D_{a} \nabla \Phi, D_{a} \nabla \Phi\right) e^{-V} d \gamma$.
By integration by parts,

$$
\int_{\mathbb{R}^{d}} D_{a}^{2} V e^{-V} d \gamma=\int_{\mathbb{R}^{d}}\left(D_{a} V\right)^{2} e^{-V} d \gamma+\int_{\mathbb{R}^{d}} D_{a} V\langle a, x\rangle e^{-V} d \gamma
$$

Write $\nabla \Phi(x)=x+\nabla \varphi(x)$, then
$\left|D_{a} \nabla \Phi\right|^{2}=|a|^{2}+2\left\langle a, D_{a} \nabla \varphi\right\rangle+\left|D_{a} \nabla \varphi\right|^{2}$. Summing a on an orthonormal basis gives

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|\nabla V|^{2} e^{-V} d \gamma+\int_{\mathbb{R}^{d}}\langle x, \nabla V\rangle e^{-V} d \gamma \\
\geq & 2 \int_{\mathbb{R}^{d}} \Delta \varphi e^{-V} d \gamma+\int_{\mathbb{R}^{d}}\left\|\nabla^{2} \varphi\right\|_{H S}^{2} e^{-V} d \gamma \\
& +\sum_{a \in \mathcal{B}} \int_{\mathbb{R}^{d}} \nabla^{2} W_{\nabla \Phi}\left(D_{a} \nabla \Phi, D_{a} \nabla \Phi\right) e^{-V} d \gamma .
\end{aligned}
$$

Let $N_{W}\left(\nabla^{2} \varphi\right)=\sum_{a \in \mathcal{B}} \nabla^{2} W_{\nabla \Phi}\left(D_{a} \nabla \varphi, D_{a} \nabla \varphi\right)$. Then

$$
\begin{aligned}
& \sum_{a \in \mathcal{B}} \int_{\mathbb{R}^{d}} \nabla^{2} W_{\nabla \Phi}\left(D_{a} \nabla \Phi, D_{a} \nabla \Phi\right) e^{-v} d \gamma \\
\geq & \int_{\mathbb{R}^{d}}(\Delta W)_{\nabla \Phi} e^{-v} d \gamma+2 \int_{\mathbb{R}^{d}}\left\langle\nabla^{2} W_{\nabla \Phi}, \nabla^{2} \varphi\right\rangle_{H S} e^{-V} d \gamma \\
& -c \int_{\mathbb{R}^{d}}\left\|\nabla^{2} \varphi\right\|_{H S}^{2} e^{-v} d \gamma .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \int_{\mathbb{R}^{d}}|\nabla V|^{2} e^{-v} d \gamma+\int_{\mathbb{R}^{d}}\langle x, \nabla V\rangle e^{-v} d \gamma \\
\geq & 2 \int_{\mathbb{R}^{d}} \Delta \varphi e^{-v} d \gamma+(1-c) \int_{\mathbb{R}^{d}}\left\|\nabla^{2} \varphi\right\|_{H S}^{2} e^{-v} d \gamma \tag{2}\\
+ & \int_{\mathbb{R}^{d}} \Delta W_{\nabla \Phi} e^{-v} d \gamma+2 \int_{\mathbb{R}^{d}}\left\langle\nabla^{2} W_{\nabla \Phi}, \nabla^{2} \varphi\right\rangle_{H S} e^{-v} d \gamma .
\end{align*}
$$

In order to obtain desired terms, we first use the relation

$$
\int_{\mathbb{R}^{d}}|x+\nabla \varphi(x)|^{2} e^{-v} d \gamma=\int_{\mathbb{R}^{d}}|x|^{2} e^{-W} d \gamma
$$

which gives that

$$
\begin{aligned}
2 \int_{\mathbb{R}^{d}}\langle x, \nabla \varphi(x)\rangle e^{-V} d \gamma= & \int_{\mathbb{R}^{d}}|x|^{2} e^{-W} d \gamma-\int_{\mathbb{R}^{d}}|x|^{2} e^{-V} d \gamma \\
& -\int_{\mathbb{R}^{d}}|\nabla \varphi(x)|^{2} e^{-V} d \gamma
\end{aligned}
$$

Let \mathcal{L} be the Ornstein-Uhlenbeck operator:
$\mathcal{L} f(x)=\Delta f(x)-\langle x, \nabla f\rangle$. Remark that $\mathcal{L}\left(\frac{1}{2}|x|^{2}\right)=d-|x|^{2}$. Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|x|^{2} e^{-W} d \gamma-\int_{\mathbb{R}^{d}}|x|^{2} e^{-v} d \gamma \\
& =-\int_{\mathbb{R}^{d}}\langle x, \nabla W\rangle e^{-W} d \gamma+\int_{\mathbb{R}^{d}}\langle x, \nabla V\rangle e^{-v} d \gamma .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& 2 \int_{\mathbb{R}^{d}}\langle x, \nabla \varphi(x)\rangle e^{-V} d \gamma=-\int_{\mathbb{R}^{d}}\langle x, \nabla W\rangle e^{-W} d \gamma \\
&+\int_{\mathbb{R}^{d}}\langle x, \nabla V\rangle e^{-V} d \gamma-\int_{\mathbb{R}^{d}}|\nabla \varphi|^{2} e^{-v} d \gamma .
\end{aligned}
$$

On the other hand, from Monge-Ampère equation,

$$
e^{-V}=e^{-W(\nabla \Phi)} e^{\mathcal{L} \varphi-\frac{1}{2}|\nabla \varphi|^{2}} \operatorname{det}_{2}\left(I d+\nabla^{2} \varphi\right)
$$

we have

$$
\mathcal{L} \varphi=-V+W(\nabla \Phi)+\frac{1}{2}|\nabla \varphi|^{2}-\log \operatorname{det}_{2}\left(I d+\nabla^{2} \varphi\right),
$$

and

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \mathcal{L} \varphi e^{-v} d \gamma= & \operatorname{Ent}_{\gamma}\left(e^{-V}\right)-\operatorname{Ent}_{\gamma}\left(e^{-W}\right)+\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla \varphi|^{2} e^{-v} d \gamma \\
& -\int_{\mathbb{R}^{d}} \log \operatorname{det}_{2}\left(I d+\nabla^{2} \varphi\right) e^{-V} d \gamma
\end{aligned}
$$

Combing two above equalities gives

$$
\begin{aligned}
& 2 \int_{\mathbb{R}^{d}} \Delta \varphi e^{-v} d \gamma=2 \int_{\mathbb{R}^{d}} \mathcal{L} \varphi e^{-v} d \gamma+2 \int_{\mathbb{R}^{d}}\langle x, \nabla \varphi\rangle e^{-v} d \gamma \\
& =2 \operatorname{Ent}_{\gamma}\left(e^{-v}\right)-2 \operatorname{Ent}_{\gamma}\left(e^{-W}\right)-2 \int_{\mathbb{R}^{d}} \log \operatorname{det}_{2}\left(I d+\nabla^{2} \varphi\right) e^{-v} d \gamma \\
& -\int_{\mathbb{R}^{d}}\langle x, \nabla W\rangle e^{-W} d \gamma+\int_{\mathbb{R}^{d}}\langle x, \nabla V\rangle e^{-v} d \gamma .
\end{aligned}
$$

Recall that

$$
\begin{align*}
& \int_{\mathbb{R}^{d}}|\nabla V|^{2} e^{-V} d \gamma+\int_{\mathbb{R}^{d}}\langle x, \nabla V\rangle e^{-V} d \gamma \\
\geq & 2 \int_{\mathbb{R}^{d}} \Delta \varphi e^{-V} d \gamma+(1-c) \int_{\mathbb{R}^{d}}\left\|\nabla^{2} \varphi\right\|_{H S}^{2} e^{-V} d \gamma \tag{2}\\
+ & \int_{\mathbb{R}^{d}} \Delta W e^{-W} d \gamma+2 \int_{\mathbb{R}^{d}}\left\langle\nabla^{2} W_{\nabla \Phi}, \nabla^{2} \varphi\right\rangle_{H S} e^{-V} d \gamma .
\end{align*}
$$

So we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|\nabla V|^{2} e^{-V} d \gamma \geq 2 \operatorname{Ent}_{\gamma}\left(e^{-V}\right)-2 \operatorname{Ent}_{\gamma}\left(e^{-W}\right) \\
& \quad+(1-c) \int_{\mathbb{R}^{d}}\left\|\nabla^{2} \varphi\right\|_{H S}^{2} e^{-V} d \gamma \\
& \quad+\int_{\mathbb{R}^{d}} \mathcal{L} W e^{-W} d \gamma+2 \int_{\mathbb{R}^{d}}\left\langle\nabla^{2} W(\nabla \Phi), \nabla^{2} \varphi\right\rangle_{H S} e^{-v} d \gamma .
\end{aligned}
$$

Now by

$$
\begin{aligned}
& 2 \int_{\mathbb{R}^{d}}\left|\left\langle\nabla^{2} W(\nabla \Phi), \nabla^{2} \varphi\right\rangle_{H S}\right| e^{-v} d \gamma \\
& \leq \frac{1-c}{2} \int_{\mathbb{R}^{d}}\left\|\nabla^{2} \varphi\right\|_{H S}^{2} e^{-v} d \gamma+\frac{2}{1-c} \int_{\mathbb{R}^{d}}\left\|\nabla^{2} W\right\|_{H S}^{2} e^{-W} d \gamma
\end{aligned}
$$

We get Theorem A.

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|\nabla V|^{2} e^{-V} d \gamma-\int_{\mathbb{R}^{d}}|\nabla W|^{2} e^{-W} d \gamma+\frac{2}{1-c} \int_{\mathbb{R}^{d}}\left\|\nabla^{2} W\right\|_{H S}^{2} e^{-W} d \gamma \\
& \geq 2 \operatorname{Ent}_{\gamma}\left(e^{-V}\right)-2 \operatorname{Ent}_{\gamma}\left(e^{-W}\right)+\frac{1-c}{2} \int_{\mathbb{R}^{d}}\left\|\nabla^{2} \varphi\right\|_{H S}^{2} e^{-V} d \gamma
\end{aligned}
$$

Thanks a lot for your attention!

