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Introduction: Framework and Known Results

Consider SDEs {
dXt = b(Xt)dt + dLt

X0 = x ,

and {
dXt = b(Xt−)dt +

∫
Rn

0
f (Xt−, z)Ñ(dz , dt),

X0 = x .

b : Rn → Rn and f : Rn × Rn
0 → Rn are measurable;

Lt is a pure jump Lévy process with Lévy measure ν, and Ñ(dz , ds) is
the associated martingale measure.
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Introduction: Framework and Known Results

We aim to obtain gradient estimates, strongly Feller property and Harnack
inequality for the associated semigroup

Ptg(x) := Eg(X x
t ) =

∫
Rn

g(y)Pt(x , dy), 0 ≤ t ≤ T , g ∈ Bb(Rn).
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Introduction: Framework and Known Results

Some known results:
• [R. F. Bass and M. Cranston (1986) Ann. Prob]
An integration by parts formula for pure jump processes whose
characteristic measure is Lebesgue measure.

• [Norris (1988)]
An integration by parts formula for SDEs driven by jump processes with
locally regular Lévy measure.

• [F. Y. Wang(2011)SPA]
Explicit gradient estimates for time-homogenous linear SDEs driven by
general Lévy processes.

• [F. Y. Wang (2012)arXiv:1104.5531v4]
Derivative formula, Harnack inequality, Log-Harnack inequality for
time-nonhomogenous linear SDEs driven by general Lévy processes.

• · · · · · · · · · · · ·
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Lp-Derivatives and Integration by Parts Formula

Basic Assumption:

There exists an open set U ⊂ Rn
0 and a function ρ ∈ C 1(U) with

ν(dz) |U= ρ(z)dz and ρ(z) > 0, ∀z ∈ U.

U0 is a closed subset of U.

A predictable process V = {V (t, z)}t≤T on
(
Ω× [0,T ]× Rn

0

)
satisfies:

(H2.1)suppV ⊆ [0,T ]×U0, V (t, ·) ∈ C 1(U0);V andDzV are bounded.
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Lp-Derivatives and Integration by Parts Formula

Define a perturbed random measure,

Nε(B × [0, t]) =

∫ t

0

∫
Rn

0

IB(z + εV (s, z))N(dz , ds), (1)

where ν(B) <∞.

Definition 2.1[Bass]

For p ≥ 1, a function F = F (N) is called to have an Lp-derivative in the
direction V , if there exists an Lp-integrable random variable denoted by
DV F , such that

lim
ε→0

E |F (Nε)− F (N)

ε
− DV F |p = 0,

where Nε is defined as (1).
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Lp-Derivatives and Integration by Parts Formula

For ε > 0 sufficiently small, let

λε(s, z) =

{
detDz

(
z + εV (s, z)

)ρ(z+εV (s,z))
ρ(z) , z ∈ U0,

1, z ∈ (U0)
c ,

Z ε
t = exp

{∫ t

0

∫
U

log λε(s, z)N(dz , ds)−
∫ t

0

∫
U
(λε(s, z)− 1)ν(dz)ds

}
.

There exists a new probability measure Pε such that

dPε

dP
|Ft= Z ε

t .
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Lp-Derivatives and Integration by Parts Formula

Lemma 2.1{
Z ε

t −1
ε

}
0<ε<1

are uniformly integrable.

Proposition 2.2[Norris]

The Pε-law of Nε
t is qual to the P-law of Nt .

Proposition 2.3

Assume F is a function of Nt := {N(dz , ds), s ≤ t}. If F (Nt) is
square-integrable and V satisfies (H2.1), then F (Nt) has a L1-derivative
DV F (Nt) and

EDV F (Nt) = −E [F (Nt)Rt ], (2)

where Rt =
∫ t
0

∫
U0

div(ρ(z)V (s,z))
ρ(z) Ñ(dz , ds).
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Lp-Derivatives and Integration by Parts Formula

For an Rn-valued Lévy process L = {Lt}t≤T , with the Lévy-Khinchin
decomposition,

Lt = αt + Wt +

∫ t

0

∫
[z:0<|z|≤1]

zÑ(dz , ds) +

∫ t

0

∫
[z:|z|>1]

zN(dz , ds).

Set
Ft = σ{Ws : s ≤ t}, Gt = σ{Ns : s ≤ t}.

Then filtration {Ft}t>0 and {Gt}t>0 are independent.
Denote

N =
{

h : h is adapted to {Ft}t≤T and E exp{1

2

∫ T

0
|h(s)|2ds} <∞

}
.
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Lp-Derivatives and Integration by Parts Formula

For fixed h ∈ N , Gt-adapted process V satisfying (H2.1), let

Z ε
t =exp

{
ε

∫ t

0
〈h(s), dWs〉 −

ε2

2

∫ t

0
|h(s)|2ds

+

∫ t

0

∫
U

log λε(s, z)N(dz , ds)−
∫ t

0

∫
U
(λε(s, z)− 1)ν(dz)ds

}
.

There exists a new probability measure Qε such that dQε

dP |Ft∨Gt= Z ε
t ,

where Ft ∨ Gt = σ{A1 ∩ A2|A1 ∈ Ft ,A2 ∈ Gt}.
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Lp-Derivatives and Integration by Parts Formula

Definition 2.2

A function F = F (Wt ,Nt) is called to have an Lp-derivative in the
direction (h,V ), denoted by D(h,V )F . If D(h,V )F is Lp-integrable and

lim
ε→0

E
∣∣∣F(

Wt − ε
∫ t
0 h(s)ds,Nε

t

)
− F

(
Wt ,Nt

)
ε

− D(h,V )F (Wt ,Nt)
∣∣∣p = 0,

where Nε is defined as (1).
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Lp-Derivatives and Integration by Parts Formula

Proposition 2.4

For h ∈ N , Gt-adapted process V satisfying (H2.1), if F = F (Wt ,Nt) are
square-integrable, then F has an L1-derivative D(h,V )F (Wt ,Nt), and

ED(h,V )F (Wt ,Nt) = −E [F (Wt ,Nt)(Ht + Rt)], (3)

where

Ht =

∫ t

0
〈h(s), dWs〉, Rt =

∫ t

0

∫
U0

div(ρ(z)V (s, z))

ρ(z)
Ñ(dz , ds).

Remark 2.5

If h ≡ 0, then equality (3) becomes to (2). If V ≡ 0, equality (3) becomes
to the classic integration by parts formula associated to Wiener processes.
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Nonlinear SDEs Driven by Additive Jump Processes

Consider the following equation{
dXt = b(Xt)dt + dLt

X0 = x ,
(4)

where b : Rn → Rn, Lt =
∫ t
0

∫
|z|>1 zN(dz , ds) +

∫ t
0

∫
0<|z|≤1 zÑ(dz , ds).

If b satisfies Lipschitz condition, then the equation (4) admits a unique
solution, written as

Xt = x +

∫ t

0
b(Xs)ds + Lt .
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Nonlinear SDEs Driven by Additive Jump Processes

Question: As a function of N, which direction ensures the existence of
the L2-derivative for the solution Xt?

Hypothesis (H3.1):

|V (s, z)| ≤ k(s)h(z), ∀s ∈ [0,T ], ∀z ∈ Rn
0,

where k : [0,T ] → [0,∞) is a bounded measurable function,
h : Rn

0 → [0,∞) satisfies h ∈ L1(U, ν(dz)) ∩ L2(U, ν(dz)) and
supp h ⊆ U.
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Nonlinear SDEs Driven by Additive Jump Processes

Theorem 3.1

If (H3.1) holds and b(x) ∈ C 2
b (Rn), then the solution of equation(4) has an

L2-derivative. Moreover, the L2-derivative satisfies the following equation{
dDV Xt = ∇b(Xt)DV Xtdt +

∫
Rn

0
V (t, z)N(dz , dt)

DV X0 = 0.
(5)
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Nonlinear SDEs Driven by Additive Jump Processes

(H3.2)There exist a square-integrable nonnegative process {ϕ(s)}s≤T and
a nonnegative function ψ : U → R satisfying ψ ∈ L2(U, ν(dz)) such that

|div(ρ(z)V (s, z))

ρ(z)
| ≤ ϕ(s)ψ(z).

Theorem 3.2

If (H3.1) and (H3.2) hold, h
dist(·,∂U) ∈ L2(U, ν(dz)), then for any bounded

test function g ,

EDV g(Xt) = −Eg(Xt)Rt ,

where

Rt =

∫ t

0

∫
U

div(ρ(z)V (s, z))

ρ(z)
Ñ(dz , ds).
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Nonlinear SDEs Driven by Additive Jump Processes

Set

θ = lim inf
ε→0

ln ε

ν(h ≥ ε)

Hρ =
{

h ∈ L1
+(U, ν(dz)) ∩ L2(U, ν(dz))

∣∣ |∇(hρ)|
ρ

∈ L2(U, ν(dz))

and
h

dist(·, ∂U)
∈ L2(U, ν(dz))

}
.
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Nonlinear SDEs Driven by Additive Jump Processes

Theorem 3.3

If b(x) ∈ C 2
b (Rn), h ∈ Hρ and θ > −∞, then for ξ ∈ Rn, t > −4θ and

bounded test function g ,

|∇ξPtg(x)|

≤‖g‖∞C (t, h, ν)e‖∇b‖∞t‖ξ‖

{(
t

∫
U

|∇(h(z)ρ(z))|2

ρ2(z)
ν(dz)

) 1
2

+ 2

√
t

∫
U

h(z)2ν(dz) + (t

∫
U

h(z)ν(dz))2

}
,

where C (t, h, ν) is a constant depending on t, h and ν.

Corollary 3.4

Under the conditions of Theorem 3.3, Pt is strongly Feller.
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Nonlinear SDEs Driven by Additive Jump Processes

Outline of the proof:
In order to get strongly Feller property, we should prove

∇Ptg(x) ≤ C (x)‖g‖∞.

In fact, for any ξ ∈ Rn,

∇ξPtg(x) = ∇ξEg(X x
t ) = E∇g(X x

t )Jtξ,

where Jt satisfies {
dJt = ∇b(Xt)Jtdt,

J0 = I .
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Nonlinear SDEs Driven by Additive Jump Processes

Itô formula implies

DV Xt = Jt

∫ t

0

∫
Rn

0

J−1
s V (s, z)N(dz , ds).

Choose V (s, z) = h(z)Jsξ with nonnegative function h. Then

DV Xt =

∫ t

0

∫
Rn

0

h(z)N(dz , ds)Jtξ.

Let Ht =
∫ t
0

∫
Rn

0
h(z)N(dz , ds).

If Ht > 0, a.s., then H−1
t DV Xt = Jtξ.
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Nonlinear SDEs Driven by Additive Jump Processes

Thus,

∇ξPtg(x) = ∇ξEg(X x
t ) = E∇g(X x

t )Jtξ

=E∇g(X x
t )H−1

t DV Xt = EH−1
t DV g(X x

t )

=EDV (H−1
t g(X x

t ))− EDV (H−1
t )g(X x

t )

=Eg(X x
t )[−H−1

t Rt − DV (H−1
t )]

=Eg(X x
t )[−H−1

t Rt − H−2
t

∫ t

0

∫
Rn

0

∇h(z) · V (s, z)N(dz , ds)].
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Nonlinear SDEs Driven by Additive Jump Processes

Basic properties of H−1
t :

Lp-integrability

Proposition 3.5[Norris]

For p > 1, if t > −p lim inf
ε→0

ln ε
ν(h≥ε) , then EH−p

t <∞.

Exponential Integrability

Proposition 3.6

If h ∈ L1
+(U, ν(dz)), h and ν satisfy lim inf

ε→0
ν(h ≥ ε)ε > 0, then there

exists C > 0 such that

E exp{H−1
t } ≤ exp{C (t +

1

t
)}, ∀t > 0.
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Nonlinear SDEs Driven by Additive Jump Processes

Example 3.7

Let ρ(z) = 1
|z|n+α , 0 < α < 2, Sn−1 be the unit spherical surface in Rn.

Open sets B, B1 and B2 in Sn−1 satisfy B1 ⊆ B and B2 ⊆ B1. Set
U = {z ∈ Rn : 0 < |z | < 1, z

|z| ∈ B},
U1 = {z ∈ Rn : 0 < |z | < 2

3 ,
z
|z| ∈ B1},

U2 = {z ∈ Rn : 0 < |z | < 1
3 ,

z
|z| ∈ B2}.

Take functions:
φ ∈ C 1

b (Sn−1), IB2 ≤ φ ≤ IB1 ;
ψ ∈ C 1

b (0, 1), I(0, 1
3
) ≤ ψ ≤ I(0, 2

3
);

h(z) = |z |βψ(|z |)φ( z
|z|), β >

α
2 + 1,

then h ∈ Hρ and conditions of Theorem 3.5 hold.
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Nonlinear SDEs Driven by Additive Jump Processes

Set

H′
ρ =

{
h ∈ L1

+(U, ν(dz)) ∩ L2(U, ν(dz))
∣∣h ∈ C 1

b (U),

h

dist(·, ∂U)
∈ L2(U, ν(dz))

and
|∇(hρ)|

ρ
≤ Ch(z), C > 0

}
.
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Nonlinear SDEs Driven by Additive Jump Processes

Young’s Inequality

Theorem 3.8

If b(x) ∈ C 2
b (Rn), h ∈ H′

ρ and lim inf
ε→0

ν(h ≥ ε)ε > 0, then for any δ > 0

and bounded nonnegative test function g ,

∇ξPtg(x) ≤ δ
{

Pt(g log g)(x)− Ptg(x) log(Ptg(x))
}

+δ exp
{C (t, b, ξ, ν, h, ρ)

δ

}
Ptg(x),

where C (t, b, ξ, ν, h, ρ) is a constant depending on t, b, ξ, ν, h and ρ.
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Nonlinear SDEs Driven by Additive Jump Processes

Harnack Inequality

Theorem 3.9

If b(x) ∈ C 2
b (Rn), h ∈ H′

ρ and lim inf
ε→0

ν(h ≥ ε)ε > 0, then for any α > 1

and bounded nonnegative test function g ,

(Ptg)α(x) ≤ exp{αC (t, b, y , ν, h, ρ)}Ptg
α(x + y), x , y ∈ Rn,

where C (t, b, y , ν, h, ρ) is a constant depending on t, b, y , ν, h and ρ.

Z.Dong (AMSS CAS ) July 19, 2012 28 / 41



Outline

1 Introduction: Framework and Known Results

2 Lp-Derivatives and Integration by Parts Formula

3 Nonlinear SDEs Driven by Additive Jump Processes

4 Nonlinear SDEs Driven by Multiplicative Jump Processes

Z.Dong (AMSS CAS ) July 19, 2012 29 / 41



Nonlinear SDEs Driven by Multiplicative Jump Processes

Consider the following equation{
dXt = b(Xt−)dt +

∫
Rn

0
f (Xt−, z)Ñ(dz , dt),

X0 = x ,
(6)

where b : Rn → Rn, f : Rn × Rn
0 → Rn are measurable.
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Hypothesis:
(H4.1) b ∈ C 2

b (Rn);
(H4.2) Partial derivatives f ′1(·, z), f ′2(x , ·) and f ′′11(·, z) are bounded
onRn × U, and satisfy

sup
x
|f ′1(x , ·)|and sup

x
|f ′′11(x , ·)| ∈ L2(U, ν(dz));

(H4.3) Partial derivatives f ′′21 and f ′′22 are bounded on Rn × U;
(H4.4) |V (s, z)| ≤ k(s)h(z), where k : [0,T ] → R are bounded,

h : U → R+ are continuous bounded function and h ∈
4⋂

p=1

Lp(U, ν(dz))
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Existence of L2-Derivative:

Theorem 4.1

If (H4.1)-(H4.4) hold, then the solution of equation (6) has an
L2-derivative and the derivative solves the following equation

dDV Xt = ∇b(Xt−)DV Xt−dt +
∫

Rn
0
f ′1(Xt−, z)DV Xt−Ñ(dz , dt)

+
∫

Rn
0
f ′2(Xt−, z)V (t, z)N(dz , dt),

DV X0 = 0.

(7)
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Set
Mf = (f ′2)

−1(I + f ′1), M = ‖Mf ‖∞,

Gρ =

{
h ∈

4⋂
p=1

Lp(U, ν(dz))
∣∣h ≥ 0,

|∇(hρ)|
ρ

∈ L2(U, ν(dz))

and
h

dist(·, ∂U)
∈ L2(U, ν(dz))

}
.

Non-degeneracy Condition
(H4.5) sup

x∈Rn,z∈U
‖(I + f ′1(x , z))−1‖ <∞.
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Jaccobi Matrix{
dJt = ∇b(Xt−)Jt−dt +

∫
Rn

0
f ′1(Xt−, z)Jt−Ñ(dz , dt),

J0 = I .
(8)

Inverse Matrix
dJ−1

t = −J−1
t−∇b(Xt−)dt − J−1

t−
∫

Rn
0
(I + f ′1(Xt−, z))−1f ′1(Xt−, z)Ñ(dz , dt)

+J−1
t−

∫
Rn

0
(I + f ′1(Xt−, z))−1(f ′1(Xt−,z)

2ν(dz)dt,

J−1
0 = I .

(9)

When (H4.4)-(H4.4) and (H4.5) hold, both of equation (8) and (9)
admit respective solutions.
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Theorem 4.2

Assume that (H4.1)-(H4.3) and (H4.5) hold. If h ∈ Gρ, θ > −∞, Mf and
(Mf )′2 are bounded, then there exists a constant C = C (t, h, ν) , for any
ξ ∈ Rn, t > −4θ and bounded test function g

|∇ξPtg(x)| ≤ C‖g‖∞‖ξ‖

{
exp

{
t‖∇b‖∞ + t

∫
Rn

0

sup
x
|f ′1(x , z)|2ν(dz)

}
×

√
nM2‖∇(hρ)

ρ
‖2
L2 + n‖(Mf )′2‖2

∞‖h‖2
L2 + M‖∇h‖∞

× exp
{

2t‖∇b‖∞+t

∫
Rn

0

sup
x
|f ′1(x , z)|2ν(dz)

}√
t‖h‖L2+t2‖h‖2

L1

}
.

Corollary 4.3

Under the conditions of Theorem 4.2, Pt is strongly Feller.
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Outline of proof
The key is to find a proper direction V . By equation (7), (8) and (9), Itô
formula implies

DV Xt = Jt

∫ t

0

∫
Rn

0

J−1
s− (I + f ′1(Xs−, z))−1f ′2(Xs−, z)V (s, z)N(dz , ds).

Choose

V (s, z) = (f ′2(Xs−, z))−1(I + f ′1(Xs−, z))Js−h(z)ξ.

Then DV Xt = HtJtξ, where Ht =
∫ t
0

∫
U h(z)N(dz , ds) with nonnegative

function h vanishing off U.
The reminder of the proof is similar to Theorem3.3.
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Example 4.4

Let ρ(z) = 1
|z|n+α with 0 < α < 2. Denote the unit spherical surface in Rn

by Sn−1. Open sets B, B1 and B2 in Sn−1 satisfy B1 ⊆ B and B2 ⊆ B1.
Set U = {z ∈ Rn : 0 < |z | < δ, z

|z| ∈ B},
U1 = {z ∈ Rn : 0 < |z | < 2

3δ,
z
|z| ∈ B1},

U2 = {z ∈ Rn : 0 < |z | < 1
3δ,

z
|z| ∈ B2}.

Take functions:
φ ∈ C 1

b (Sn−1), IB2 ≤ φ ≤ IB1 ,
ψ ∈ C 1

b (0, 1), I(0, 1
3
δ) ≤ ψ ≤ I(0, 2

3
δ),

h(z) = |z |βψ(|z |)φ( z
|z|), β >

α
2 + 1,

f (x , z) = g(x)z , g ∈ C 2
c (Rn), g > 0.

Then for δ sufficiently small, the conditions of Theorem 4.2 hold.
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Set

G′ρ =

{
h ∈

4⋂
p=1

Lp(U, ν(dz))
∣∣h ≥ 0,∇h ∈ C 1

b (U),
|∇(hρ)|

ρ
≤ Ch(z)

and
h

dist(·, ∂U)
∈ L2(U, ν(dz))

}
.
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Young’s Inequality:

Theorem 4.5

Assume (H4.1)-(H4.3) and (H4.5) hold. If h ∈ G′ρ, lim inf
ε→0

ν(h ≥ ε)ε > 0,

Mf and (Mf )′2 are bounded, then for any δ > 0 and bounded nonnegative
test function g ,

∇ξPtg(x) ≤δ
{

Pt(g log g)(x)− Ptg(x) log(Ptg(x))
}

+ δ exp
{C (t, b, ξ, ν, h, ρ, f )

δ

}
Ptg(x),

where C (t, b, ξ, ν, h, ρ, f ) is a constant depending on t, b, ξ, ν, h, ρ and f .
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Nonlinear SDEs Driven by Multiplicative Jump Processes

Harnack Inequality:

Theorem 4.6

Under the conditions of Theorem 4.5, for any α > 1 and bounded
nonnegative test function g ,

(Ptg)α(x) ≤ exp{αC (t, b, y , ν, h, ρ)}Ptg
α(x + y), x , y ∈ Rn,

where the constant C (t, b, y , ν, h, ρ, f ) only depends on t, b, y , ν, h, ρ
and f .
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